
Maximal Error-Detecting Capabilities of Formal Languages1

Stavros Konstantinidis† and Pedro Silva‡

†Department of Mathematics and Computing Science
Saint Mary’s University

Halifax, Nova Scotia, B3H 3C3 Canada
s.konstantinidis@smu.ca

‡Centro de Matemática, Faculdade de Ciências
Universidade do Porto – R. Campo Alegre 687

4169-007 Porto, Portugal
pvsilva@fc.up.pt

Abstract
A combinatorial channel is a set of pairs of words describing all the possible input-output channel
situations. We introduce the concept “maximal error-detecting capability” of a formal language,
with respect to a certain class of combinatorial channels. The new concept is intended to address
formally the question of “finding the largest amount of errors that a language can detect”. We focus
on rational channels (those described by finite transducers) and on regular languages, and consider
the problem of computing maximal error-detecting capabilities of a given regular language for
various classes of rational channels. We also discuss briefly the concept “maximal error-correcting
capability” of a formal language.

Key words: algorithm, automaton, channel, combinatorial channel, error correction, error detec-
tion, error model, maximal, formal language, regular language.

1 Introduction

A (combinatorial) channel is a set of pairs of words describing all the possible input-output situa-
tions permitted by the channel. The fact that the pair (w, z) is in the channel means that the word
z can be received via the channel when the word w is used as input. In this case, if w 6= z then we
say that z contains errors, or that w was received with errors. A language L is error-detecting for
some channel γ, [5], if there is no pair (w, z) in the channel such that w 6= z and both w and z are
in Lλ; that is, the channel cannot transform a word of Lλ into another different word of Lλ. This
fact allows one to detect that a received word z contains errors exactly when z is not in Lλ. Here
λ is the empty word and Lλ = L ∪ {λ}.

In this paper we introduce the concept “maximal error-detecting capability of a formal language”
in order to address the informal question of “finding the largest amount (or set) of errors that a given
language can detect”. This concept is defined with respect to a certain error model, which is simply
a set of channels. We focus on the problem of computing maximal error-detecting capabilities of
regular languages with respect to various error models of rational channels (those realized by finite
transducers). We believe that this problem is important. First, it is interesting from a theoretical

1Research supported by (i) a Discovery Research Grant of NSERC, Canada, and (ii) the Centro de Matemtica
da Universidade do Porto (CMUP), financed by FCT (Portugal) through the programmes POCTI and POSI, with
national and European Community structural funds. This work was presented in part (a) in the 10th WSEAS
Conference on Computers, July 2006, Vouliagmeni, Greece; and (b) in the SCRA 2006—FIM XIII on Interdisciplinary
Mathematical and Statistical Techniques, September 2006, Tomar, Portugal.

1

point of view. Second, it can be viewed as the converse of the following classic problem of coding
theory: find the largest language (or code) that is error-detecting for a given channel. Third,
any algorithms for computing maximal error-detecting capabilities of languages can potentially be
applied on real languages and codes, such as gene languages and codes used in protocols of data
communication. In the former case, we would know the inherent error-detecting capabilities of a
gene language. In the latter case, we would be able to find out whether an actual code possesses
more error-detecting capabilities than those for which it was designed.

To our knowledge, the concept of maximal error-detecting capability has not been studied in
the past. In this study we intend to obtain some basic results in connection with certain important
error models. Our study is not meant to be exhaustive and we choose to leave several questions
that arise here for future research.

The paper is organized as follows. The next section contains the basic terminology and back-
ground, introduces formally the concepts of maximal error-detecting and -correcting capabilities of
a formal language, and provides a couple of examples on these concepts. Section 3 gives a few basic
results for the error model of all rational channels. Section 4 focuses on error models consisting
of certain rational channels that are called SID channels (substitution-insertion-deletion channels).
An SID channel is specified by the type of errors (symbol changes) permitted in the input words
as well as by two positive integers m, l indicating that no more than m errors can be applied in
any segment of length l of an input word. That section contains basic results on SID channels that
concern bounds on m, l when a language is error-detecting for such a channel, as well as subset
relationships between SID channels. These results are used in Section 5 as tools to address the
problem of computing maximal error-detecting capabilities of a given regular language with respect
to a given error model. In that section we also discuss error models of certain homophonic channels.
Finally, Section 6 contains a few concluding remarks and states a few problems for future research.

2 Basic definitions and background

We use the symbol Σ to denote a fixed, but arbitrary alphabet. Then the symbol Σ∗ denotes the
set of all words (or strings) over Σ, including the empty word λ. The length of a word w is denoted
by |w|. A language is any set of words. If K is a language then Kλ denotes the language K ∪ {λ}.
A binary relation over Σ is a subset of Σ∗ × Σ∗. A (combinatorial) channel is a binary relation γ
over the alphabet Σ, that is, γ ⊆ Σ∗ × Σ∗, such that γ is domain preserving, that is, γ contains
the pair (v, v) when the word v is a possible input to the channel. This requirement ensures that
error-free communication is always possible via the channel. The domain dom γ of the channel γ
is the set of all possible inputs to γ, that is,

dom γ = {w | (w, z) ∈ γ, for some word z}.
An error model is a set C of channels. Intuitively, C contains the possible channels that

appear to model the error situations arising in some application where information needs to be
transmitted or stored. Besides the error model, we consider a language that is intended to be used
for representing information. Depending on the application, it is required that the language satisfies
certain properties, for instance, error-detection or error-correction with respect to a channel γ in
C. The definition of error-detection is given in the Introduction. A language L is error-correcting
for a channel γ, [5], when no two different words of Lλ can result via γ into the same output; that
is, if (w1, z) and (w2, z) are in γ and w1, w2 are in Lλ then w1 must be equal to w2. This fact allows
one to correct a given channel output z to a unique word of L.

