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Abstract

An extension Rt of a right chain ring R is called immediate if R{ has the same residue
division ring and the same lattice of principal right ideals as R . Properties of such immediate
extensions are studied. It is proved that for every R , maximal immediate extensions exist, but
that in contrast to the commutative case maximal right chain rings are not necessarily linearly
compact.
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1. Introduction

A commutative valuation ring V that has no proper extension with the same
group of values and the same residue field is called maximal (Krull [7]).
Such valuation rings can also be characterized by the fact that every pseudo
convergent sequence in V has a limit in V or that V is linearly compact
(Kaplansky [5]), that is, V is maximally complete.

Here, we consider right chain rings R, that is, rings (not necessarily com-
mutative) with identity for which aR c bR or bR c aR hold for any a,
b e R, and show that the above-mentioned notions carry over to this case.

After collecting some basic notations and results in Section 2 we define
in Section 3 immediate extensions of right chain rings (see Definition 3.1)
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discuss properties of such extensions and show that maximal immediate ex-
tensions exist (Theorem 3.6). In Section 4 we discuss pseudo convergent
sequences and linear compactness, and show in particular that every element
z e R{\R with R{ an immediate extension of R, is a limit of a pseudo con-
vergent sequence in R (Theorem 4.12). Finally, in Section 5, we use some
of the earlier results to show by an example that there exist right chain rings
R without proper immediate extensions, that is, maximal rings R, which are
not maximally complete, that is, which contain pseudo convergent sequences
that do not have a limit in R.

2. Preliminaries

All rings are assumed to be associative, with identity element, but not
necessarily commutative. The Jacobson radical of a ring R is denoted by
J(R) = J and the group of units of R by U(R) = U. A ring is said to be
a right chain ring if its lattice of right ideals is linearly ordered by inclusion,
that is, for each a, b e R we have aR c bR or bRc aR. Left chain rings
are denned similarly and a left right chain ring is called a chain ring.

A domain is a ring without zero-divisors. Chain domains are the valuation
rings studied in Mathiak [8]. A ring is ring invariant if all its right ideals are
two-sided and invariant if it is right and left invariant. The valuation rings
in Schilling [10] are exactly the invariant chain domains; these are the rings
corresponding to valuations for skew fields into ordered groups.

A two-sided ideal P of a ring R is called prime if aRb c P implies
a&PorbeP in P, for a, b e R, and completely prime (c.prime) if this
implication follows from ab e P.

In case Q is a prime but not c.prime ideal of a right chain ring R, a
c.prime ideal P exists in R with P D Q such that there is no prime ideal
between P and Q and P2 = P (Bessenrodt et al. [1]). The question whether
such prime ideals Q can exist in chain rings is interesting and Dubrovin [4]
constructed some examples; however it is difficult to follow his arguments at
some places.

3. Immediate extensions

Krull defined immediate extensions of commutative valuation domains in
[7] and showed that maximal immediate extensions exist. For right chain
rings the following definition generalizes KrulPs original definition.
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198 Hans Heinrich Brungs and Gunter Torner [3]

DEFINITION 3.1. Let R be a right chain ring. A ring extension /?, D R is
called an immediate extension of R if the following conditions hold.

(i) For every element a, e /?, there exist a e R, «, e C/(/?j) with
a, = a u , .

(ii) <fi(r + J(R)) = r + J(R{) defines an isomorphism from the skew field
R/J(R) onto /? , / / ( /? , ) .

Before we list properties of immediate extensions we make a general ob-
servation about extensions of right chain rings and characterize immediate
extensions by somewhat different conditions.

LEMMA 3.2. The following conditions are equivalent for right chain rings
RQR{:

(a) U(Ri)nR=U(R);
(b) J(Rl)nR =

PROOF. We observe that U(R) = R\J(R), U{R) c £/(/?,) n R and
/(/?,) n R c J(R). Assume (a) and it follows that the element j e J(R) is
also in J(Rt), since j would otherwise be in f/(/?,)n/? = U(R). Similarly,
under the assumption of (b), an element v e U(R{) n R cannot be in J(R),
since it would then be in / ( / ? , ) .

LEMMA 3.3. Let R be a right chain ring. An extension /?, D R is an
immediate extension if and only if U(R{) n R — U(R) and for every element
a{& R{ there exist a € R and j{ e /(/?,) with ax = a(\ + j { ) .

PROOF. We assume that R{ satisfies the conditions of the lemma and (ii)
of Definition 3.1 follows immediately, since 1 + j l e U(R{). To prove (b)
define <j>{a{) = a + J(R) € R/J(R) if al = a{\ + ; , ) e Ri, with a e R,
j{ e / ( / ? , ) . This mapping defines a homomorphism from i?, onto R/J(R)
with kernel /(/?,) and it follows that the mapping <f> in (b) of Definition
3.1 exists.

