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MAXIMAL IDEALS IN SUBALGEBRAS OF C(X)

LOTHAR REDLIN AND SALEEM WATSON

ABSTRACT. Let X be a completely regular space, and let A(X) be a subal-

gebra of C(X) containing C*{X). We study the maximal ideals in A(X) by

associating a filter Z(f) to each / 6 A(X). This association extends to a one-

to-one correspondence between M(A) (the set of maximal ideals of A(X)) and

ßX. We use the filters Z(f) to characterize the maximal ideals and to describe

the intersection of the free maximal ideals in A(X). Finally, we outline some

of the applications of our results to compactifications between vX and ßX.

1. Introduction. The algebra C(X) of continuous real-valued functions on a

completely regular space X and its subalgebra C*(X) of bounded functions have

been studied extensively (see Gillman and Jerison [3], and Aull [1]). One of the

interesting problems considered in [3] is that of characterizing the maximal ideals in

these two algebras. It is a remarkable fact that the distinct problems of identifying

the maximal ideals in C(X) and C*(X) have a common solution—the maximal

ideals are in one-to-one correspondence with the points of ßX in a natural way.

The methods of achieving this correspondence, however, are quite different in the

two cases. In this paper we consider this problem for subalgebras A(X) of C(X)

that contain C*(X). We show that for such algebras the maximal ideals are in

one-to-one correspondence with ßX. The correspondence we construct reduces to

that in [3] for the cases of C(X) and C*(X). Thus our result puts in a common

setting these apparently distinct problems.

A function is invertible in C(X) if it is never zero, and in C*(X) if it is bounded

away from zero. In an arbitrary A(X), of course, there is no such description

of invertibility which is independent of the structure of the algebra. Thus in §2

we associate to each noninvertible / E A(X) a z-filter Z(f) that is a measure

of where / is "locally" invertible in A(X). This correspondence extends to one

between maximal ideals of A(X) and z-ultrafilters on X. In §3 we use the filters

Z(f) to describe the intersection of the free maximal ideals in any algebra A(X).

Finally, our main result allows us to introduce the notion of A(X)-compactness of

which compactness and realcompactness are special cases. In §4 we show how the

Banach-Stone theorem extends to A(X)-compact spaces.

2. The structure space. Throughout this paper X will denote a completely

regular Hausdorff space and A(X) a subalgebra of C(X) containing C*(X). In this

section we construct the correspondence mentioned in the introduction.

A zero set in X is a set of the form Z(f) = {x E X: f(x) = 0} for some

/ E C(X).   The complement of a zero set is a cozero set.   Z[X] will denote the
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collection of all zero sets in X. If E is a cozero set in X we will say that / E A(X)

is E-regular if there exists g E A(X) such that fg\E = 1.

LEMMA 1.   Let f,g E A(X) and let E, F be cozero sets in X.

(a) // / is E-regular and FEE, then f is F-regular.

(b) // / is E-regular and F-regular, then f is Ell F-regular.

(c) // f(x) > c > 0 for all x E E, then f is E-regular.

(d) IfO< f(x) < g(x) for all x E E and if f is E-regular, then g is E-regular.

(e) /// is E-regular and g is F-regular, then fg is EnF-regular and f2 + g2 is

E U F-regular.

PROOF, (a) Obvious.

(b) Let h,kE A(X) satisfy hf]E = 1 and kf]F - 1. Let w = h + k- fhk. Then

fw\ßuF = 1.
(c) Let h — max{c,/}. Then h\E = /|e and h > c. So 0 < h~~x < c~x. Hence

h~x E C*(X) C A(X), and h~xf\B = 1.

(d) Let h E A(X) satisfy hf]E = 1. For x E E, h(x) > 0, so h(x)g(x) >

h(x)f(x) = 1. Thus by (c), there exists k E A(X) such that khg\E = 1.

