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Abstract

Let R be a commutative ring with identity. Let G be a graph with
vertices as elements of R, where two distinct vertices a and b are adjacent
if and only if there is a maximal ideal of R containing both. In this paper
we show that a ring R is finite if and only if clique number of the graph
G (associated with R as above) is finite. We also have shown that for
a semilocal ring R, the chromatic number of the graph G is equals to
the clique number of G which turns out to be the maximum of the
cardinalities of all the maximal ideals in R.

Mathematics Subject Classification: Primary 13C99, Secondary 05C99,
13M99

Keywords: Chromatic Number, Clique Number

1 Introduction

In 1988, Istvan Beck [3], first introduced the idea of associating a graph with
a commutative ring with unity. The objective was to establish a connection
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between Graph theory and Commutative ring theory. Beck presented the idea
of coloring of commutative rings and thus produced some fundamental results.

Let R be a commutative ring with unity. In order to apply a graph structure
to R, Beck considered R as a simple graph whose vertices are the elements of
R such that two different elements x and y are adjacent if and only if zy = 0.

A subset C' = {x1, 29, ....... , Ty} is called a clique provided z;x; = 0 for
every ¢ # j. If R contains a clique with n elements and every clique contains
at most n element, we say that the clique number of R is n and denote it by
Clique(R). Let x(R) denote the chromatic number of graph associated with
R, that is, the minimal number of colors which can be assigned to the elements
of R in such a way that no two adjacent elements have the same color. Note
that x(R) > Clique(R), for any ring R.

In [3], Beck conjectured that x(R) = Clique(R), for every ring R. He
established the conjecture for certain classes of rings, namely reduced rings
and principal ideal rings. But unfortunately, it is not true in general. This was
proved in 1993, when D.D. Anderson and M. Naseer presented a strong counter
example (see, Theorem 2.1 in [1]) and hence disproved Beck’s conjecture for
general rings.

In 1995, Sharma and Bhatwadekar [8], introduced another graphical struc-
ture on R, which later came to be known as Comaximal graphs. In their
graphical structure, R is a graph whose vertices are elements of R and two
distinct vertices x and y are adjacent if and only if Rx + Ry = R.

With this definition, a very important theorem (see, Theorem 2.3, [8]) was
proved, namely x(R) is finite if and only if the ring R itself is finite. In this
case, the chromatic number being equal to the clique number of R which is
equals to the sum of number of maximal ideals of R and the number of unit
elements of R.

Later, 2008, H.R. Maimani et al [13], further studied the graph structure
defined by Sharma and Bhatwadekar and named such graph structures as
“Comaximal Graphs” and denoted it by I'(R).

In this article, we are introducing another graphical structure associated
with R. For any ring R, we associate a simple graph with vertices as the
elements of R such that two different vertices x and y are adjacent if and only
if x,y € m, for some maximal ideal m of R. We call this graph as a Maximal
graph associated with R. It is easy to see that every maximal ideal in R forms a
maximally complete subgraph of maximal graph associated with R. However,
the converse may not be true.

2 Clique number of rings

Throughout this paper R denotes a commutative ring with unity. For any
ideal I of R, |I| denotes the cardinality of R, i.e. the number of elements in
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I. If A and B are any two subsets of R then |A| < |B]| if there is one one map
from A to B.

By G(R), we denote the maximal graph (as explained in the introduction)
of R. We recall the definition of clique in this context:

Definition 2.1 A subset C' of R is called a clique if every pair of distinct
elements x andy of C is adjacent in the maximal graph of R, that is, if v,y € m
for some mazimal ideal m of R. If R contains a clique with n elements and
every clique contains at most n element, we say that the clique number of R is
n and denote it by Clique(R). If no such n ezists then Clique(R) is defined
to be oco.

Note that if R is a local ring with maximal ideal m then Clique(R) = |m|.
For a ring with two maximal ideals we have the following result.