To prove the converse we observe first that an immediate extension of a
right chain ring is again a right chain ring. It follows from (b) in Definition
3.1 that J{R) = Rn J(RX) and hence U(R) = U(RX) n R by the above
lemma. Finally, if ax — a'ul for ax e R{, a e R and ux e U(Rl) then
ul = u + j[ for u e U(R), j[ e /(/?,) and a{ = a'u{\ + u~lj[) shows that
the conditions of the lemma are satisfied.

PROPOSITION 3.4. Let Rx be an immediate extension of a right chain ring
R. Then the following are satisfied.

(i) Rx is a right chain ring.
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(ii) J{Rx)nR =
(iii) U(Rl)nR =
(iv) x(aR) = a&\ defines a one-to-one mapping from the lattice W(R) of

principal right ideals onto W(RX).
(v) R2 is an immediate extension of Rl if and only if R2 is an immediate

extension of R containing Rx.
(vi) Let I be a right ideal in R. Then / , = {ir\i e / , r e /?,} = IRX is a

right ideal in Rx and IR1nR = I.
(vii) Let Ix be a right ideal in Rx. Then the contracted right ideal I =

IxnR satisfies IX=IRX.
(viii) The contraction of a two-sided ideal in R{ is two-sided in R; the

contraction of a c.prime ideal in /?, is c.prime in R.
(ix) The contraction I = /, n R is idempotent in R if Ix is an idempotent

ideal in Rx.

PROOF. The statements (i)—(iii) follow from Lemma 3.3. That the map-
ping x is o n to follows from (i) in Definition 3.1 and if a = be in R and
aRx = bRx, then a = be = bux for M, € U(RX). Hence, b(c - ux) = 0
implies b = 0 if c e J(R) c J(RX).

(v) For an element a2 € R2 we have a2 = axu2 = auxu2 for ax e Rx,
u2 e U(R2), M, e U(RX), aeR. The skew fields of residues of R and R2

are also identical.
To prove (vi) let J2l=i hrk ^ e a n e l e m e n t m ^ i with '_,• € / , r; e Rx,

and we can assume / = /(a for a e R and all j . We have ^likrk =
ix X)afcr/t = ' i r f° r some r G Rx which shows that Ix = IRX is indeed a
right ideal in Rx. An element in IRXD R has the form irux for i e I,
r e R, «, € [/(/?,). If such an element is not contained in / , there exists
q e J(R) with iruxq = i and / = 0 follows, a contradiction.

(vii) The inclusion IRX C Ix is obvious. Conversely, let iu e /, with
ieR, we U(RX) and i ' e / , /we /i?, follows.

(viii) is obvious.
(ix) We can assume that /, and / are nonzero. Nonzero idempotent

ideals are c.prime and it follows that Ix and hence / are c.prime. If I2 c /
there exists an element p e I\I2 and p = pxuxp2u2 e I2 = I2 for px,
p2e I, M, , M2 e U(RX). We have uxp2 = p'2u'x with u'x e U(RX), p2 e R
and p'2e I follows. Hence, pR{ = p ^ ^ i an<^ P ^ — P\Pi^ ^ (iy)- This
implies p € / , a contradiction.

The next result is the crucial step in the proof that maximal immediate
extensions exist for right chain rings. The original proof of this result (see
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Krull [7]) For commutative valuation domains cannot be as easily adapted
to our situation as the arguments in Rayner [9].

LEMMA 3.5. Let R be a right chain ring, R/J(R) = D, W = {aR\0 ^
a € R} and Rl an immediate extension of R. Then \R{\ < D\

PROOF. Let W = {ci\ci e R, i e T} be a set of representatives of D in
R and let W' be a subset of R containing exactly one generator for each
nonzero principal right ideal of R, that is W = {aR\a e W1} and aR ^ a R
for a ^ a' in W'. Let a e W' and aRx be the corresponding principal right

ideal in /?, . We have /?, = \JieA
ci+JW)» a n d aRi-Ui€A

aci+aJ(R0\-
Observe that a(ci - c}) ^ aJ(R\) since ci - cj e U(R) for i ^ ;'.
For aRx, considered as a subgroup of the additive group ( /? , ,+) ,
choose coset representatives S = {a^j e L}, and /?, = U,€z.(fl, + aR\) =

U,er jei.(aj+ac,+oJ(Rl)) follows. Let r be any element in R{ and con-
sider in (i?j, +) the coset of aJ{Rx) that contains r, that is, r + aJ(Rx) —
a + act + aJ(R{) for a certain j e L, i eT. We define a mapping / from

/?, into ^ by defining f(r) = re ^w with r(w) = c, if w = aR in 2 r .
By construction, / is well defined and we show that / is one-to-one.