2

In the sequel we shall focus on the error-detection property and we shall consider mainly regular
languages, that is, languages accepted by finite automata, and rational channels, that is, channels
realized by finite transducers. Recall that a finite automaton has finitely many states, one of which
is its initial state and some of them are its final states, and a set of transitions of the form (p, a, q).
Such a transition says that if the automaton is in state p and the current input starts with a then it
can enter the state q. The automaton can consume a given input word by following its transitions
and, in this case, accepts the word when it is in some final state. The set of words accepted by
a finite automaton A is denoted by L(A). A finite transducer also has an initial state and some
final states, and a finite set of transitions of the form (p, x/y, q). Such a transition says that if the
transducer is in state p and the current input starts with x then it enters in state q and outputs the
word y. The transducer consumes a given input word and produces some output word by following
its available transitions – see [11], for instance, for more details on finite automata and transducers.

We are interested in the following problem.

Problem 1 Let A be a finite automaton accepting a language with at least two words, and let C be
an error model. Compute a channel γ in C such that γ is a C-maximal error-detecting capability
of L (or C-maximal error-correcting capability of L).

A channel γ is said to be a C-maximal error-detecting capability of L if (i) γ is in C, (ii) L is error-
detecting for γ, and (iii) L is not error-detecting for γ′, for any channel γ′ that properly contains
γ, that is, γ′) γ. The concept of maximal error-correcting capability is defined analogously.
An error type is an expression in

{σ, ι, δ, σ ¯ ι, σ ¯ δ, ι¯ δ, σ ¯ ι¯ δ}

and is used to define certain simple channels as follows: For any m ≥ 0 and error type τ the channel
τ(m,∞) consists of all pairs of words (w, z) such that z results by performing no more than m
errors of type τ in the word w. The three simple error types σ, ι, δ denote substitutions, insertions,
and deletions, respectively. The symbol ¯ is used simply as a connective for the simpler types

Example 1 A typical channel considered in coding theory (in many cases implicitly) is the chan-
nel σ(m,∞) consisting of all pairs of words (w, z) such that z can be received using at most m
substitutions of symbols in w, that is, H (w, z) ≤ m, where H (w, z) is the Hamming distance
between the words w and z. For example, (0000, 0110) ∈ σ(2,∞), where we assume that 0 and 1
are elements of the alphabet. In this case, we consider the error model

Cσ[∞] = {σ(m,∞) | m ≥ 0}

and the error-detection version of Problem 1 is equivalent to computing, for a given language L,
the maximum value of m such that H (L) > m, where the quantity H (L) is the smallest Hamming
distance between any two different words in L – indeed, note that L is error-detecting for σ(m,∞)
if and only if H (L) > m [8]. This instance of the problem can be solved efficiently [4]. Using
this result one can also solve the error-correction version of the problem by noting that L is error-
correcting for σ(m,∞) if and only if H (L) > 2m.

Example 2 Another typical channel is the channel (σ ¯ ι ¯ δ)(m,∞) consisting of all pairs of
words (w, z) such that z can be received using a total of at most m substitutions, insertions, and

3

deletions of symbols in w, that is, Λ (w, z) ≤ m, where Λ (w, z) is the Levenshtein distance (also
called edit distance) between the words w and z. In this case, we consider the error model

C(σ¯ι¯δ)[∞] = {(σ ¯ ι¯ δ)(m,∞) | m ≥ 0}
and the error-detection version of Problem 1 is equivalent to computing, for a given language L, the
maximum value of m such that Λ (L) > m, where the quantity Λ (L) is the smallest Levenshtein
distance between any two different words in L – indeed, note that L is error-detecting for (σ ¯ ι¯
δ)(m,∞) if and only if Λ (L) > m. This instance of the problem can be solved in polynomial time
[6]. Using this result one can also solve the error-correction version of the problem by noting that
L is error-correcting for (σ ¯ ι¯ δ)(m,∞) if and only if Λ (L) > 2m [7].

We close this section by noting an interesting relationship between the concepts of error-detection
and error-correction. Recall, that the composition γ2◦γ1 of two relations is the relation that consists
of all pairs (w1, w2) such that (w1, z) is in γ1 and (z, w2) is in γ2, for some word z. Moreover, the
inverse of a relation γ is γ−1 = {(z, w) : (w, z) ∈ γ}.

Remark 1. A language L is error-correcting for γ if and only if it is error-detecting for γ−1 ◦ γ.

