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MAXIMAL FUNCTIONS ON CLASSICAL LORENTZ SPACES

AND HARDY'S INEQUALITY WITH WEIGHTS
FOR NONINCREASING FUNCTIONS

MIGUEL A. ARIÑO AND BENJAMIN MUCKENHOUPT

Abstract. A characterization is given of a class of classical Lorentz spaces on

which the Hardy Littlewood maximal operator is bounded. This is done by

determining the weights for which Hardy's inequality holds for nonincreasing

functions. An alternate characterization, valid for nondecreasing weights, is

also derived.

1. Introduction

The classical Lorentz spaces A AW) considered here are defined as the set

of functions g on Rn such that

r f°°
l*llv»n =■ [/   [g*ix)]QW(x)dx < OO,

where

g\y) = inf{s:p({t:\g(t)\>s})<y}

is the nonincreasing rearrangement of g on [0, oo), p is Lebesgue measure,

W(x) is nonnegative and 1 < q < oo. For W(x) = (q/p)x{qlp)~X , A (IF) is

the space L(p, q) studied in [3 and 10]. We characterize here the functions

W for which a constant D exists such that

(1.1) \\Mg\\K(W)<D\\g\\Kq(W),

where M is the Hardy Littlewood maximal operator defined as

Mg(x) = sup-— I \g(y)\dy,

and the sup is taken over all cubes Q containing x. As shown in §4, this

problem is equivalent to determining the nonnegative functions W for which

the Hardy inequality

/•oo      i       rX 9 /-0O

(1.2) /      -/   f(t)dt   W(x)dx<C       \fi(x)\qW(x)dx
JO     x Jo Jo
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holds for all nonnegative nonincreasing / on [0, oo).

By Theorem 1 of [6], inequality (1.2) holds for all functions / on [0, oo) if

and only if

W(x)       l  r r 1«/«'

(1.3) sup
r>0 /

dx IJo
W(x)-qlqdx < 00,

where q = q/(q - 1) and the second factor is taken to be esssupro , -^f^ if

q = 1. With the restraint that / is nonnegative and nonincreasing, however,

other weights satisfy (1.2). For example, if 1 < q < oo , the function

( 0, 1 <x < 2,
(L4) W(x) = \    _1/2I x   '  ,       0<x<lor2<x,

clearly does not satisfy (1.3). However, for this W(x) the left side of (1.2) is

bounded by

(1.5) f-'-U^' dx.

Ey the classical Hardy inequality, [10, p. 196], there is a constant B such that

(1.5) is bounded by

(1.6) B
roo

/    /(Jo
x)q x       dx.

Since / is nonincreasing and nonnegative,

P<x)qx       dx < [ f(x)qx  X/2dx,
Jo'[ JO

and, therefore, (1.6) is bounded by the right side of (1.2) with C = 2B .
The main results of this paper are as follows.

Theorem (1.7). If 1 < q < oo and W(x) > 0, then (1.2) holds for all nonnega-

tive, nonincreasing f on [0, oo) if and only if there is a constant B such that

for every r > 0,

(1.8) r *wf°° W(x)   .        B   f „.,   .  ,
/     —-rr-dx^sl   W(x)dx.

Jr       xq r" Jo

Corollary (1.9). If 1 < q < oo and W(x) > 0, then (1.1) holds for all g on Rn

if and only if there is a constant B such that (1.8) holds for r > 0.

Theorem (1.10). If W(x) > 0,  1 < q < oo and

1-11
1

sup-
r>0  r ÍJo

-11/9

W(x)dx f' W(x)-q,qdx
JO

i/o'
< 00,

then (1.2) holds for all nonnegative, nonincreasing functions f, or equivalently,

(1.1) holds. The converse is also true for nondecreasing W .

Corollary (1.12). Condition (1.11) is stronger than (1.8) and for W nondecreas-

ing and nonnegative they are equivalent.
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In §2 a basic lemma is proved that is needed for the proof of Theorem (1.7)

in §3. Corollary (1.9) is proved in §4 by showing the equivalence of the two

problems. Theorem (1.10) and Corollary (1.12) are proved in §5.

The convention 0 • oo = 0 is assumed throughout this paper.

The authors would like to thank Professor Alberto de la Torre for his helpful

comments.

2.  A BASIC LEMMA

The proof of Theorem (1.7) will use the following lemma.

Lemma (2.1). If w(x) > 0,  1 < «^ < oo and (1.8) holds, then there is a ô > 0

and a constant D such that for r > 0,

W(x)
UX  2>

r
This follows from the proof of Lemma 21 on page 12 of [ 11 ] that B implies

Bn_p.  We give here a simpler proof that can also be used to prove that B„p    e p

2kr
implies B     . For this proof fix an r > 0 and let Ak = fQ    W(x) dx . Then

for a nonnegative integer n ,

fZgéxs^fww*.

oo     r2KrA f
2^ r.kq  ~ 1^ J
k=nZ k=nJ0

which equals

Í     W(x)
Jo k=n

2kq dx +
/•OO

h"r

W'x)
->kq

W(X)

dx

2kr>x

■)kq
dx.

