MAXIMAL INVERSE SUBSEMIGROUPS OF $\boldsymbol{S}(\boldsymbol{X})$

by BRIDGET B. BAIRD

(Received 16 June, 1981)

1. Introduction. If X is a topological space then $S(X)$ will denote the semigroup, under composition, of all continuous functions from X into X. An element f in a semigroup is regular if there is an element g such that $f g f=f$. The regular elements of $S(X)$ will be denoted by $R(X)$. Elements f and g are inverses of each other if $f g f=f$ and $g f g=g$. Every regular element has an inverse [1]. If every element in a semigroup has a unique inverse then the semigroup is an inverse semigroup. In this paper we examine maximal inverse subsemigroups of $S(X)$.

For certain idempotents e we will define a set I_{e} and show that I_{e} is a maximal inverse subsemigroup of $S(X)$ with e as its smallest idempotent. N. R. Reilly [5], J. W. Nichols [4] and B. M. Schein [7] have looked at maximal inverse subsemigroups of T_{X}, the full transformation semigroup on the set X. By letting X have the discrete topology we can apply our theorems about 0 -dimensional spaces to yield the results of Nichols and Reilly. Further results give conditions on X which ensure that $G(X)$, the group of units of $S(X)$, is a maximal inverse subsemigroup. Other theorems will give results for X a Euclidean n-cell or Euclidean n-space.
2. Preliminary results. Throughout the paper we will use the notation and basic results about semigroups from Clifford and Preston [1]. A retract is the range of an idempotent in $S(X),\left.f\right|_{A}$ will denote the restriction of the map f to the set A. The juxtaposition $f g$ will mean the composition $f \circ g$. We begin with a result of R. D. Hofer [2] which gives conditions for f and g to be inverses of each other.

Proposition 1. Let $f \in R(X)$. Then g is an inverse for f if and only if there exist retracts A, B of X such that $B=$ range of $f, A=$ range of $g,\left.f\right|_{A}$ is a homeomorphism onto $B,\left.g\right|_{B}$ is a homeomorphism onto $A,\left.f g\right|_{B}=\left.\mathrm{id}\right|_{B}$ (identity map on B) and $\left.g f\right|_{A}=\left.\mathrm{id}\right|_{A}$.

Note that if $f \in R(X)$ then the set B above is uniquely determined; we will denote it by B_{f}. If the set A is also uniquely determined (for example, if f belongs to an inverse semigroup) then it will be denoted by A_{f}. If f is an idempotent then we will say $A_{f}=B_{f}$. Finally, if f belongs to an inverse semigroup J then the unique algebraic inverse of f (in J) will be denoted by f^{-1}. We will also occasionally use the symbol f^{-1} for the inverse image of the map f; no confusion should result from this.

The next lemma is concerned with composing two elements in $R(X)$.
Lemma 2. Suppose $f, g \in R(X)$ with inverses f^{\prime}, g^{\prime} respectively. Let $A=g^{\prime}\left(B_{f^{\prime}} \cap B_{g}\right)$ and $B=f g(A)$.
(1) If range of $f g=B$ then $(f g)\left(g^{\prime} f^{\prime}\right)(f g)=f g, f g \in R(X)$ and $f g$ maps A homeomorphically onto B.
(2) If range of $f g=B$ and range of $g^{\prime} f^{\prime}=A$ then $g^{\prime} f^{\prime}$ is an inverse for $f g$.

Glasgow Math. J. 24 (1983) 53-64.