3 The Error Model of Rational Channels

In this section we consider the error model C[rat] of all rational channels, that is, all channels γ
that can be realized by finite transducers. Our focus on rational channels should not be considered
as a restriction because, to our knowledge, most channels can be described by finite-state machines.
We obtain a few basic results that confirm our intuition about the legitimacy of the concepts of
maximal error-detection and -correction.

Lemma 1 Let γ1, γ2 be channels and L be a language.

1. If γ1 ⊆ γ2 and L is error-detecting (respectively, error-correcting) for γ2 then L is error-
detecting (respectively error-correcting) for γ1.

2. If L is error-detecting for γ1 and for γ2 then L is error-detecting for γ1 ∪ γ2.

Proof. The proof is based directly on the definition of error-detecting language and is left to the
reader. ¥

For the next statements we recall that a language L is maximal error-detecting for a channel
γ if there is no word w outside of Lλ such that L ∪ {w} is error-detecting for γ. The concept of
maximal error-correcting language for a channel γ is defined analogously.

Theorem 1 Let L be a nonempty language and let γ be a channel such that all words of L are
possible inputs to γ, that is, L ⊆ dom γ. If γ is a C[rat]-maximal error-detecting capability of L
then L is maximal error-detecting for γ.

Proof. Assume for the sake of contradiction that L is not maximal error-detecting for γ. Then,
there is a word w not in Lλ such that the language L′ = L∪{w} is error-detecting for γ. We choose
any word v0 from L and define the channel

γ′ = γ ∪ {(v0, w)}.

4

Note that v0 ∈ dom γ implies that indeed γ′ is domain preserving. Moreover, the channel γ′ is in
C[rat], as the class of rational relations is closed under union. Obviously L′ is not error-detecting
for γ′. As L′ is error-detecting for γ, we have that γ is a proper subset of γ′ and, as γ is a maximal
error-detecting capability of L, it follows that L is not error-detecting for γ′. Thus, there are two
different words v1, v2 in Lλ such that (v1, v2) is in γ′. As v2 6= w, it must be the case that (v1, v2)
is in γ, which contradicts the fact that L is error-detecting for γ. ¥

In the next result, for a given language L, the symbol DL denotes the diagonal relation {(w, w) :
w ∈ L}.

Theorem 2 For every regular language L there is exactly one C[rat]-maximal error-detecting ca-
pability, denoted by µL, and is equal to

µL = DLλ
∪ [Lλ × (Σ∗ − Lλ)] ∪ [(Σ∗ − Lλ)× Σ∗]

Proof. First one verifies that L is indeed error-detecting for µL. Next, for the sake of contradiction,
assume that L is error-detecting for some channel µ that properly contains µL; thus, there is a pair
(w, z) in µ− µL. This fact leads to a contradiction when we consider the various cases of whether
each of w and z is, or is not, in Lλ. Hence, µL is indeed maximal.

Now suppose that γ is a rational maximal error-detecting capability of L. We show that the
assumption µL 6= γ leads to a contradiction. As γ and µL are different and maximal, they must
be proper subsets of µL ∪ γ, which implies that L is not error-detecting for µL ∪ γ. On the other
hand, L must be error-detecting for µL ∪ γ by Lemma 1; a contradiction. ¥

When the language L is given via a deterministic finite automaton A, one can compute a
transducer realizing µL in time linear with respect to the size of A – this quantity is simply the
number of states in A. Indeed, given A, one can construct in linear time an automaton for Σ∗−L,
and transducers for each of the relations DL, L× (Σ∗ − L), (Σ∗ − L)× Σ∗.

It turns out that the analogue of Theorem 1 for the case of error-correction holds true as well.

Theorem 3 Let L be a nonempty language and let γ be a channel such that all words of L are
possible inputs to γ, that is, L ⊆ dom γ. If γ is a C[rat]-maximal error-correcting capability of L
then L is maximal error-correcting for γ.

Proof. Assume for the sake of contradiction that L is not maximal error-correcting for γ. Then,
there is a word w not in Lλ such that the language L′ = L ∪ {w} is error-correcting for γ. We
choose a word v0 from L as follows:

• If there is a word v in L such that (v, w) is in γ then v0 is any such v; hence, (v0, w) is in γ.

• If there is no word v in L such that (v, w) is in γ then v0 is any word in L.

Note that (v0, v0) is in γ, as L ⊆ dom γ. Define the channel

γ′ = γ ∪ {(w, w), (v0, w)}.
The channel γ′ is in C[rat], as the class of rational relations is closed under union. Obviously L′ is
not error-correcting for γ′. As L′ is error-correcting for γ, we have that γ is a proper subset of γ′

and, as γ is a maximal error-correcting capability of L, it follows that L is not error-correcting for
γ′. Thus, there are two different words v1, v2 in Lλ such that (v1, z) and (v2, z) are in γ′, for some
word z. We obtain a contradiction as follows.

5

Case 1: At least one of (v1, z) and (v2, z) is not in γ. Without loss of generality, suppose that
(v1, z) is not in γ. Then, (v1, z) must be in {(w,w), (v0, w)}. As w is not in L and v1 is in L, it
must be (v1, z) = (v0, w). Also, as v0 6= v2, the pair (v2, w) must be in γ. Then, by the choice of
v0, it follows that (v0, w) must be in γ, which is a contradiction.