Proposition 2.2 Let R be a ring with two maximal ideals, say m; and my
such that |my| > |mg|. Then

X(R) = Clique(R) = [my].

Proof. First color the elements of m; using |my| distinct colors. To all the
units of R assign the same color as that of zero element. Now the elements of
my \ m; can be colored by using the colors used in the elements of m; \ my as
|my \ my| < |my \ my|. Therefore x(R) = |my].

Now Clique(R) > |my], since the elements of any maximal ideal in R forms
a clique. If possible, suppose Clique(R) > |my|. Then there exist a clique C'
in R such that |C| > |my|. Therefore, C' has an element, say «, which is not in
my, that is, & € my as o must be nonunit. Therefore, if 5 € C then a, § € ms.
Thus C' C my, which is a contradiction. Therefore, Clique(R) = |my]. O

Theorem 2.3 Let R be a semilocal ring with maximal ideals my, mo, ... ,m,
such that |[my| > |mg| > ... > |m,|. Then Clique(R) = |my]|.

Proof. We apply induction on n. For n = 1, the result holds trivially. For
n = 2, the result follows from Proposition 2.2. Now assume n > 3. Since
elements of any maximal ideal forms a clique, Cliqgue(R) > |my|. Suppose, if
possible, that Clique(R) > |my|. Then there exists a subset A of R, containing
nonunits only such that |A| > |my| and the elements of A forms a clique in R.
If A contains any element of m,, \ U?"'m; then A C m,,, which contradicts that
|A| > my. Therefore, A C U}~ 'm;.

Put I = N?~'m; and R = R/I. Note that I # (0), by Proposition 1.11(ii)
[2]. Also the elements of A forms a clique in R. Since R is a ring with n — 1
maximal ideals, by induction hypothesis, Clique(R) = |m;| > |A|. But this
implies that |my| > |A[, a contradiction. Therefore, Clique(R) = |my|. O
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Theorem 2.4 Let R be a ring. Then Clique(R) is finite if and only if R
1s a field or a finite ring.

Proof. The sufficiency is obvious. We only need to prove the necessity.
Suppose, if possible, that Clique(R) is finite. As the elements of any maximal
ideal forms a clique, we conclude that every maximal ideal of R is finite.
Suppose, first, that R is not local. Let m; and my be two distinct maximal
ideals of R. Then R is finite as m; +my = R.

Suppose, now, that R is a local ring with maximal ideal m. If m = {0},
then R is a field. Now assume that m # {0} and let x € m\ {0}. Then Rz is
a finite ideal of R. As = # 0, ann(z) # R and therefore, ann(z) is also finite.
As Rx = R/ann(z), R is finite. O

Note that if R; and Ry are rings of finite clique numbers then Clique(R; x
Ry) may be infinite. For example, if R; and R, are any two infinite fields then
their clique numbers are finite. However, Clique(R; X Ry) = oo.

3 Beck’s conjecture for finite rings

In [8], Sharma and Bhatwadekar proved the Beck’s conjecture for comaximal
graphs of finite rings. In this section we establish the Beck’s conjecture for
maximal graphs of finite rings.

Definition 3.1 By a coloring of R, we mean a coloring of the maximal
graph G(R) of R. In other words, a coloring of R is an assignment of colors
to the vertices of R, one color to each vertex, so that the adjacent vertices are
assigned distinct colors. The chromatic number of R is the minimum number of
colors required for the coloring of R and is denoted by x(R). The corresponding
coloring we call as a minimal coloring.

Proposition 3.2 Let R be a ring. Then x(R) = 1 if and only if R is a
field.

Proof. Obviously if R is a field then x(R) = 1. For necessity, note that if
X(R) = 1, then (0) is the only proper ideal of R and hence R is a field. O

Proposition 3.3 Let R be a ring. Then x(R) = 2 if and only if either
R 7, or RY Zyx]/(2%) or R Zy[x]/(2* — x).