Proof. (1) Suppose range of $f g=B$. If $y \in A$ then $y \in B_{g^{\prime}}, g(y) \in B_{f^{\prime}}$, and so $f^{\prime} f g(y)=$ $g(y)\left(\left.f^{\prime} f\right|_{B_{r}}=\left.\operatorname{id}\right|_{B_{r}}\right)$ and hence $g^{\prime} f^{\prime} f g(y)=g^{\prime} g(y)=y$. But now, if $x \in X$ then $f g(x)=f g(y)$ for some y in A. Thus

$$
(f g)\left(g^{\prime} f^{\prime}\right)(f g)(x)=(f g)\left(g^{\prime} f^{\prime}\right)(f g)(y)=f g(y)=f g(x)
$$

Thus $f g \in R(X)$ and $f g$ maps A homeomorphically onto $B\left(\left.g\right|_{A}\right.$ and $\left.f\right|_{B_{f},}$ are both homeomorphisms).
(2) Assume range of $f g=B$ and range of $g^{\prime} f^{\prime}=A$. If we show that $A=$ $g^{\prime} f^{\prime}\left(f\left(B_{g} \cap B_{f}\right)\right)$ then we can apply (1) to the element $g^{\prime} f^{\prime}$ to conclude that $\left(g^{\prime} f^{\prime}\right)(f g)\left(g^{\prime} f^{\prime}\right)=$ $g^{\prime} f^{\prime}$. But this is true since $A=g^{\prime}\left(B_{f^{\prime}} \cap B_{g}\right)$ and $\left.f^{\prime} f\right|_{B_{f} .}=\left.i d\right|_{B_{f}}$.

We now introduce a new notion.
Definition. Let e be an idempotent in $S(X)$. We say that an element $f \in S(X)$ respects A_{e} if there exists an inverse f^{\prime} of f with $A_{e} \subseteq B_{f} \cap B_{f}$ and $\left.f\right|_{A_{e}}$ is a homeomorphism onto A_{e}. If we wish to emphasize the role of f^{\prime} we will say f respects A_{e} via f^{\prime}.

Next we consider Green's relation \mathscr{H}. Let H_{e} denote the \mathscr{H}-class of an idempotent $e \in S(X)$. Then by using results of K. D. Magill, Jr. and S. Subbiah [3] we see that
$H_{e}=\left\{f \in R(X)\right.$: there exists an inverse f^{\prime} of f such that

$$
\left.B_{f}=B_{f^{\prime}}=A_{e}, e(x)=e(y) \text { if and only if } f(x)=f(y)\right\} .
$$

Note that every element of H_{e} respects A_{e} and that if $f \in H_{e}$ then $e(x)=e(y)$ if and only if $e f(x)=e f(y)$ (e is the identity on B_{f}). We now state a result pertaining to these notions (the proof will be omitted).

Lemma 3. Let e be an idempotent in $S(X)$ and suppose that h respects A_{e}. Then he $\in H_{e}$ and $\left.h e\right|_{A_{e}}=\left.h\right|_{A_{c}}$.

Lemma 4. Suppose e and f are idempotents in $S(X)$ which commute.
(1) If $A_{e}=A_{f}$ then $e=f$.
(2) If $e(x), f(x) \in A_{e} \cap A_{f}$ then $e(x)=f(x)$. In particular, if $A_{e} \subseteq A_{f}$ and $f(x) \in A_{e}$ then $e(x)=f(x)$.

Proof. The proof is straightforward and will be omitted.
Recall that in an inverse semigroup J all idempotents commute. J has a smallest idempotent e if $f e=e f=e$ for all idempotents f in J. If this is the case then $A_{e} \subseteq A_{f}$, with equality occurring only if $e=f$ (by the last lemma).

Lemma 5. Let J be an inverse subsemigroup of $S(X)$ with smallest idempotent e and suppose $g \in J$. Then g respects $A_{e}, g^{-1} e g=e, g e=e g$ and for all $x, y \in X, e(x)=e(y)$ if and only if $\operatorname{eg}(x)=e g(y)$.