Performing the sums gives a bound of

1

1 IJo

W(x)  ,
~Y<rdx +Lw{<i) dx

Using (1.8) then shows that

(2.2)
B+l

¿—i ",kq  ~

nq

k=n

This is equivalent to

/ j -,kq
k=n

1-2

t<   B+l

-i f     W(x
Jo

)dx.

1-2"

00    A °°      A

Y^ Ak y*   Ak
¿—i jkq Z-j    -ykq

Lk=n k=n+\

from which

with

E

5 =

k=n+\

B+l

l-2-?

■.kq
<

- 1

oo    ^

Z—/ jkq
k=n L

B+l
< 1.
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By induction for j > 0,
°°  A ■ °°  A

¿—d -.kq   —        ¿*-j -.kq '
k=j Z k=0 Z

and, therefore,

(2.3) ^<^S)JE2kq
k

k=0

s

Now choose ô > 0 such that 2S< 1, Then

s:
,2'r

-ô)'

7 = 1

q—ô   oo oo

Wjx)d      f.l^trWjx)dx
xq-s       -Z.    {2j-xr)q-â

By the definition of A., the right side is bounded by

By (2.3) this has the bound

if)   Y.AsYEa¡-
v    ' ;=1 k=0 Z

Performing the first sum and using (2.2) then gives the bound

\r)       l-2sSl-2'qJo

This completes the proof of Lemma (2.1).

3. Proof of Theorem (1.7)

The fact that (1.2) for nonincreasing, nonnegative / implies (1.8) follows

immediately by taking f(x) = x<0 r]ix) in (1.2). To prove the converse we start

by applying Lemma (2.1) to obtain constants D and e such that 0 < e < 1

and for r > 0,

We will assume that / is continuous, has compact support, and is constant

on [0, d] with d > 0. We can add these restrictions on / without loss of

generality by use of the monotone convergence theorem.

Having fixed such an /, we define sequences {an} and {bn} inductively

as follows. Let bQ = 0. Given b x , we take an to be the infimum of all

x > bnX such that

(3 2) Xf{x)

foXAt)dt
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CLASSICAL LORENTZ SPACES AND HARDY'S INEQUALITY

is less than or equal to e/10. By this definition we have

(3.3) ffi(t)dt<X-^xfi(x),        bn_x<x<an,
Jo e

and, since / is continuous,

731

(3.4) fJo
fi(t)dt = ^anfi(an).

Furthermore, since (3.2) equals 1 for 0 < x < d, we have ax> d.

Given an, define bn  to be the infimum of all x > an  such that (3.2) is

greater than £ . Then

(3.5)

and

(3.6)

f f(t)dt>-xf(x),
Jo e

a<x<b,

j\(t)dt = \bnfi(bn

Since / is nonincreasing and bn < an+x,

e     7"»+' s    fb"
J      fi(t)dt<vJo   fi(t)dt;*«+i

from (3.4) and (3.6) we see that 10fi(an+x) < fi(bn). It follows that

(3.7) I0f(an+x)<fi(an).

Similarly, since an < bn and / is nonnegative,

f" f(t)dt<ef " fi(t)dt,
Jo Jo

and combining this with (3.4) and (3.6) shows that I0anfi(af) < bnf(bn). Since

bnfibn)^an+\fian) we have

(3.8) 10a„ < an+x.

Now (3.8), the fact that ax > d and the fact that all an 's must lie in the

support of / show that there are only a finite number of an 's; call the last one

aN. If bN, as defined above, existed, then aN+x would also exist since (3.2)

is 0 off the support of /. This contradiction shows that (3.2) is less than or

equal to e for x > aN . Therefore, (3.5) remains valid for n = N if we define

b„ = oo.

If an < x < bn we have by (3.5) that

fit

or
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From this

(3.9) ^f(u)du<^Jl^fi(u)du, an<x< bn.

Now to prove (1.2) write the left side as the sum of

(3.10)

and

(3.11)

£/        -      fit) dt    W(x)dx
«=i ""«-i

tnil'mäf„_, V   vx j0 j
W(x)dx.

By (3.3) we see that (3.10) is bounded by the right side of (1.2) with  C =

(10/e)9 . For (3.11) use (3.9) to get the bound

£
n=\   fun

By (3.1) this is bounded by

[b- wix) A\l f"n re w
L i^dx oaJo mdu

£-    / "W(x)dx     / " fi(u)du
7T7 an yJo J uon=l    «

By (3.4) this equals

which can be written

¿7)  ^     f" fi(an)qW(x)dx
„=i     L e J   y0

7)
LOT5

e
[ " J£2fiian)"W(x)dx.