Case 2: Both of (v1, z) and (v2, z) are in γ. This implies that L is not error-correcting for γ,
which is a contradiction. ¥

Unlike the case of error-detection, a regular language L can have more than one maximal
rational error-correcting capability. To see this, consider the finite language L = {00001, 1001} and
the channels σ(1,∞) – see Example 1 – and δ(1,∞) that consists of all pairs (w, z) such that z
results by deleting at most one symbol from w. Firstly, note that there is no word z such that
both (00001, z) and (1001, z) are in δ(1,∞), hence, L is error-correcting for δ(1,∞). Similarly, L
is error-correcting for σ(1,∞). If there were a unique maximal rational error-correcting capability
of L, say γ, then γ would include both δ(1,∞) and σ(1,∞). Then, however, a contradiction arises
when we note that both (00001, 0001) and (1001, 0001) would be in γ.

4 Error Models of SID Channels

The class C[rat] of rational channels is interesting from a theoretical point of view but includes
channels that do not relate in any way to physical channels. In this section, we turn our attention
to error models consisting of SID channels (with scattered errors) [7, 5, 3]. We establish several
theoretical results that are used in the next section to address Problem 1 for various SID error
models.

An SID channel is specified by an expression of the form τ(m, l), where τ is an error type –
see Section 1 – and (m, l) is a pair of nonnegative integers with m < l. This channel consists of all
pairs of words (w, z) such that z results by using no more than m errors of type τ in any segment
of length at most l of the input word w.

Example 3 The pair (w, z) is in the channel (σ ¯ δ)(2, 7) if and only if z can be obtained by
substituting and/or deleting no more than 2 symbols in every segment of length 7 of w. For
example the pair

(100000000, 01000010)

is in (σ ¯ δ)(2, 7), but the pair
(100000000, 01001000)

is not in (σ ¯ δ)(2, 7) as one has to use more than 2 errors in the prefix 1000000 of 100000000 in
order to obtain 01001000.

In [3], SID channels are defined in terms of edit strings (e-strings). An edit string is a word over
the alphabet E = {(x/y) : x, y ∈ Σ ∪ {λ} and xy 6= λ} whose symbols are called edit operations.
If the edit operation (x/y) is such that x 6= y then (x/y) is called an error. An edit string
(x1/y1) · · · (xn/yn) describes a possible sequence of edit operations that can be used to transform
the word x1 · · ·xn to the word y1 · · · yn. In the preceding example, the edit string

h = (1/λ)(0/0)(0/1)(0/0)(0/0)(0/0)(0/0)(0/1)(0/0)

can be used to transform the word w = 100000000 into the word z = 01000010. In this case, we
say that w is the input part and z is the output part of h. An SID channel τ(m, l) consists of all

6

pairs of words (w, z) such that w and z are the input and output parts, respectively, of some edit
string h, where every factor of h of input size at most l contains no more than m errors. The input
size of an edit string is simply the length of its input part. Note that if τ contains no insertions,
that is errors of the form (λ/x), then the input size of the edit string is equal to its length. In the
preceding example, as each factor of h of length at most 7 contains no more than 2 errors, we have
that (w, z) is indeed in (σ ¯ δ)(2, 7).

Addressing Problem 1 requires that we establish a few theoretical results such as bounds on
m and l, when τ(m, l) is a maximal error-detecting capability of the language L(A), as well as
containment relationships between any two SID channels τ(m1, l1) and τ(m2, l2).

Lemma 2 Let τ(m1, l1) and τ(m2, l2) be SID channels with m1 ≤ m2.

1. If l1 ≥ l2 then τ(m1, l1) ⊆ τ(m2, l2).

2. If m1 = m2 and l1 < l2 then τ(m2, l2) (τ(m1, l1).

Proof. We prove the first statement and leave the proof of the second one to the reader. Let (w, z)
be any element of τ(m1, l1). There is an edit string h whose input and output parts are equal to w
and z, respectively, and every factor of h of input size at most l1 contains no more than m1 errors.
Now let g be any factor of h of input size at most l2. As l2 ≤ l1, the factor g contains no more than
m1 errors, hence, no more than m2 errors. Therefore, (w, z) belongs to τ(m2, l2). ¥

The above lemma leaves open the case where m1 < m2 and l1 < l2. We settle this case when
τ = σ and leave the other cases for future research.

Lemma 3 Let σ(m1, l1) and σ(m2, l2) be SID channels with m1 < m2 and l1 < l2. Let r1 =
min{m1, l2%l1}, where l2%l1 is the remainder of the integer division l2/l1.

1. If m2 < bl2/l1cm1 + r1 then the channels σ(m1, l1) and σ(m2, l2) are subset-incomparable.

2. If m2 ≥ bl2/l1cm1 + r1 then σ(m1, l1) (σ(m2, l2).

Proof. First note that, for the word z = 1m1+10l2−(m1+1), we have that (0l2 , z) ∈ σ(m2, l2) −
σ(m1, l1).

If m2 < bl2/l1cm1 + r1 then let u = (1m10l1−m1)bl2/l1c1r10l2%l1−r1 . We have that

(0l2 , u) ∈ σ(m1, l1)− σ(m2, l2).