Proof. The elements $g^{e} g^{-1}$ and $g^{-1} e g$ are idempotents in J and so $A_{e} \subseteq g\left(A_{e}\right) \subseteq B_{g}$ and $A_{e} \subseteq g^{-1}\left(A_{e}\right) \subseteq A_{g}$. But then $\left.g\right|_{A_{e}}$ maps onto A_{e} and so g respects A_{e}. Now $A_{\text {geg }^{-1}}=$
$A_{g^{-1} e g}=A_{e}$ and so, by Lemma 4, $g e g^{-1}=e$ and thus $e g=g e g^{-1} g=g g^{-1} g e=g e$. Now

$$
\begin{aligned}
e(x)=e(y) & \Leftrightarrow g e(x)=g e(y)\left(g \text { is one-to-one on } A_{e}\right) \\
& \Leftrightarrow e g(x)=e g(y) .
\end{aligned}
$$

The next corollary shows us that every maximal inverse subsemigroup with a smallest idempotent e must contain H_{e} (also proved by Reilly [5]).

Corollary 6. Let J be an inverse subsemigroup of $S(X)$ with smallest idempotent e and let $g \in J$. If $f \in H_{e}$ then $f g, g f \in H_{e}$; if J is maximal then $H_{e} \subseteq J$.

Proof. Suppose f respects A_{e} via f^{\prime}. Then we apply Lemmas 2 and 5 to show that $f g$ and $g f$ are in $R(X)$ and that $B_{g^{-1} f^{\prime}}=B_{f g}=B_{f^{\prime} g^{-1}}=B_{g f}=A_{e}$. Now if $f \in H_{e}$ then $e f=f e=f$. Thus

$$
\begin{aligned}
f g(x)=f g(y) & \Leftrightarrow f e g(x)=f e g(y) \\
& \Leftrightarrow e g(x)=e g(y) \quad\left(f \text { is one-to-one on } A_{e}\right) \\
& \Leftrightarrow e(x)=e(y) \quad(\text { by the last Lemma }) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\mathrm{g} f(x)=g f(y) & \Leftrightarrow f(x)=f(y) \quad\left(g \text { is one-to-one on } B_{f}\right) \\
& \Leftrightarrow e(x)=e(y) \quad\left(f \in H_{e}\right)
\end{aligned}
$$

Thus $f g$ and $g f$ both belong to H_{e}. Now suppose J is maximal. Then $H_{e} \cup J$ is a subsemigroup by the above. Clearly idempotents in $H_{e} \cup J$ commute and so $H_{e} \cup J$ is an inverse subsemigroup [1]. Hence $H_{e} \subseteq J$ by maximality of J.

Later in the paper we will define several maximal inverse subsemigroups with smallest idempotent e. This last corollary then tells us that each of these maximal inverse subsemigroups contains H_{e}. The next results indicate when such a smallest idempotent is present.

Definition. Let J be an inverse subsemigroup of $S(X)$. Then we define $A_{J}=$ $\cap\left\{A_{f}: f \in J\right\}$. (Note that the collection $\left\{A_{f}: f \in J\right\}$ satisfies the finite intersection property; if X is compact then $A_{J} \neq \varnothing$.)

Lemma 7. Let J be an inverse subsemigroup of $S(X)$ and suppose $f \in J$. Then $A_{J} \subseteq$ $A_{f} \cap B_{f}$ and $\left.f\right|_{A_{j}}$ is a homeomorphism onto A_{J}. If there exists an idempotent $e \in J$ such that $A_{e}=A_{J}$ then e is the smallest idempotent of J.

Proof. $A_{J} \subseteq A_{f}$ by definition and since there exists $f^{-1} \in J$ with $A_{f^{-1}}=B_{f}$ we have $A_{J} \subseteq B_{f}$ also. Thus $\left.f\right|_{A_{J}}$ is a homeomorphism. If $x \in A_{J}$ and $f(x) \notin A_{J}$ then there exists $g \in J$ such that $f(x) \notin \boldsymbol{B}_{8}$. Without loss of generality we may assume g is an idempotent and $B_{g} \subseteq B_{f} \quad\left(f f^{-1} g g^{-1} \in J\right)$. Now $f^{-1} g f$ is an idempotent in J and so $f^{-1} g f(x)=x$ $\left(x \in A_{J} \subseteq A_{f}{ }^{-1} g f\right)$. But then $f f^{-1} g f(x)=f(x)$. Since $B_{g} \subseteq B_{f}$ we have $f f^{-1} g f(x)=g f(x)$. Thus $g f(x)=f(x)$ but $f(x) \notin B_{\mathrm{g}}$. This is a contradiction. Hence $f(x) \in A_{J}$. This means that f maps
A_{J} into A_{J}. Apply this result to f^{-1} to conclude that f maps A_{J} onto A_{J}. Now suppose e is an idempotent in J with $A_{e}=A_{J}$. Then if f is any other idempotent, $f(x)=x$ for all $x \in A_{e}=A_{J}\left(A_{J} \subseteq A_{f}\right)$. Thus $e f=f e=e$ and so e is the smallest idempotent.