Let r / t be elements in Rx and (r - t)R{ — aR{ follows a certain
a e W'. We have r + a/?, = t + aRx , but r + a7(/?,) ^ f + a/( i? , ) , since
r - t = au, u € [/(/?,). Hence, r + aJ(R{) = aj + ac{ + aJ{Rl) and
t + aJ{Rx) — aj + ac2 + aJ{Rx) where a. e 5 and c, ^ c2 e ^ . This implies
r(io) = c, # c2 = 7(iy) for w — aR and proves the lemma.

As a corollary we obtain

THEOREM 3.6. Any right chain ring R has maximal immediate extensions.

PROOF. We consider (using Lemma 3.5) the set W of immediate exten-
sions. Let R C J?j C R2 C • • • be an ascending chain of immediate ex-
tensions of R and R = U ,^ , tnen" union. We must show that R is in

r.
If a, b e R, then a, b e i?( some / and ac — b or a = be for some

c in i?( . Hence, ^ is a right chain ring. We have J(R) (~)R c J(R) and
if j e J(R) is not in J(R), it is a unit in some Rt, a contradiction, since
7(i?()n/? = J{R) (Lemmas 3.2, 3.3). Finally, every aeR is in some /?, and
a = fljl + ; , ) , 7, e / ( /? , ) . But J(R) = U, /(/?,-), since U(R) = U, ^(^,0
and ReW follows from Lemma 3.3.

We consider properties of a right chain ring R that are inherited by im-
mediate extensions.
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PROPOSITION 3.7. Let Rx be an immediate extension of the right chain
ring R. Then the following conditions are satisfied.

(i) 1RX is a prime ideal in R{ if I is a prime ideal in R and IRX is a
two-sided ideal in R{.

(ii) Rx is prime if R is prime.
(iii) Let I be a two-sided ideal in R with Ix — IRX a two-sided ideal in

Rx. Then I is c.prime if and only if / , is c.prime.
(iv) R is a domain if and only if Rx is a domain.
(v) R is right noetherian if and only if Rx is right noetherian.

PROOF. TO prove (i) let xx = xux, yx = yvx be elements in R with
x, y e R, ux, vx e U(RX) and xuxRxyvx C IR{ . Then IRX D xuxRxy —
xRxy D xRy and xRy C IRinR = I follows (Proposition 3.4(vii)). We
have x € I or y e / which shows JC, e /, or yx e Ix.

(ii) is obvious using (i) and / = (0).
(iii) Suppose / is completely prime and xuxyvx e IRX with xx = xux,

yx = yvx e / ? , , x, y € R, ux, vx e U(RX). If yvx e IRX we are dome,
otherwise uxy — y'u\ ^ IRX for y e R, u'x€ U(RX). Hence, y e R\I, but
xuxyvx = xy'u'xvx e IRX implies xy' e / and x e I follows. The converse
is obvious and (iv) follows immediately.

To prove (v) we observe that a right chain ring is right noetherian if and
only if the maximum condition holds for principal right ideals. By Proposi-
tion 3.4(iv) this condition holds for R if and only if it holds for Rx .

Right noetherian right chain rings are right invariant. We will show by an
example that this is no longer true for discrete right chain rings where we use
the following definition.

DEFINITION 3.8. A right chain ring R is called discrete if R satisfies a.c.c.
for c.prime ideals and P ^ P2 for every proper c.prime ideal P.

LEMMA 3.9. Let R be a discrete right chain ring. Then every prime ideal
of R is completely prime and Rp/QRp is a right noetherian right chain ring
with Q the maximal prime ideal properly contained in P. The ring Rp is
a right noetherian right chain ring provided P is the minimal prime ideal of
R.

Here, Rp denotes the localization of R at a prime ideal P.
PROOF. TO prove the first part of the lemma we recall the result about

prime ideals mentioned in Section 2. Since a prime ideal which is not com-
pletely prime is paired with a c.prime ideal P = P ^ (0) all prime ideals in
a discrete right chain ring are c.prime.
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If P is a c.prime ideal in a right chain ring and S = R\P, then Nr(S) —
{a € R\sa = 0 some 5 e S} and N/(S) = {a € R\as = 0 some 5 € S} are
ideals in R and the set S consisting of the images of the elements of 5" in
R/I = R, I = N,(S) U Nr(S) is a right Ore set in R~ and R~S~J = {rs~l\r e
R, I € S} exists and is denoted by Rp .

If Q is the maximal c.prime ideal in R properly contained in P, then
I Q Q - nn€N P" an(* QRp is the maximal c.prime ideal in Rp contained
in J(Rp) (as is common for commutative localizations, we write Q for Q
if there is no ambiguity).