(e) If hf\E = 1 and fcç7|F = 1, then hkgf\EnF = 1. Now f2+g2>f2, so by (d),
f2 + g2 is E-regular. Similarly, it is F-regular, and so the result follows by (b).

For / E A(X), we define

Z(f) = {EE Z[X] : f is £c-regular},

and for S Ç A(X),Z[S] = \JteS Z(f).   We recall that a z-filter is a nonempty

collection 7 of zero sets in X such that 7 = 5 n Z[X], for some filter Q on X.

THEOREM l. /// is not invertible in A(X), then Z(f) is a z-filter on X, and

conversely.

PROOF. If / is not invertible, 0 £ Z(f). Moreover, if E,F E Z(f), then by

Lemma l(b),£nFeZ(/). If G is a zero set containing E E Z(f), then G E Z(f)

by Lemma 1(a). Hence Z(f) is a z-filter.

The converse is obvious.

THEOREM 2.   If I is an ideal in A(X), then Z[I] is a z-filter on X.

PROOF. Clearly 0 <£ Z[I\. If E,F E Z[I], there exist f,g E I such that / is
i?c-regular and g is Fc-regular. Then f2 + g2E I, and by Lemma 1(e), f2 + g2 is

(EnF)c-regular. Thus EC\F E Z[I\. Finally, if F is a zero set and F D E E Z[I],

then E E Z(f) for some f El, and so F E Z(f) Q Z[I] by Theorem 1.

Using the notation of [3], we write Z^[7] = {/ E A(X): Z(f) Ç 7} for the

inverse of the set function Z. We will show that if 7 is a z-filter, then 2"~[7] is an

ideal in A(X), giving a converse to the above theorem. We need two preliminary

lemmas.

LEMMA 2.   If f E A(X), then lim2(/) fh = 0 for any h E A(X).

PROOF. We claim limZ(/) / = 0. The result will follow from this claim and

Lemma 1(e), since then limz(fh) fh = 0 and Z(fh) Ç Z(f). So let V = (—e,e) be

a neighborhood of zero in R and let E = f~x(V). Clearly / is F^-regular (Lemma

1(b) and (c)). Thus f~x(V) E Z(f) and so fh converges to zero on Z(f).
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LEMMA 3. Let 7 be a z-filter on X. If limy f h = 0 for all h E A(X), then

Z(f) Ç 7.

PROOF. For E e Z(f) we show that there is an F E 7 such that FEE.

Suppose not. Then F n Ec ¿ 0 for every F E 7. Let h E A(X) satisfy fh\Ec - 1.

It follows that 1 is a cluster point of {fh(F) : F E 7}, contradicting our hypothesis.

THEOREM 3.   For any z-filter 7 on X, I = Z^\7] is an ideal in A(X).

PROOF. If / e / and g E A(X), then Z(fg) Ç Z(f) (Lemma 1(e)), so fg E I.
Now if /, g E I, then by Lemma 2, limy fh = Yimj gh = 0 for every h E A(X).

So limy fh + limy gh = limy(/ + g)h = 0 for all h E A(X), and hence by Lemma

3, Z(f + g) Ç 7. Finally, we note that since 0 <^ 7, I consists of noninvertible

elements only.

Both Z and Z^ preserve inclusion and so they map maximal elements to max-

imal elements. Hence Z provides a one-to-one correspondence between ßX and

the set M(A) of maximal ideals of A(X). If M(A) is equipped with the hull-kernel

topology, then as in [3] in the cases of C*(X) and C(X), we have the following

theorem (see [6] for a different method of arriving at this result).

THEOREM 4. The maximal ideal space M(A) of A(X) equipped with the hull-

kernel topology is homeomorphic to ßX.

3. Free maximal ideals. Let Mp he the maximal ideal corresponding to

p E ßX and Up the z-ultrafilter on X that converges to p, so that Z(MP) = Up.