Proof. The sufficiency is obvious. For necessity, suppose x(R) = 2. Since the
elements of a maximal ideal forms a clique, we conclude that every maximal
ideal in R has at most two elements. Now by Proposition 3.2, R is not a field.
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Therefore every maximal ideal in R has exactly two elements and hence is a
principal ideal. Thus if I is any nonzero proper ideal of R then [ is a maximal
ideal and hence is principal. Therefore R is a principal ideal ring.

Let « be a nonzero nonunit in R. Since R/ann(x) = Rz and ann(x) # R,
we have |R| < 4. As R is not a field, |R| = 4. Now if char(R) = 4 then R = Zy
and if char(R) = 2 then R = Zy[z]/(2?) or R = Zy[z]/(z* — x). O

Lemma 3.4 Let R be a semilocal ring and let mqy, ms, ... ,m, be mazrimal
ideals of R such that [my| > |my| > ... > |m,|. Then in any minimal coloring
of R the elements of m,, have the colors already used in UP—'m;.

1=

Proof. Assume the contrary. Then there is a coloring of R in which there
exist an element a € m, \ Ui:_fmi for whom the assigned color is not used
in U tm. As jmy \ (mp Nmy,)| > |my, \ (my Nm,)|, there are elements in
my \ (m; N'm,), having assigned colors which are not used in colors assigned
to elements of m,, \ (my Nm,). Let & € my \ (m; N'm,) be such an element.
Then « and a cannot be adjacent as a € m,, and a ¢ U}_'m;. Therefore, if
we assign to a the same color as that of o, we still have a coloring. But this
contradicts that we have a coloring on R. a

Sharma and Bhatwadekar [8], proved the Beck’s conjecture for Comaximal
graph of finite rings. It was shown that x(R) is finite if and only if the ring R
itself is finite and in this case the chromatic number being equal to the clique
number of R which is equals to the sum of number of maximal ideals of R and
the number of unit elements of R.

Beck’s conjecture for maximal graph of finite rings and semilocal rings is
also true as we have shown in the next two theorems.

Theorem 3.5 Let R be a semilocal ring and let m be a mazimal ideal of R
of the largest cardinality. Then x(R) = Clique(R) = |m|.

Proof. Clique(R) = |m|, follows from Theorem 2.3. For x(R), by Lemma
3.4, we may assume that R is a ring with two maximal ideals m; = m and m,
such that |my| > |my|. Now the result follows from Proposition 2.2.

(I

Unfortunately, we have not found any example of a ring where x(R) >
Clique(R). The lack of such counter examples together with the above theorem
motivates the following conjecture:

Conjecture. For any ring R, x(R) = Clique(R).

Corollary 3.6 Let R be a semilocal ring and let m be a maximal ideal of
R of the largest cardinality. Then for any ideal I C m,

X(R) = [[x(R/T).
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Proof. Follows immediately from Theorem 3.5. O

Theorem 3.7 Let R be a ring. Then x(R) is finite if and only if either R
is a field or a finite ring. Also, in this case x(R) = Clique(R) = |m|, where m
1s a maximal ideal of R of the largest cardinality.

Proof. First assume x(R) is finite. Then Clique(R) is finite as x(R) >
Clique(R). This implies that either R is a field or a finite ring, by Theorem
2.4.
Conversely, assume that R is a field or a finite ring. Then R is semilocal.
Now the result follows from Theorem 3.5.
([

4 Isomorphism

We begin this section with the following definition:

Definition 4.1 For any subset A C R, the subgraph G(A) is said to be
complete if all the elements of A are adjacent to each other. The subgraph
G(A) is said to be maximally complete if it is a maximal element of the set of
all complete subgraphs of G(R).

Proposition 4.2 Let m be a maximal ideal of R. Then G(m) is a mawi-
mally complete subgraph of G(R) consisting of nonunits. Converse may not be
true.

Proof. If possible, suppose G(m U {x}) forms a complete graph for any
nonunit x € R\ m. Then m + Rx = R and hence y + rz = 1, for some y € m
and r € R. But this contradicts the fact that x and y are adjacent. Therefore,
G(m) is a maximally complete subgraph of G(R).