Corollary 8. Let J be an inverse subsemigroup of $S(X)$, e an idempotent in J. Suppose the following condition is satisfied: if B is any retract of X with $B \subsetneq A_{e}$ then there exists $f \in J$ such that $f(B) \cap B=\varnothing$. Then $A_{J}=A_{e}, e$ is the smallest idempotent in J and if $g \in J$ then g respects A_{e}.

Proof. We know $A_{J} \subseteq A_{e}$. If $A_{e} \nsubseteq A_{J}$ then there exists an idempotent $g \in J$ such that $A_{g} \varsubsetneqq A_{e}$. Then by the condition there exists an $f \in J$ such that $f\left(A_{g}\right) \cap A_{g}=\varnothing$. Then $f g f^{-1}$ is an idempotent in J and so $g\left(f g f^{-1}\right)=\left(f g f^{-1}\right) g$. But $B_{8 f g f^{-1}} \subseteq A_{g}, B_{f g f^{-1} g} \subseteq f\left(A_{g}\right)$ and $f\left(A_{g}\right) \cap A_{g}=\varnothing$. This is a contradiction. Thus $A_{e}=A_{J}$. The rest of the corollary follows from Lemmas 7 and 5 .
3. Main results. We first prove several results about maximal inverse subsemigroups of $S(X)$ where X is 0 -dimensional. The symbol c_{y} will signify the constant map in $S(X)$ which sends everything to the point y.

Theorem 9. Let X be T_{1} and 0 -dimensional and suppose $e=c_{y}$ for some fixed $y \in X$. Let

$$
\begin{aligned}
& I_{e}=\left\{f \in R(X): f(y)=y \text {, there exists an inverse } f^{\prime} \text { of } f\right. \text { such that } \\
& \left.\qquad\{y\} \subseteq B_{f} \cap B_{f} \text {, and if } f(x) \neq y \text { then }|\{z: f(z)=f(x)\}|=1\right\} .
\end{aligned}
$$

Then I_{e} is a maximal inverse subsemigroup of $S(X)$ with smallest idempotent e.
Proof. We initially note that if $f \in I_{e}$ with inverse f^{\prime} then f respects A_{e} via f^{\prime}, if $x \in B_{f^{\prime}}$ and $x \neq y$ then $f(x) \neq y$, and if $x \notin B_{f^{\prime}}$ then $f(x)=y$. This, coupled with the fact that X is T_{1}, means that the boundaries of B_{f} and B_{f}, are contained in $\{y\}$. We can now show that if $f \in I_{e}$ then f has an inverse $k \in I_{e}$; define k by

$$
k(x)= \begin{cases}f^{\prime}(x) & x \in B_{f} \\ y & \text { otherwise } .\end{cases}
$$

Note that k is continuous by the above remarks and it is straightforward to show that $k \in I_{e}$. Now suppose $f, g \in I_{e}$ with inverses $f^{\prime}, g^{\prime} \in I_{e}$. Let $h=f g$. If $A=g^{\prime}\left(B_{f} \cap B_{g}\right)$ and $B=h(A)$ we show that $B=$ range of h. Let $x \in X$. Then there exists z such that $g(z)=g(x)$ and $g^{\prime} g(z)=z$. If $g(z) \in B_{f}$, then $z \in A$ and $h(z)=h(x)$. If $g(z) \notin B_{f}$, then $f g(x)=y$ and $h(y)=h(x)$ with $y \in A$. Thus range of $h=B$. Now by Lemma $2, h \in R(X)$. Clearly h respects A_{e} since $h(y)=f g(y)=y$. It is also clear that if $h(x) \neq y$ then $|\{z: h(z)=h(x)\}|=1$. Hence $h \in I_{e}$ and so I_{e} is a subsemigroup. We have already shown that I_{e} contains inverses. Note that if f is an idempotent in I_{e} then

$$
f(x)= \begin{cases}x & \text { if } x \in A_{f} \\ y & \text { otherwise }\end{cases}
$$