Since PRp is two-sided, we have (PRP)2 = P2RP ^ PRP . To prove this
last statement choose m e P\P2 in R and assume Jn e P 2 / ^ . This means
m — plp2s~1 or ms = pxp2 + n in R with n e I and « — Pxnx follows.
Here, n{ e P, since 7z = 0 / p , shows that n{ G S is not possible. If
px — mt we obtain m(s - t(p2 + Wj)) = 0 and w = 0, a contradiction. If
pxt = m , then t e S and /^(te - {p2 + «,)) = 0 and p t = 0 = 7n, again a
contradiction.

This shows that m ^ P2Rp, PRp — mRp is a principal right ideal and
f\(PRp)' = p| m'Rp = QRp and the only right ideals in Rp/QRp are of the
form miRp/QRp , (0).

If P is the minimal prime ideal of R, it could happen that I = P. Then
Rp is a division ring. Otherwise we show as before that PRp ^ P2Rp and
/?p is right noetherian. (We choose m e P\(P2 U /) for the argument as
above.)

A partial converse of the last lemma is

LEMMA 3.10. Let R be a right chain ring whose prime ideals are c.prime
and satisfy the a.c.c. Further, assume that the ring RP/QRP is a right noethe-
rian right chain ring for all pairs of neighbouring prime ideals P D Q. If R is
not a domain, assume Rp also to be right noetherian for the minimal prime
ideal P of R. Then R is discrete.

PROOF. By Definition 3.8 it suffices to prove P2 ^ P for all prime ideals
P ^ (0). We consider the situation P D Q ^ (0), and denote by m + Qp the
generator of the maximal (right) ideal in the right noetherian ring Rp/QRp .
If we assume P2 = P, we obtain m = mlm2e P\Q for some m, , m2e P.
On the other hand, (m+Qp)(rt~[+Qp) - m{+Qp holdsforsome rt~l+Qp,
thus mrt~ —ml — mlm2rt~ &QP. The element 1 — m2rt~ is a unit in the
local ring Rp/QRp , thus M, e Qp , a contradiction and P1 ^ P follows.
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Now, consider the case where P is the minimal completely prime ideal
in R and Rp is right noetherian. If the kernel I = N,(S) U Nr(S) is strictly
contained in P we use similar arguments as above and we are done.

Therefore, we are left with the case P = I + N,(S) U Nr(S). First let
/ = Nt(S) and a e P, then as = 0 holds for some s e S which implies
aP = 0, thus (0) = P2 £ P.

Now we consider the case Nr(S) = I and assume P2 = P. If the segment
(0) c P is simple and if X, Y are two-sided ideals with X, Y <£ (0), we
must have PCX, Y, and hence (0) c P = P2 C XY. This shows that (0)
is prime, by assumption even c.prime, and hence R a domain. However,
this leads to Nr{S) = (0) ^ P, a contradiction.

Therefore, it remains to discuss the case where (0) C P is not simple and
P2 = P = Nr(S) is assumed. With the arguments as above we know that for
each two-sided ideal L with ( 0 ) c L c P the segment L c P is not simple.
For every a e P we can find a two-sided ideal L satisfying aR c L c P;
to prove this, take the union / of all two-sided ideals contained in aR. The
union / is again a two-sided ideal, thus, by the previous arguments there
exists a two-sided ideal L satisfying aR C L c P. The intersection f] Ln

of a two-sided ideal which is not nilpotent is c.prime, therefore we conclude
L" = (0) for some H e N as P is the minimal prime ideal and finally a" = 0
holds for some n e N, a arbitrarily chosen in P. Now we want to show that
even Ps = 0 which would lead to P — (0), a contradiction. Take x, y, z e
P. As / = Nr(S) holds we have sx = 0 for some s e 5 . Let sr = x
for some r & P and xyz = sryz follows. If ry = yrx holds for a suitable
r, 6 R, we are done. Otherwise ry^ = y follows for some r{ G R. If
r,/? 2 .̂R then xyz = sryz — sryr{r2 — syr2 = 0 with rlr2 = z. However,
/•j = zr2 leads to ryzr2 — y and thus r"y(zr2)" = y, a contradiction as
zr2 6 P implies (zr2)" — 0 for a sufficiently large n .

Discrete right chain rings need not to be right invariant as the following
example shows.