Indeed, note that 0l2 can be written as (0l1)bl2/l1c0l2%l1 . The channel σ(m1, l1) can apply m1 errors
in each factor 0l1 and r1 errors in 0l2%l1 . Hence, (0l2 , u) is in σ(m1, l1). Moreover, this process uses
bl2/l1cm1+r1 errors in 0l2 . On the other hand, bl2/l1cm1+r1 > m2 implies that (0l2 , u) /∈ σ(m2, l2).
Hence, the two channels are incomparable.

If m2 ≥ bl2/l1cm1 + r1 then σ(m1, l1) is a subset of σ(m2, l2). Indeed, assume for the sake of
contradiction that there is a pair (u, v) in σ(m1, l1) − σ(m2, l2), and let h be the corresponding
edit string. Then there is a factor g of h of length at most l2 containing more than m2 errors. Let
(u2, v2) be the pair corresponding to g. Then (u2, v2) is in σ(m1, l1)−σ(m2, l2), which implies that
we can have no more than m1 errors in every factor of g of length at most l1. Thus, there can be
at most bl2/l1cm1 + r1 errors in g; a contradiction. ¥

The proofs of some of the next results make use of the concept of σ-automaton Aσ, [4],
where A is any finite automaton. More specifically, Aσ is a finite automaton over the alphabet

7

1

1

0

f

0
s p

Figure 1: A finite automaton. Final states are denoted using double
lines. The start state is indicated using an incoming arrow with no
origin state. This automaton accepts the language (10 + 010)∗0.

Eσ = {(x/y) : x, y ∈ Σ} such that the language L(Aσ) consists of all edit strings over Eσ that
transform a word of L(A) into a different word of L(A); that is, all edit strings (x1/y1) · · · (xn/yn)
with x1 · · ·xn, y1 · · · yn ∈ L(A) and xi 6= yi for some index i. The automaton Aσ results from A
using a simple product construction. It consists of transitions of the form ((p1$1q1)(x/y)(p2$2q2)),
where (p1, x, q1) and (p2, y, q2) are two transitions of A, and the symbols $1 and $2 are in {=, 6=}
indicating whether the input and output components of the edit string seen so far match or not.
The start state is (p0 = p0), where p0 is the start state of A, and the final states are (f1 6= f2),
where f1, f2 are final states of A. As the detailed view of these transitions is not needed here, we
simplify the notation by using expressions of the form (p̄, (x/y), q̄) for the transitions of Aσ. We
also note that Aσ consists of at most 2s2

A states, where sA is the number of states in A, and contains
only states that are reachable from the start state – see Fig. 4.

The next statement refers specifically to thin languages, as they are special when it comes to
error-detection for channels of the form σ(m, l). A language K is called thin if any two different
words of K have different lengths [11]. Obviously a thin language is error detecting for σ(m, l), for
every possible values of the parameters (m, l).

Lemma 4 Let A be a finite automaton accepting at least two words, and let τ(m, l) be an SID
channel (hence, m < l) such that the language L(A) is error-detecting for τ(m, l).

1. If τ 6= σ then m is less than the length of a shortest nonempty word in L(A).

2. If τ = σ and L(A) is not thin, then m < 2s2
A − 1, where sA is the number of states in A.

Proof. The first statement follows from the facts that (i) τ must contain at least one of ι and δ,
and (ii) if m ≥ |w| for some word w ∈ L(A) − {λ}, then we would get that (λ,w) ∈ τ(m, l) or
(w, λ) ∈ τ(m, l), depending on whether ι or δ is in τ .

For the second statement, as L(A) is not thin, we can choose two different words w1, w2 of the
same length, such that these are shortest with this property. Let h be the edit string in L(Aσ) that
corresponds to the pair (w1, w2). As h must be a shortest word of L(Aσ) its length cannot exceed
the number of states in Aσ minus one; hence, the length of w1, w2 is at most 2s2

A − 1. Thus, if
m ≥ 2s2

A − 1 then (w1, w2) ∈ σ(m, l), which is a contradiction. Hence, m < 2s2
A − 1 as required. ¥

8

 1/0

 0/1

 1/0

 0/1

 0/0

 0/0

 1/1

1/0

 1/1

0/1

 1/1

1/1

0/0
(s=s)

(p s)

(s p)

(s f)

(f s)

(s s)(p p)

(p f)

(f p)

(p=p)

(f=f)

(f f)

 1/1

 0/0 0/0

 1/0 1/1 0/1

 0/0

 1/0

0/1

Figure 2: The σ-automaton corresponding to the automaton in
Fig. 1. It accepts all edit strings that transform a word of (10+010)∗0
into a different word of (10 + 010)∗0 using only substitution errors.

The next result provides an important upper bound on the smallest value of l when a language
L(A) is error-detecting for channels of the form σ(m, l).

Theorem 4 Let m be a nonnegative integer and let A be a finite automaton accepting at least two
words. The language L(A) is error-detecting for the channel σ(m, l), for some l > m, if and only
if it is error-detecting for σ(m, 2ms2

A + 1), where sA is the number of states in A.

Before we get to the proof of this theorem we define the N-automaton AN of some finite au-
tomaton A, and obtain an intermediate lemma that relates the two equivalent statements of the
theorem via this N-automaton concept.

