MAXIMAL FIELDS DISJOINT FROM FINITE SETS

W. R. SCOTT

Let F be a subfield of an algebraically closed field A of characteristic 0, S a finite subset of A disjoint from F, K a subfield of A containing F and maximal with respect to disjointness from S, L a finite extension of K, and G = G(L/K) the group of automorphisms of L/K. Quigley [4] and McCarthy [1] obtained precise information about G in the case where S has one or two elements, respectively (they handled the characteristic p case also). Theorem 1 of this paper shows that there is some restriction on G in the general case. In particular (Theorem 2), G is solvable if S has at most twenty elements.

LEMMA. If r is a positive integer, then there is a finite set II of primes such that if G is a finite group containing at most r maximal subgroups, then either

- (i) G is cyclic of order $p_1^{n_1} \cdots p_k^{n_k}$, p_i prime, $k \leq r$, or
- (ii) G is a Π -group.

PROOF. Let G contain at most r maximal subgroups H_i , and let the index of $H_{i_1} \cap \cdots \cap H_{i_s}$ in G be denoted by $n_{i_1 \cdots i_s}$. If G is cyclic, then conclusion (i) clearly holds. Assume that G is not cyclic. We may count elements as follows:

$$o(G) = [o(H_1)] + [o(H_2) - o(H_1 \cap H_2)] + [o(H_3) - o(H_1 \cap H_3) - o(H_2 \cap H_3) + o(H_1 \cap H_2 \cap H_3)] + \cdots$$

Dividing by o(G), we get

$$1 = 1/n_1 + (1/n_2 - 1/n_{12}) + (1/n_3 - 1/n_{13} - 1/n_{23} + 1/n_{123}) + \cdots$$

We may take $n_1 \leq n_2 \leq \cdots$. Also each expression surrounded by parentheses is positive since the H_i are distinct maximal subgroups. Moreover, each such expression is less than or equal to its first term. It follows readily that $n_1 \leq r$. Suppose inductively that $n_{i_1} \cdots n_{i_s}$ have all been chosen for $i_1 < \cdots < i_s < t$. The corresponding sum equals 1-a, say. Then $n_t \leq r/a$, and $n_{i_1} \cdots \leq n_{i_1} \cdots n_t$. Thus, by induction, there are only a finite number of choices for the n_{ijk}

Received by the editors July 16, 1967.

Now the intersection $\Phi(G)$ of all H_i is normal, and there are only a finite number of possibilities for $o(G/\Phi(G))$. Let Π be the set of primes dividing such orders. By a theorem of Suzuki [5, p. 347], if p | o(G) then $p | o(G/\Phi(G))$. Hence G is a Π -group.

THEOREM 1. Let r be a positive integer and Π the set of primes guaranteed by the lemma. Let F be a field of characteristic 0, A an algebraically closed field containing F, S a subset of A disjoint from F and containing exactly r elements, and K a subfield maximal such that $K \cap S = \emptyset$ and $F \subset K \subset A$. Then there is a set S' of r or fewer primes such that, if L is a finite extension of K, then G(L/K) is either

(i) cyclic of order $p_1^{n_1} \cdots p_k^{n_k}$, $p_i \in \Pi \cup S'$, $k \leq r$, or

(ii) a Π -group.

PROOF. K exists by Zorn. By [1, Lemma 1], A/K is algebraic. The field K has at most r minimal extensions in A, for each such extension contains an element of S. Let M be the smallest subfield of A which is normal over K and which contains L and these minimal extensions. Then M is finite Galois over K. G(M/K) has at most r maximal subgroups by the fundamental theorem of Galois theory. By the lemma, G(M/K) is cyclic of order $p_1^{n_1} \cdots p_k^{n_k}$, $k \leq r$, or a Π -group. Let S' be the set of all $p_i \oplus \Pi$ that occur as L varies. If S' contains distinct primes p_1, \cdots, p_{r+1} , then there are finite Galois extensions M_i such that $p_i \mid o(G(M_i/K))$. The composite of the M_i is then a finite Galois extension M such that either G(M/K) is cyclic with order divisible by more than r primes, or is noncyclic and not a Π -group. In either case this is a contradiction. Hence the theorem is true for L replaced by M. In case (i), it is clear that G(L/K) also has the form (i). In the other case, we use the easily proved result that¹

$$G(L/K) \cong N(G(M/L))/G(M/L)$$

where the normalizer is taken in G(M/K). Since subgroups and factor groups of Π -groups are Π -groups, G(L/K) is a Π -group.

For small values of r, the set II in the lemma and Theorem 1 may be determined from known theorems. In fact, it follows from [2] that for r=1, 2, 3, 4, the set II may be taken as \emptyset , \emptyset , $\{2\}$, and $\{2, 3\}$, respectively.

Pazderski [3] has shown that if a finite group G contains fewer than 21 maximal subgroups, then G is solvable. Hence we have

THEOREM 2. If, in Theorem 1, r < 21, then G(L/K) is solvable.

¹ This fact was pointed out to me by Robert Gordon.

W. R. SCOTT

BIBLIOGRAPHY

1. P. J. McCarthy, Maximal fields disjoint from certain sets, Proc. Amer. Math. Soc. 18 (1967), 347-351.

2. G. A. Miller, Maximal subgroups of a finite group, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 212-214.

3. Gerhard Pazderski, Über maximale Untergruppen endlicher Gruppen, Math. Nachr. 26 (1963/1964), 307-319.

4. Frank Quigley, Maximal subfields of an algebraically closed field not containing a given element, Proc. Amer. Math. Soc. 13 (1962), 562-566.

5. M. Suzuki, On the lattice of subgroups of finite groups, Trans. Amer. Math. Soc. 70 (1951), 345-371.

UNIVERSITY OF UTAH