If one denotes by V{ and V2 the two extensions of Z( 5 ) , the localization
of Z at (5) in Z[i] and with a conjugation in Q(/), then

R = 1 £ '***!** e Q ( i ) , a,, € Vx \ c Q(/)[[*, a\\

is a non right invariant discrete valuation ring; here Q{i)[[t, a]] is the skew
power series ring in one variable t with coefficients in Q(/) and at = ta"
defines the multiplication. If we assume that Vx = Z[z](2_l) then j^-t ^ tR
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since t~l -^-t — ̂  £ R. However, the two prime ideals P, = (2 - i)R =
J(R) and P2 generated by {t{2 - i)~n\n = 1 ,2 , . . . } are complete and
satisfy Pf ^ Pt- R is a discrete right chain ring that is not right invariant.

LEMMA 3.11. If Rl is an immediate extension of a discrete right chain ring
R then R{ is discrete.

PROOF. R{ cannot contain a prime ideal Q that is not completely prime,
since in that case a c.prime ideal P would exist in R{ and P = P. The
intersection P n R would be an idempotent c.prime ideal in R (Proposition
3.4(ix))—a contradiction to the assumption. Applying this last argument
again, we conclude that all complete prime ideals ^ (0), R in R{ are not
idempotent. If Px, P2 are distinct c.prime ideals in /?, then RC\P2, R(~)P2

are distinct c.prime ideals in R and hence a.c. for c.prime ideals follows for

We conclude this section with an open problem.
Open problem. If Rl is an immediate extension of the right chain ring R

and / a two-sided ideal of R is then 7/?1 a two-sided ideal of /?, ?

4. Pseudo convergent sequences and linear compactness

The elements in an immediate extension Rl of a right chain ring R that
are not contained in R can be described as limits of pseudo convergent
sequences in R. If every such sequence in R has already a limit in R, then
R is called maximally complete. Some of the definitions extend to uniserial
modules.

Let MR be a uniserial i?-module, R a ring. We define a mapping v from
MR\{0}\ onto the set WM = {aR\0 ^a€M} by v(a) = aR and set v(a) >
v(b) if and only if aRcbR. It follows that v{a - b) > min{w(a), v(b)}
with equality if v(a) ^v(b).

The definitions of pseudo convergent sequences and limits as considered
by Ostrowski, Kaplansky, Schilling and others extend, as do the basic propo-
sitions, to uniserial modules.

DEFINITION 4.1. Let MR be a uniserial /?-module. A sequence (a)eA,
a e MR and A well-ordered with no last element is called pseudo convergent
(p.c.) if v{ax - aa) > v{aa ~ ap) for p < a < x e A.

LEMMA 4.2. If (ap)peA is a p.c. sequence in MR, then either
(i) v(ap) < v(aa) for p < a or
(ii) v(a ) = v(aa) for p, a >X and some ordinal X.
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PROOF. Suppose (i) does not hold, that is v{ap) > v(aa) for some p <a.
Then v(at) = v(aa) for all x > a , since otherwise

v{ar - aa) = min{v{az), v(aa)} < v(aa),

but v(aa - ap) > v{aa)—a contradiction

LEMMA 4.3. Let (a ) A , be a p.c. sequence in MR. Then v(aa — a ) —
v(ap+i-a

P) f°ral1 a > P-

PROOF. We can assume that a > p + 1 and obtain

v(ac ~ a
P+i) > v(ap+\ ~ a

P)

and aa-ap = {aa - ap+l) + {ap+l - ap). It follows that
v<<ao - a

P) = min{v(aa - ap+l), v{ap+l - ap)} = v{ap+l - ap).

Let {ap)p€A be a p.c. sequence. We write v(aa-ap) = yp where yp e WM

is a constant for all a > p by the above lemma.
DEFINITION 4.4. An element JC e MR is called a limit of the p.c. sequences

' i f v(x - ap) = yP
 f o r a11 P •

DEFINITION 4.5. The submodule B of M consisting of elements b e MR

with v(b) > y for all p is called the breadth of the p.c. sequence (a ) e A .

Let (ap)p€A be a p.c. sequence of type (i) as described in Lemma 4.2.
Then an element b e M is a limit of (a ) if and only b is in the breadth of
(ap): we observe that v(ag-ap) — v(a ) = y for p < a then v(b-a ) = y
and b is a limit. Conversely, if v(x - a ) = y — v(a ) then v{x) > y for
all p and hence v(x) > yp+1 > y , that is, x is in the breadth of {a ) .

With similar arguments one proves the following result.

LEMMA 4.6. Let a be a limit of a p.c. sequence (a ) in MR. Then c e MR

is a limit of (a ) in M if and only if c = a + b for b e B, the breadth of

DEFINITION 4.7. We say a uniserial right /?-module M is maximally com-
plete if every p.c. sequence in M has a limit in M.