Let A be a finite automaton and let N∞ = N0 ∪ {∞}, where N0 denotes the set of nonnegative
integers. Let T 6= be the set of transitions of the form (p̄, (x/y), q̄) in Aσ with x 6= y. The automaton
AN consists of the following components.

• States: the elements of T 6=. We use symbols of the form t̂ for these. Obviously, each such t̂ is
of the form (p̄, (x/y), q̄).

• Alphabet: the set N∞.

• Transitions: there is a transition from (p̄1, (x1/y1), q̄1) to (p̄2, (x2/y2), q̄2) with label n, if there
is a path in Aσ from q̄1 to p̄2 such that the edit string formed along this path contains no
errors, and the supremum of all such paths is equal to n.

• Start states: all elements (p̄, (x/y), q̄) of T6= such that there is a path in Aσ from its start
state to the state p̄ and the edit string formed along this path contains no errors.

9

0

00 1

 1

(s p)(0/1)(p s)

(p s)(0/1)(s p)

0

0

01

1

0

0

0

0

(s=s)(0/1)(f p)

(s=s)(1/0)(p f)

(s f)(0/1)(f p)

(s s)(0/1)(f p)

(f p)(1/0)(p s)

(f s)(1/0)(p f)

(s s)(1/0)(p f)

(p f)(0/1)(s p)

Figure 3: The N-automaton corresponding to the automaton of Fig. 1
– see also Fig. 2.

• Final states: all elements (p̄, (x/y), q̄) of T6= such that there is a path in Aσ from the state q̄
to a final state of Aσ and the edit string formed along this path contains no errors.

Remark 2. By the above construction, an accepting computation of AN is a sequence

T̂ = (t̂0, n1, t̂1, . . . , nk, t̂k)

such that each state t̂i is of the form (p̄i, xi/yi, q̄i). In this case, there is an edit string accepted by
Aσ of the form

h = h0(x0/y0)h1 · · ·hk(xk/yk)hk+1

such that each hi is in E∗
0 , where E0 = {x/x : x ∈ Σ}, and |hj | ≤ nj for j = 1, . . . , k. Conversely,

if the edit string h shown above is accepted by Aσ then there is a computation T̂ of AN as shown
above such that each state t̂i is of the form (p̄i, xi/yi, q̄i), and |hj | ≤ nj for j = 1, . . . , k, and each
nj is not ∞ exactly when no path between q̄j−1 and p̄j contains a cycle.

Lemma 5 Let A be a finite automaton accepting at least two words and let m be a positive integer.
If the language L(A) is error-detecting for σ(m, l), for some l > m, then the language accepted by
AN is a subset of N∗∞Nm

0 N∗∞

10

Proof. Assume for the sake of contradiction that AN has an accepting computation

T̂ = (t̂0, n1, t̂1, . . . , nk, t̂k)

with the property that, if for some r ≥ 0 and t ≥ 2 all values nr+1, . . . , nr+t−1 are in N0, then
t− 1 < m. Then there is an edit string

h = h0(x0/y0)h1 · · ·hk(xk/yk)hk+1

as specified in Remark 2. In particular, we can choose h such that |hj | = nj if nj 6= ∞, and |hj | > l
if nj = ∞, for all j = 1, . . . , k. As L(A) is error-detecting for σ(m, l), there is a factor g of h of
length at most l containing a number t of errors such that t > m. Now g must be of the form

h′r(xr/yr)hr+1 · · · (xr+t−1/yr+t−1)h′r+t

for some r ≥ 0. As |g| ≤ l, we have that |hr+1|, . . . , |hr+t−1| ≤ l. By the choice of the hj ’s in
h, it must be the case that all of nr+1, . . . , nr+t−1 are in N0. Also, by the assumption about the
computation T̂ , we get that t− 1 < m which contradicts t > m when g was chosen. ¥

We proceed now with the proof of the theorem.

Proof of Theorem 4. The ‘if’ part is trivial. For the ‘only if’ part, it is sufficient to show that
every edit string h accepted by Aσ has a factor g of length at most 2ms2

A +1 containing more than
m errors. So, let h be an edit string as in Remark 2. Then, there is an accepting computation T̂
as in Remark 2. By Lemma 5, there must be an index r such that all of nr+1, . . . , nr+m are in N0.
As each nj is the length of an edit string along a path in Aσ with no cycles, we have that each nj

cannot exceed 2s2
A − 1, which is the number of states in Aσ minus 1. Now consider the factor

g = (xr/yr)hr+1 · · ·hr+m(xr+m/yr+m)

of h. Then g contains exactly m+1 errors and is of length at most 1+m+m(2s2
A−1) = 2ms2

A +1,
as required. ¥

5 Computing Maximal Error-detecting Capabilities

In this section we discuss how to solve Problem 1 for some of the error models considered in previous
sections. We recall some existing results that are needed here.

Theorem 5 [5] The following problem is decidable in polynomial time.
Input: a finite automaton A and a finite transducer realizing some channel γ.
Output: Y/N, depending on whether the language L(A) is error-detecting for γ.