For the converse, take R = ki X ko X ks, where kq, ko, k3 are fields. Put
A = ({0} x {0} x k3) U ({0} x ky x {0}) U (k1 x {0} x {0}). Then G(A) is
maximally complete subgraph of G(R) consisting of nonunits, however, A is
not even an ideal in R. O

We now recall the following definition from [4].

Definition 4.3 Any two graphs A and B are said to be isomorphic to each
other, denoted by A = B, if there is one to one correspondence between their
vertices such that the incidence relationship is preserved, that is, vertices vq
and vy of A are adjacent (in A) if and only if the corresponding vertices are
adjacent in B.
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The question of isomorphism of comaximal graphs of two given rings implies
isomorphism of given rings itself was discussed in [6] and it was shown that in
general, such two rings may not be isomorphic. The same is true for maximal
graph also as we have the following example.

Example 4.4 Let A = Zy and B = Zs|z]/(x?). Note that the mazimal
graphs of A and B are isomorphic. However, A and B are not isomorphic.

Proposition 4.5 Let R and S be semilocal rings. Let ¢ : G(R) — G(S) be
graph isomorphisms, where G(R) and G(S) denotes the mazimal graph of R
and S respectively. Then for every mazimal ideal m of R, ¢(m) is a mazimal
tdeal in S. In particular, R and S have same number of maximal ideals.

Proof. Note that if ¢ is a isomorphism then ¢! : G(S) — G(R) is also an
isomorphism. Therefore, it is enough to show that ¢(m) contains a maximal
ideal in S.

Choose a € m such that a does not belongs to any other maximal ideal in
R. Obviously, ¢(a) cannot be a unit in S. Let ¢(a) € n, for some maximal
ideal n in S. Note that m\ {a} is precisely the set of all elements in R which
are adjacent to a in G(R) and as the incidence relationship is preserved by ¢,
¢(m\ {a}) is precisely the set of all elements in S which are adjacent to ¢(a)
in G(5). Thus n C ¢(m). O

The following theorem was proved in [6], for comaximal graphs. We are
proving here the same for maximal graphs.

Theorem 4.6 Let {(R;,m;) |t =1,... ,m} and {(S;,n;) |7 =1,...,n} be
two famalies of finite local rings. Let R = Ry X Ry ... X R, and S = S1x 5 ...%
Sp. If the mazximal graph of R and S are isomorphic then m = n and there is
a permutation o on the set {1, 2, ..., m} such that |R;/m;| = [Seg) /Mo
for everyi =1, 2, ..., m and hence R;/m; = S, ;) /Ny ).

In particular, if the maximal graph of R and S are isomorphic and each
R; is a finite field, then each S; is also a finite field and R; = S,qy for every
1=1, 2, ..., m, and thus R= S.

Proof. Let M; = Ry X ... X Ry X m; X Riyq X ... X Ry, and N; =
Six...oxSigxny xSy x...x Sy fori=1,2,... nand j=1,2,... ,m.

Then M;’s and N;’s, are precisely the maximal ideals of R and S respec-
tively. Therefore, by Proposition 4.5, we have n = m and for all i, ¢(M;) =
No(i) for some permutation o on {1,2,... ,n}, where ¢ : G(R) — G(S5) is the
given isomorphism between maximal graphs of R and S.

As |R| = |S|, this implies that |[R/M;| = |S/Ny@)| and hence |R;/m;| =
|Sei)/Me@@y|. Since R;/m; and S,(;)/ne(; are finite fields having the same car-
dinality, we conclude that R;/m; = S,) /N,



588 Atul Gaur and Arti Sharma

In particular, if G(R) = G(S) and each R; is a finite field, then the Jacobson
radical of R is zero and so the Jacobson radical of S is zero. Therefore, for all
i, n; = (0), that is, S; is also a finite field and R; = S,(;y and hence R = S. O
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