Let MR be an uniserial /^-module, Ia C MR, a e A, a family of submod-
ules of M where A is a well-ordered set of indices and Ia D /„ for a < /?.
Further, let {xa)aeA be a sequence of elements in MR and ST = (*a+^Q)aeA

the corresponding sequence of cosets in M.
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DEFINITION 4.8. With MR, Ia, A, (xa) as above we have the following
definitions.

(i) y has the finite intersection property (FIP) if f\a€3r(xa + Ia) ^ 0 for
all finite subsets / C A .

(ii) ST is pairwise solvable if (xa + Ia) n {xp + Ip) # 0 for all a , j 8 e A ;
we also say that y is compatible.

(iii) An element a € C\a€A(xa + Ia) is called a solution of x = xa mod 7a

for all a e A; we also say that a is a solution for y .
(iv) The intersection f) Ia = B is called the breadth of y .
(v) Let 5 be a submodule of A/^ . Then MR is called linearly B-compact

if all sequences y with breadth B have a solution.
(vi) M is called (almost) linearly compact if M is linearly B compact

for all submodules B C M{B / (0)).
(vii) A ring is called (almost) right linearly compact if RR is (almost) right

linearly compact.

REMARK. If B is a submodule of the uniserial module MR which has
an immediate upper neighbour B1 D B in the lattice of submodules of M
then any sequence y = {xa + Ia)aeA, with breadth y = f| 7Q = B, satisfies
I — B for some a , that is, A has a last element.

a

LEMMA 4.9. Let MK, A, (x ) , (/ ) c A , anrf y fee as aftove. 77zen the
following conditions are satisfied.

(i) 77*e sequence £7~ is pairwise solvable if and only if xa - Xg € Ia U /»
ybr all a, fl € A.

(ii) y w pairwise solvable if and only if y Aâ  F / P .
(iii) r/te sequence ofcosets (xa + Ia)a€A is linearly ordered by inclusion if

y is pairwise solvable.
(iv) If all compatible sequences y w/fA breadth I and cyclic R-modules

Ia are solvable, then all compatible sequences ST with breadth I are solvable.
(v) If x, x € MR are solutions for y , //ze« x — x' & I where I is the

breadth of y .

PROOF, (i) If T is pairwise solvable there exists an element x € M with
x-xa € /Q , x - x ^ e 7̂ , and jca —JC^ € /QU/^ = 7a for a < jff. On the other
hand, if xa-xfieIaD Ip then xf-xae Ia and x^ 6 (xp + Ip)n(xQ + / o ) .

(ii) Let Iai D Ia2 D • • • D 7^ for a, < a2 < • • • < an . Then x^-x^ G 7a

for i = 1 , . . . , « , if we assume pairwise solvability.
(iii) Suppose xa + Ia, xp+ Ip are given with 7Q D 7« and xp - xa € 7Q .

Then x» + 7« D XQ + 7a follows immediately
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(iv) Let &~ = (xa + Ia)a€A, be a compatible sequence. The statement is
trivial if A has a last element. Otherwise consider x — x .. = a € /

a Q+l a a

for every a e A, and choose aa e M with Ia+l U a'aR D aaR 2 Ia and
ya = xa+i • T h e n Ha

a
R = f K and f](ya + aaR) = f](xa + Ia) where

ST1 = (ya + aaR) is a compatible sequence.

LEMMA 4.10. Let MR be a uniserial R-module which is linearly I-compact.
Then the R-module M/N is linearly I IN-compact for exery submodule N
of M with NCI.

PROOF. Let (xa + Na/N)aeA be a compatible sequence. Then, obviously
(xa + Na)aeA is compatible as N c Na holds for all a. The image of a
solution (xa + Na)a€A yields a solution of the given sequence.

We state the next theorem without proof since the original proof for com-
mutative valuation domains can be directly adapted to our situation (see
[10]).

THEOREM 4.11. Let MR be a uniserial module and (a ) 6 A a p.c. sequence
in MR with breadth B. Then there exists a compatible sequence ET ofcosets
in MR with the same B and the set of limits of (ap) is equal to the set of
solutions for £T. Conversely, for any compatible sequence ST = (xp + Ip)peA

with breadth B there exists a subset AQ c A such that {x ) &K is a p.c.
sequence with breadth B and f]peA(xp + Ip) is the set of limits of (xp)pe/,
or xx e C\(xp + Ip) for some x e A.

This results shows that a uniserial module M is maximally complete if
and only if it is linearly compact or more specifically, every p.c. sequence in
M with breadth / has a limit in M if and only if M is linearly /-compact.

The next result shows that maximally complete right chain rings are max-
imal; it generalizes a theorem by Kaplansky; see [5].

THEOREM 4.12. Let R be a right chain ring and Rt an immediate exten-
sion of R. Then every element z e Rt\R is a limit of a p.c. sequence in R
that has no limit in R.