Proposition 1 [5, 3] For each error type τ and integers m and l, with 0 ≤ m < l, there is
(effectively) a finite transducer realizing the SID channel τ(m, l).

We note that the construction of a transducer realizing τ(m, l) would normally require a very large
number of states and transitions – exponential with respect to m, see [3] for a relevant discussion.

11

5.1 The error model C1
τ [l] = {τ(m, l) : for any m with m < l}

In this error model, the parameters τ and l are fixed and, therefore, there are only finitely many
channels:

τ(0, l), . . . , τ(l − 1, l).

In this case, Problem 1 can be solved using Proposition 1 and Theorem 5 and Lemma 2. Indeed,
for each possible value 0, . . . , l − 1 of m, construct a finite transducer realizing τ(m, l) and test
whether the given language L(A) is error-detecting for τ(m, l). The process stops when the first
m > 0 is found such that L(A) is not error-detecting for τ(m, l). In this case, the output would be
τ(m− 1, l). We can speed up this process when the values of m are visited using binary search.

5.2 The error model C2
τ [m] = {τ(m, l) : for any l with l > m}

In this error model, the parameters τ and m are fixed. We want to find the smallest l (if any) such
that L(A) is error-detecting for τ(m, l). This turns out to be difficult in general. However, we have
managed to settle the case where τ = σ using Theorem 4. Indeed, as in Subsection 5.1, one needs
to consider only finitely many channels:

τ(m,m + 1), . . . , τ(m, 2ms2
A − 1),

where recall that sA is the number of states in the given finite automaton A.

5.3 The error model Cτ = {τ(m, l) : for any m and l with m < l}
We shall consider first the case where the language L(A) is thin and τ = σ – see Section 4. In
this case it is evident that, for every channel σ(m, l), if (w, z) is in σ(m, l) then w and z are of the
same length; hence, the channel cannot transform a word of L(A) to another word in L(A). Thus
L(A) is error-detecting for σ(m, l) for all (m, l). Moreover, there is no Cσ-maximal error-detecting
capability of L(A). Indeed, if σ(m, l) is such a maximal capability then, as σ(m, l) ⊆ σ(l − 1, l), it
must be m = l − 1. At the same time, as σ(l − 1, l) (σ(l, l + 1) by Lemma 3(2), it must be that
L(A) is not error-detecting for σ(l, l + 1); a contradiction.

In the sequel we assume that either τ = σ or L(A) is not a thin language – note that one can
effectively test in quadratic time (with respect to the size of A) whether L(A) is thin [5]. According
to Lemma 4, there is an upper bound M(τ, A) on m when L(A) is error-detecting for any τ(m, l).
Thus we can restrict our attention to channels of the form τ(m, l), where m ∈ {0, . . . , M(τ,A)};
hence, the problem reduces to the case of the error model of Subsection 5.2, which has been resolved
for the case of τ = σ via Theorem 4. More specifically, the process is as follows:

• For each pair of values (m, l) such that m ∈ {0, . . . , M(τ,A)} and l ∈ {m + 1, . . . , 2ms2
A +

1}, construct a transducer for σ(m, l) using Proposition 1, and test whether L(A) is error-
detecting for σ(m, l) using Theorem 5.

• Let C be the set of channels that are tested positive. Then, resolve all containment rela-
tionships of channels in C using Lemma 2 and Lemma 3, and output all channels that are
C-maximal.

Hence we have established the following result.

Theorem 6 The following problem is computable.
Input: A finite automaton A accepting at least two words.
Output: The set of all Cσ-maximal error-detecting capabilities of L(A).

12

5.4 Error models of homophonic channels

Homophonic channels are defined in [2] based on the idea of multivalued encodings [10, 1]. A
multivalued encoding of a finite language K is a mapping µ of K into the finite nonempty subsets
of Σ∗; that is, µ(w) is a finite nonempty set of words, for each w in K. The homophonic channel
defined by K is the set of pairs of words (w1 · · ·wn, z1 · · · zn) such that n ≥ 0, each wi is in K, and
each zi is in µ(wi). Obviously the words of the language K∗, or any subset of that, are meant to
be the possible inputs to this channel.

In this paper we separate the language from the channel by defining the following homophonic-
like channel, for every error type τ and parameters m, l:

τh(m, l) = {(w1 · · ·wn, z1 · · · zn) : n ≥ 1, |w1| = · · · = |wn−1| = l, |wn| ≤ l,∀i(wi, zi) ∈ τ(m,∞)}

Thus, the channel τh applies errors in any input word w, say, as follows: no more than m errors in
the first block of l symbols of w, then, independently of what happened in the first block, no more
than m errors in the second block of l symbols of w, and so on. If the length of w is not a multiple
of l then the last block in the above process would be of length less than l.

The main result here concerns the following error model

C1
τh

[l] = {τh(m, l) : for any m with m < l}

Obviously this is a finite error model such that τh(m1, l) is a subset of τh(m2, l), for any m1 and
m2 with m1 < m2 < l.

Lemma 6 For each error type τ and integers m and l, with 0 ≤ m < l, there is (effectively) a
finite transducer realizing the homophonic channel τh(m, l). Moreover, the size of the transducer –
and time to construct it – is of order O(ml).