Jo    a>x

From (3.7) and the fact that / is nonincreasing we get the bound

This completes the proof of Theorem (1.7)

4. Equivalence of the problems, proof of Corollary (1.9)

Corollary (1.9) follows immediately from theorem (1.7) and the following

lemma.

Lemma (4.1). If 1 < q < oo, n > 1 and W(x) is nonnegative, then (1.1) holds

for all g on Rn if and only if (1.2) holds for all nonnegative, nonincreasing f

on [0, oo).

To prove that ( 1.1 ) for g in R" implies (1.2) for nonnegative, nonincreasing

/ on [0, oo), fix such an / and define g(x) = f(A\x\"), where A  is the
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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volume of the unit sphere in Rn . Taking Q as the cube with center x and

side length 4|jc| in the definition of M we have

1
Mg(x) > 71)    J v

giy) dy.
i4\x\)    J\y\<\x\

Using the definition of g and changing to polar coordinates shows that

nA     rM
Mg(x) >

or, with a change of variables

(4M)" J0
ñ ("' fi(Atn)t"-Xdt,

Jo

-n     fnlXl" fi(s)ds
Mg(x)>4 "AJo y     .

Since the right side is a radial nonincreasing function of x,

4"
iMg) (t) >

~n a rl
s)ds.

/•OO

W(x) dx<C       g*(x)qW(x) dx
Jo

Using this and the fact that g*(t) = fi(t) in (1.1) then proves (1.2) with C =

[4"D/A]q.
Conversely, if W satisfies (1.2) for nonincreasing, nonnegative /on [0, oo)

then

r°° ri  cx ~\q
(4-2)   L [xLsi,,d'.

for g in AqiW). Now by [12, p. 31] on Rx or [9, p. 306] on Rn , (Mg)*(x)<

(A/x) Jf g*(t)dt with A depending only on n. Combining this with (4.2)

proves (1.1).

5. Proof of Theorem (1.10) and Corollary (1.12)

We will use the following lemma.

Lemma (5.1). If 1 < q < oo and V(x) and W(x) are nonnegative, then there

is a constant B such that for 0 < r < s,

(5.2) -j /   V(x)dx /   W(x) q/qdx        <B

if and only ififior every f and X > 0,

(5.3) f  V(x) dx<% f°° \f(x)\qW(x) dx,
Jex X   Jo

where Ex = {x: ~ Jf \fi(t)\ dt > X} and C is independent of f and X.

That (5.3) implies (5.2) is simple; its proof is indicated on p. 16 of [1], It

is also shown there that (5.2) implies that (1.6) of [1] is finite, and Theorem 2

of [1] shows that this implies (5.3). The lemma also follows immediately from

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Theorem 4 of [8] and the statement on the following two lines by taking r\, p ,

q , r, w , and v of that theorem to be respectively 1, q , oo, q , V, and W.

To prove the first part of Theorem (1.10), observe that (1.11) implies (5.2)

with V(x) = W(x). By Lemma (5.1), we then have (5.3) with V(x) = W(x).

Theorem 3 of [1] and Theorem 1 of [6] then prove (1.2).

For the second part of Theorem (1.10) if q > 1, let

a /</.
fi(x) = Wn(x) •%,„(*),

where W_ is defined by

WAx)
W(x),

l/n,

Since W   is nondecreasing, we have f(x)

W(x)> l/n,

W(x)< l/n.

nonincreasing and

-rf fi(t)dt<\r fi(t)dt,
'Jo X Jq

0<x<r.

Therefore,

(5.4)
/'Jo

Wn(x)
-Q 19

dx fJo
W(x)dx< f\ÏÏ™Jo  lx Jo

11

dt W(x)dx.

By (1.2) the right side of (5.4) is bounded by

C
Jo

x)qW(x)dx<C
Jo

(X)
-<? Iqdx.

Therefore,

w:Wnix)
-i Iq

dx
a-\

fJo
W(x) dx<C

and the monotone convergence theorem completes the proof. If q = 1 , then

(1.8) shows that the only nondecreasing Ws that satisfy (1.2) for nonincreas-

ing, nonnegative / are W(x) = 0 and W(x) = oo for which (1.11) is trivial.

To prove the first part of Corollary (1.12) observe first that Theorem (1.10)

and Theorem (1.7) show that (1.11) implies (1.8). That (1.11) is stronger then

follows by observing that the W(x) defined in (1.4) satisfies (1.8) by Theo-

rem (1.7) but does not satisfy (1.11). The equivalence for W nondecreasing

follows from Theorem (1.7) and the second part of Theorem (1.10).
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