PROOF. Consider the subset S = {v(z - a)\a e R} c W. This is well-
defined since z — a ^ 0 for all a e R. Further, S cannot have a largest
element, w say. Otherwise v(z — a) = w and z — a = bu, for b € R,
u e £/(/?,) and some a e R. However u = d+jx where d is a representative
of u + /(/?,) in R and j \ e / ( / ? , ) . It follows that z - a - bd = bjx and
v(z — a — bd) > v(z — a).
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We can therefore select a well-ordered cofinal sequence in S and the cor-
responding sequence (a/>)/>eA and ap € R and A well-ordered. We have
v(z-aa) <v(z-a ) by definition, v(<xa-ap) = v(z-ap) follows and no last
element exists in {z-ap\p e A} and {ap)peA is a p.c. sequence in R with z
one of its limits in Rx. If we assume that z, is a limit of {ap)peA in R then
v(z-z{) = v{{z-ap)-{zx-ap)) > min{v{z-ap), v{zx-ap)} = yp = v{z-ap)
for all p. This contradicts the fact that {v(z - a )\p € A} is cofinal in S.

We have the following partial converse of Theorem 4.12.

THEOREM 4.13. Let RQRX be right chain rings with J(R) = J{Rt)nR
such that for every x & R{\R is a limit of a p.c. sequence in R which has no
limit in R. Then /?, is an immediate extension of R.

PROOF. We observe that aR ^ bR, a, b e R, implies aRx ^ bRj
since J(R) - /(/?,) DR. Otherwise au = b, w e U(R{) and aj = b,
j € J(R) Q J(RX) and a(u-j) = 0, u-j e U(R{), a = 0. A p.c. sequence
(a ) in R is also a p.c. sequence in / ? , . We use Lemma 3.3 and it is enough
to show that for x &R}\R we have xi?, = aRt for some a € R, since then
x = aw, = a(u + jx) = au{\ + u~lj{) for ux e U(R{) and u - M, e J{R{)
for some u e R D £/(/*,) = U{R), since M, is in R or the limit of a p.c.
sequence in R. The element x is the limit in /?, of a c.c. sequence {a )
of /? which has no limit in R. Hence, v{a ) = ^(a^) for any a > p > X
for some index X using Lemma 4.2 and the remark after Definition 4.5.
If x = a p j , for j l G •/(•/?!) then also x = aCT./2 for some j2 G
and u(x - a ) = ^(a^) = ^(a^) = u(x - aCT), a contradiction. Conversely,
if x j , = a , j{ G / ( /? i ) , then also xj2 = aCT for some j2 G /(/?,) and
w(x-ap) = v(x) = v(x-aa), again a contradiction. This leaves xi?, = ^.R,
as the only possibility and proves the lemma.

PROPOSITION 4.14. Let R c Rl be a proper immediate extension and
x G R\RX a limit of a p.c. sequence (a ) e A in R with breadth B with no
limit in R. Then R/I c RJIR^ for every right ideal ICB.

PROOF. The p.c. sequence (ap) in R is a p.c. sequence in /?, with breadth
BRl if B is its breadth in R. If z is an element in R with z + BRX =
x + BRX then z = x + b{, 6, G 5 /? t , is a limit of (a^) in R (Lemma 4.6),
a contradiction; R/I c RX/IR{ for every right ideal I c B follows.

We conclude this section with a result that provides some information on
the set of right ideals / ' of a right chain ring R for which R is linearly
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/'-compact provided R is linearly /-compact. Right ideals A, B of R are
called related if s~lA = t~lB for some elements s, t e R with s £ A,
t $ B, where s~lA = {x e R\sx € A}. It is proved that R is linearly
5-compact provided R is ^-compact and B is related to A. However the
general problem seems to be open.

Open problem. Assume that R is ^-compact for all i e j / with sf a
subset of the set of right ideals of R. Describe all right ideals B for which
R must be 5-compact too.

THEOREM 4.15. Let R be a right chain ring and A, B right ideals satis-
fying s~x A = t~x B for some s £ A, t £ B. Then the following conditions
are equivalent:

(i) R is linearly A-compact.
(ii) R is linearly B-compact.

PROOF. It is sufficient to prove that ^-compactness is equivalent to
s~ ^-compactness, s ^ A and we assume first that R is linearly ^-compact
and y = {xa + Xa)a€A a compatible sequence of cosets with f| Xa = s~x A.
Then (sxa+sXa)a€A is a compatible sequence of cosets with breadth A and
hence a solution a exists.