Proof. It is sufficient to construct a finite automaton accepting all edit strings h = h1 · · ·hn−1hn

such that each of h1, . . . , hn−1 has input size l, hn has input size at most l, and no hi contains more
than m errors. To this end, first construct an automaton Am,l of (m+1)(l +1) states accepting all
edit strings of input size l having no more than m errors. The states of this automaton are all pairs
(i, j) with 0 ≤ i ≤ m and 0 ≤ j ≤ l. Such a state represents the fact that the edit string seen so
far has input size j and exactly i errors. The start state is (0, 0) and the final states are the pairs
(i, l) with 0 ≤ i ≤ m. The transitions are defined such that the meaning of the state is preserved.
For example, for x, y ∈ Σ with x 6= y, ((i, j), (x/y), (i + 1, j + 1)) is a transition when i < m and
j < l, and ((i, j), (λ/y), (i + 1, j)) is a transition when i < m.

Now let B1 and B2 be two copies of Am,l with the following modifications. In B1, each final
state has a transition to the state (0, 0) with label (λ/λ), where (λ/λ) denotes the empty edit
string. Thus, B1 accepts the language L(Am,l)+. In B2, all states are final; hence, B2 accepts all
edit strings that are prefix factors of edit strings in L(Am,l). The reader can now verify that the
required automaton can be constructed easily using B1 and B2 as components. ¥

Theorem 7 The following problem is computable in polynomial time.
Input: A finite automaton A accepting at least two words and a positive integer l.
Output: The C1

τh
[l]-maximal error-detecting capability of L(A).

13

Proof. As the error model C1
τh

[l] is finite, for each m = 1, . . . , l − 1, one constructs the channel
τh(m, l) in polynomial time using Lemma 6, and then tests, in polynomial time whether L(A) is
error detecting for τh(m, l) using Theorem 5. The process stops when the first m > 0 is found such
that L(A) is not error-detecting for τh(m, l). In this case, the output would be τh(m − 1, l). We
can speed up this process when the values of m are visited using binary search. In any case, the
process is of polynomial time complexity. ¥

The study of the error models

C2
τh

[m] = {τh(m, l) : for any l with m < l}

and
Cτh = {τh(m, l) : for any m, l with m < l}

appears to require extra effort and is left for future research.

6 Discussion

We have introduced the concepts of maximal error-detecting and -correcting capability of a given
language, with respect to a certain error model, and have argued that these concepts are meaningful
at least from a theoretical point of view. As stated in the introduction, our present study is not
meant to be exhaustive. So, we propose a few possible directions for future research.

• Obtain the analogue of Theorem 6 for error types other than σ. To this end, for each error
type τ , resolve the containment relations between any two channels τ(m1, l1) and τ(m2, l2).

• Investigate further error models of homophonic channels.

• Investigate to what extend the algorithmic methods for computing various maximal error-
detecting capabilities can be improved in terms of efficiency.

• Apply the algorithms to real world languages such as gene languages and codes for data
communications.

• In view of Remark 1 in the introduction, investigate when a given rational relation µ can be
written in the form γ−1 ◦ γ, where γ is a rational relation. Note that the rational relation
{(0, 1)} cannot be written in that form (otherwise, {(1, 0)} would have to be in the relation
as well).

• Investigate maximal error-correcting capabilities of languages. In particular whether Re-
mark 1 can aid in any way towards this end.

References

[1] R. M. Capocelli, L. Gargano and U. Vaccaro. Decoders with Initial State Invariance for Mul-
tivalued Encodings, Theoretical Computer Science 86 (1991) 365–375.

[2] H. Jürgensen, S. Konstantinidis. Codes. In [9], 511–607.

[3] L. Kari, S. Konstantinidis. Descriptional Complexity of Error/Edit Systems, Journal of Au-
tomata, Languages and Combinatorics 9 (2004) 2/3, 293-309.

14

[4] L. Kari, S. Konstantinidis, S. Perron, G. Wozniak, J. Xu. Computing the Hamming Distance of
a Regular Language in Quadratic Time, WSEAS Transactions on Information Science & Ap-
plications 1 (2004), pp 445-449. Also in: Proceedings of “8th WSEAS International Conference
on Computers, Vouliagmeni, Greece, July 12-15, 2004.”

[5] S. Konstantinidis. Transducers and the Properties of Error-Detection, Error-Correction and
Finite-Delay Decodability, Journal of Universal Computer Science 8 (2002), 278-291.

[6] S. Konstantinidis. Computing the Levenshtein distance of a regular language. In: Proceedings
of “IEEE Information Theory Workshop on Coding and Complexity, Rotorua, New Zealand,
Aug. 29 - Sep. 1, 2005,” pp 113-116.

[7] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Dokl. 10 (1966), 707–710.

[8] S. Roman. Coding and Information Theory. Springer-Verlag, New York, 1992.

[9] G. Rozenberg, A. Salomaa (eds). Handbook of Formal Languages, Vol. I. Springer-Verlag,
Berlin, 1997.

[10] K. Sato. A decision procedure for the unique decipherability of multivalued encodings. IEEE
Transactions on Information Theory 25 (1979) 356–360.

[11] S. Yu. Regular Languages. In [9], 41–110.

15