Two such idempotents commute and so I_{e} is an inverse subsemigroup of $S(X)$.

To show that I_{e} is maximal suppose $I_{e} \subseteq J$ where J is an inverse subsemigroup. By Corollary 8 we have that e is the smallest idempotent in J and if $f \in J$ then f respects A_{e}. Now suppose $f(w) \neq y$ and

$$
|\{z: f(z)=f(w)\}|>1
$$

We may assume $w \in A_{f}$. Then there exists $z \notin A_{f}$ such that $f(w)=f(z)$. Choose a clopen (closed and open) set G so that $z, y \in G$ and $w \notin G$. Define $g \in S(X)$ by

$$
g(x)= \begin{cases}x & \text { if } x \in G \\ y & \text { otherwise }\end{cases}
$$

It is easy to see that g is an idempotent in I_{e}, hence in J. Thus $g f^{-1} f=f^{-1} f g$. But $g f^{-1} f(z)=g(w)=y$ and $f^{-1} f g(z)=f^{-1} f(z)=w$ and $w \neq y$. This is a contradiction. Hence if $f(w) \neq y$ then $|\{z: f(z)=f(w)\}|=1$ and so $f \in I_{e}$. Thus $J \subseteq I_{e}$ and I_{e} is maximal with smallest idempotent e.

If we let X be discrete then $S(X)=T_{x}$, the full transformation semigroup on the set X. We may then apply the last theorem to obtain the result of Nichols [4]. The next theorem is also concerned with 0 -dimensional spaces. Recall that a space X is homogeneous if for every two points x and y there exists a homeomorphism h of X onto X such that $h(x)=y$.

Theorem 10. Let X be a homogeneous, 0-dimensional space and suppose e is an idempotent in $S(X)$ such that A_{e} is open. Let $I_{e}=\left\{f \in R(X): f\right.$ respects A_{e}, B_{f} is open, if $f(x) \notin A_{e}$ then $|\{y: f(y)=f(x)\}|=1$ and for all $x, y \in X, e(x)=e(y)$ if and only if $e f(x)=$ $e f(y)$ \}. Then I_{e} is a maximal inverse subsemigroup of $S(X)$ with smallest idempotent e.

Proof. Note that if $f \in I_{e}$ respects A_{e} via f^{\prime} and $x \notin B_{f}$, then $f(x) \in A_{e}$. Thus $B_{f^{\prime}}=$ $\left(f^{-1}\left(X-A_{e}\right) \cup A_{e}\right)$ and so B_{f}, is clopen. We first show that if $f \in I_{e}$ then there exists an inverse g of f which also belongs to I_{e}. Define g by

$$
g(x)= \begin{cases}f^{\prime}(x) & \text { if } x \in B_{f} \\ f^{\prime} e(x) & \text { otherwise }\end{cases}
$$

Since B_{f} is clopen we have that $g \in S(X)$. Clearly g is an inverse for f, B_{g} is open, g respects A_{e} and if $g(x) \notin A_{e}$ then $|\{y: g(y)=g(x)\}|=1$. To show the last condition for membership in I_{e} we consider several cases:
(1) $x, y \in B_{f}: e g(x)=e g(y) \Leftrightarrow e f^{\prime}(x)=e f^{\prime}(y) \Leftrightarrow e f f^{\prime}(x)=e f f^{\prime}(y) \Leftrightarrow e(x)=e(y)$.
(2) $x \notin B_{f}, y \notin B_{f}: e g(x)=e g(y) \Leftrightarrow e f^{\prime} e(x)=e f^{\prime} e(y) \Leftrightarrow e f^{\prime} e(x)=e f f^{\prime} e(y) \Leftrightarrow e(x)=e(y)$.
(3) $x \in B_{f}, y \notin B_{f}: e g(x)=e g(y) \Leftrightarrow e f^{\prime}(x)=e f^{\prime} e(y) \Leftrightarrow e f f^{\prime}(x)=e f f{ }^{\prime} e(y) \Leftrightarrow e(x)=e(y)$. Thus $g \in I_{e}$.