If a = sx for some JC e R, then s(x - xa) e sXa , x - xa - n € Xa for

n e R with sn = 0. Hence, n e s~xA c Xa and x is a solution for &~.
If aq = 5 for some q e J{R), then a - aqxa = a{\ - qxa) € sXa

and a e sXa follows for all a € A. We have a e sXa, s e s ^ and
s € fl s^a = ^ . a contradiction.

If conversely every compatible system with breadth s~lA is solvable let

^ = (aa + Aa)a€A be a compatible sequence with f| Aa - A . There exists an

index a0 with Aa c 5/? and we define A' = {a\a > a0} . It is sufficient to

show that (aa + Aa)aeA, has a solution. Since aa — aa € Aa , a e V', there

exists ta€ R with aa- aa = sta . The system 3~ — (ta + s~lAa)aeA> has

f)s~1Aa = s~l fla€A' ^Q
 a s *ts breadth and is compatible, since s(ta- tp) =

(aa - aa) e Aa for a < fi . Hence, a solution ; exists for &~ and aa + st
is a solution for &[.

5. A counterexample

We saw that every element x e /?, / /?, with /?, maximal immediate ex-
tension of a right chain ring /?, is the limit of a p.c. sequence in R. We
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show now by an example that a right chain ring R can be maximal without
being maximally complete.

C o n s i d e r R = Q{tx, t2, ...)[x](x)[[y, a]} w i t h xy = ytx, t,y = ytM

where 52'£=oy
nfn(ti, x) are the elements of R. Q(tx, t2, ...) is a function

field in the variables tt, i — 1, . . . , over the rational numbers Q, and
Q(f,, t2,...)[x],x, is the localization at (x) of the polynomial ring in one
variable x over Q(tx, t2, ...) containing the coefficients fn{tt,x). The
ring R is then a skew power series ring over this ring in the variable y with
o(x) = tx, a{tt) — tj+l and is a right invariant right chain domain with its
right ideals ^ (0) of the form y"xmR, n, m > 0 .

We show that there cannot exist a proper immediate extension Rx of
R. Otherwise, /?, is again right noetherian, and hence right invariant with
right ideals y"xmRl (by Proposition 3.7(v), Lemma 3.4(iv)). By Theorem
4.12, Rx contains an element f, f £ R, which is a pseudo limit of a p.c.
sequence (ap)p€\ of elements a in R with breadth B and which has no
limit in R. Since B is a right ideal without an upper neighbour in the lattice
of right ideals, it follows that B is either (0) or y'R, i = I, ... , However,
R is linearly (O)-compact by construction and if R is not y"/?-compact for
some n, then R is not y/?-compact, from Theorem 4.15. Finally, using
Proposition 4.14, we can assume that R/yR, which is a ring, is contained
in but is not equal to Rx/yRx, where we use yRl n R = yR by Proposition
3.4(vi), that is, we can assume that the image of the element / in Rx/yRx

is not contained in R/yR.
Next, let g be any element in R{\yRx. Then g can be written as g —

xk(c0 + xh) where k > 0 is an integer, c0 e Q(ti, t2, ...) ~ R/J(R) ^
J ^ c0 7̂  0 , h G Rt and co + xh — u is a unit in R{. We consider

gy = xk(c0 + xh)y = xkuy - ytku = yg' with u e U(R{), g e Rx and
g = d0 + xhx e U{R{) follows for some hx e Rx with 0^d0e Q(f, , . . . ) •
The element d0 is uniquely determined by g and we define a mapping *F
from R{ to Q(tl, ...) by *¥(g) — d0 as defined above if g e Rx\yR{ and
V(g) = 0 otherwise. It follows that ¥ ( $ , ) + V(g2) = x¥(gl + g2) for g , ,
g2 € /?, and we prove *F(g,, g2) = ¥(g,)»F(g2) . Let gxy - y(d0 + xh{),
g2y = y(d'o + xh2) for d0, d'o e Q(f, ,...),hx,h2 € / ? , , then g2gxy =
y(d'o + xh2)(d0 + xhx) = y(d'odo + xw) for a certain element w €RX, that is,

^ a n d *^ is a ring homomorphism from Rx to

x, . . . ) with kernel yRx .
Consider f € RX\R, f £ yRx as chosen above. Then

since «P(Q(^ , . . . ) [ x ] w ) = Q(*2, . . . ) [ / , ] ( , , and R/yR = ®(tx,... )[x]{x) c
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RJy{R. This implies ¥ ( / ) = T*Ai( ' , - ) /S , (O with k>\, /*,(;,), *,(*,.)€
Q[/ , , . . . ] and (/, , A, (*,.)£,(*,.)) = 1. There exists g in R with

and it follows that
k k \ %£\ k^\ -1 = 0

and xk gf = 1 + yr' for some / e /?, . This shows that jcfc is a unit for
some k > 0, a contradiction.
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