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Let F be a subfield of an algebraically closed field A of characteristic

0, S a finite subset of A disjoint from F, K a subfield of A containing

F and maximal with respect to disjointness from S, L a finite exten-

sion of K, and G = G(L/K) the group of automorphisms of L/K.

Quigley [4] and McCarthy [l] obtained precise information about

G in the case where 5 has one or two elements, respectively (they

handled the characteristic p case also). Theorem 1 of this paper shows

that there is some restriction on G in the general case. In particular

(Theorem 2), G is solvable if S has at most twenty elements.

Lemma. If r is a positive integer, then there is a finite set II of primes

such that if G is a finite group containing at most r maximal subgroups,

then either

(i)  G is cyclic of order p"1 ■ ■ ■ p"k, pi prime, k^r, or

(ii) G is a Tl-group.

Proof. Let G contain at most r maximal subgroups Hi, and let the

index of Hif~\ ■ ■ ■ C\Hit in G be denoted by w^...^. If G is cyclic,

then conclusion (i) clearly holds. Assume that G is not cyclic. We

may count elements as follows:

o(G) = [o(Hx)] + [o(H2) - o(Hxr\H2)]

+ [o(H3) - o(Hxr\H0 - o(H2r\H0

+ o(Hxr\H2rMio] + ■ ■ ■.

Dividing by o(G), we get

1   =   1/Wl +   (l/«2  —   I/W12)

+   (l/«3 —   l/«i3 —  l/«23 +  1/Wm)  +   •   •   •   .

We may take nxfS,n2^ ■ ■ ■ . Also each expression surrounded by

parentheses is positive since the Hi are distinct maximal subgroups.

Moreover, each such expression is less than or equal to its first term.

It follows readily that nx^r. Suppose inductively that nil ■ ■ ■ nit

have all been chosen for ix< ■ ■ ■ <is<t. The corresponding sum

equals 1—a, say. Then nt^r/a, and nii...t^nil ■ ■ ■ nt. Thus, by

induction, there are only a finite number of choices for the w^_
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Now the intersection <p(G) of all 77; is normal, and there are only a

finite number of possibilities for o(G/<E>(G)). Let II be the set of

primes dividing such orders. By a theorem of Suzuki [5, p. 347],

if p\ oiG) then p\ 0(G/<t>(G)). Hence G is a II-group.

Theorem 1. Let r be a positive integer and II the set of primes guaran-

teed by the lemma. Let F be afield of characteristic 0, A an algebraically

closed field containing F, S a subset of A disjoint from F and containing

exactly r elements, and K a subfield maximal such that KC\S = 0

and FEKEA. Then there is a set S' of r or fewer primes such that, if L

is a finite extension of K, then GiL/K) is either

(i) cyclic of order p? ■ ■ ■ pntk, PiETVJS', £ = r, or

(ii) a II-group.

Proof. K exists by Zorn. By [l, Lemma l], A/K is algebraic. The

field K has at most r minimal extensions in A, for each such extension

contains an element of 5. Let M he the smallest subfield of A which

is normal over K and which contains L and these minimal extensions.

Then M is finite Galois over K. G(M/K) has at most r maximal sub-

groups by the fundamental theorem of Galois theory. By the lemma,

G(M/K) is cyclic of order p"/ ■ ■ ■ plk, Hr, ora II-group. Let S' be

the set of all p&Tl that occur as L varies. If S' contains distinct

primes pi, • • • , pr+i, then there are finite Galois extensions M, such

that p,\ o(G(Mi/K)). The composite of the Mi is then a finite Galois

extension M such that either G(M/K) is cyclic with order divisible by

more than r primes, or is noncyclic and not a II-group. In either case

this is a contradiction. Hence the theorem is true for L replaced by

M. In case (i), it is clear that G(L/K) also has the form (i). In the

other case, we use the easily proved result that1

GiL/K) S NiGiM/L))/GiM/L)

where the normalizer is taken in G(M/K). Since subgroups and factor

groups of II-groups are II-groups, G(L/K) is a II-group.

For small values of r, the set II in the lemma and Theorem 1 may

be determined from known theorems. In fact, it follows from [2]

that for r = l, 2, 3, 4, the set II may be taken as 0, 0, {2}, and

{2, 3}, respectively.

Pazderski [3] has shown that if a finite group G contains fewer

than 21 maximal subgroups, then G is solvable. Hence we have

Theorem 2. If, in Theorem 1, r<21, then G(L/K) is solvable.

1 This fact was pointed out to me by Robert Gordon.
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