Using our filter Z(f) we see immediately that for / E A(X), f E Mp if and only

if Z(f) Ç Up. Thus we have the following analogue of the Gelfand-Kolmogoroff

theorem [3, Theorem 7.3] for an arbitrary A(X).

THEOREM 5.   For the maximal ideals in A(X), we have

Mp = {f E A(X) : p is a cluster point of Z(f) in ßX}.

We now describe the intersection of all the free maximal ideals in A(X). An

ideal / is free if f] Z[I] = 0, otherwise it is fixed. Note that a maximal ideal is free

if and only if it is of the form Mp for some p E ßX\X. We call a set E Ç X small

if every zero set contained in E is compact. Let K = {E E Z[X] : Ec is small}, and

\et AK(X) = {f E A(X): Z(f) ç K}.

THEOREM 6.   AK(X)=r\{Mp:pEßX\X}.

PROOF. Let / E AK(X). If U is any z-ultrafilter on X such that Z(f) <£ U,
then there exist disjoint zero sets E E Z(f) and F E U. But then F Ç Ec, so

F is compact and U is fixed. It follows that Z(f) is contained in every free z-

ultrafilter, and so / belongs to every free maximal ideal. Conversely, if / is in

every free maximal ideal, then Z(f) belongs to every free z-ultrafilter. Suppose

E E Z(f) is not in K. Then Ec must contain a noncompact zero set F. Since

EuF D E E Z(f), EU F belongs to every free z-ultrafilter, and hence F belongs

to no free z-ultrafilter. But clearly every noncompact zero set must belong to some

free z-ultrafilter. Thus E is in K and / 6 Ak(X).

We note that if X is realcompact and A(X) = C(X), then An(X) is the family

of functions on X of compact support and Theorem 8.19 of [3] follows from our

Theorem 6. If A(X) = C*(X), then AK(X) is the family of functions on X that

vanish at infinity and Lemma 3.2 in [4] is a special case of Theorem 6.
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4. ^-compactness. It is well known that C* distinguishes among compact

spaces (the Banach-Stone theorem) and that C distinguishes among realcompact

spaces (Hewitt's isomorphism theorem). Theorem 4 allows us to define the notion

of ¿l-compactness which will enable us to place both of these theorems in a common

setting (Theorem 7).

A maximal ideal M in A(X) is real if A(X)/M is isomorphic to R. Every fixed

maximal ideal is real. If every real maximal ideal is fixed, we will say that X is

A(X)-compact (or simply yl-compact). With this definition, a compact space is one

that is C*-compact while a realcompact space is C-compact.

THEOREM 7. Let X be A-compact and Y be B-compact. If A(X) is isomorphic

to B(Y), then X is homeomorphic to Y.

PROOF. Since X is yl-compact its points correspond to the real maximal ideals

of A(X) under the homeomorphism described in Theorem 4. Thus we can recover

X from the ring structure of A(X). Since this can be done in the same way for Y,

the result follows.

Although the converse of the above theorem is trivial if A and B are C or C*,

in this more general setting the converse is not even true. For a given X there

can exist nonisomorphic algebras A(X) and B(X) for which X is both yl-compact

and B-compact. For example, let H(N) he the algebra of sequences which occur

as the coefficients of the Taylor series representation of functions holomorphic on

the open unit disc. Then N is both .//-compact (see [2]) and C-compact, but

H(N) is obviously not isomorphic to C(N). Indeed, it is clear from the definition

that if X is j4-compact and B(X) D A(X), then X is B-compact. This raises the

question: Does there exist in some sense a "minimal" algebra Am(X) for which X

is j4m-compact, at least up to isomorphism?

We conclude by noting that another characterization of ^-compactness follows

from Mandelker [5]. We call a family S of closed sets in X A-stable if every

/ € A (X) is bounded on some member of S. Then one can show (as in [5]) that a

space is A-compact if and only if every ^-stable family of closed sets with the finite

intersection property has nonempty intersection.
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