We now show I_{e} is a subsemigroup. Let $h=f g$ with $f, g \in I_{e}$ and inverses $f^{\prime}, g^{\prime} \in I_{e}$. Let $h=f g$, let $A=g^{\prime}\left(B_{g} \cap B_{f^{\prime}}\right)$ and $B=h(A)$. We show $B=$ range of h. Let $x \in X$. Then there exists y such that $g(x)=g(y)$ and $g^{\prime} g(y)=y$. If $g(y) \in B_{f^{\prime}}$ then $y \in A, g(x)=g(y)$ and hence $h(x)=h(y)$. If $g(y) \notin B_{f^{\prime}}$ then $f g(x) \in A_{e}$ and so there exists $z \in A_{e} \subseteq A$ such that $h(x)=$ $h(z)$. Now we use Lemma 2 to conclude that $h \in R(X)$. Clearly B_{h} is open and h respects
A_{e}. Now suppose $h(x)=h(y)$ where $h(x) \notin A_{e}$. Then $f g(x)=f g(y)$ with $f g(x) \notin A_{e}$. This means that $g(x)=g(y)$. Now $g(x) \notin A_{e}$ (otherwise $f g(x) \in A_{e}$) and so $x=y$. Thus if $h(x) \notin A_{e}$ then $|\{y: h(x)=h(y)\}|=1$. Finally, note that for any $x, y \in X$,

$$
e(x)=e(y) \Leftrightarrow e g(x)=e g(y) \Leftrightarrow e f g(x)=e f g(y) \Leftrightarrow e h(x)=e h(y) .
$$

Thus $h \in I_{e}$.
To show that I_{e} is an inverse subsemigroup we need only show that idempotents in I_{e} commute. But note that if f is an idempotent in I_{e} then

$$
f(x)= \begin{cases}x & \text { if } x \in A_{f} \\ e(x) & \text { otherwise }\end{cases}
$$

Thus any two idempotents in I_{e} will commute and so I_{e} is an inverse subsemigroup.
For maximality suppose that $I_{e} \subseteq J$ where J is an inverse subsemigroup. We first show that $A_{e} \subseteq A_{J}$. If not, then there exists an idempotent $f \in J$ and $y \in X$ such that $y \in A_{e}-A_{f}$. But then $e f(y)=f e(y) \in A_{f} \cap A_{e}$ and so $f e(y) \neq y$. By the homogeneity of X choose a homeomorphism h from X onto X such that $h(y)=f e(y)$. Now choose clopen disjoint sets U, V of X so that $y \in U, f e(y) \in V, U \cup V \subseteq A_{e}, U \cap A_{f}=\varnothing$ and $h(U)=V$. Now define a homeomorphism k from X onto X by

$$
k(x)= \begin{cases}h(x) & \text { if } x \in U \\ h^{-1}(x) & \text { if } x \in V \\ e(x) & \text { otherwise }\end{cases}
$$

Then $B_{k}=A_{e}$ and $k e=e k$. Thus $k \in I_{e}$, hence $k \in J$. Now $k^{-1} f e k$ is an idempotent of J. So

$$
(f e)\left(k^{-1} f e k\right)=\left(k^{-1} f e k\right)(f e)
$$

But

$$
(f e)\left(k^{-1} f e k\right)(y)=(f e)\left(k^{-1} f e h\right)(y)=(f e)\left(k^{-1} f e f e\right)(y)=(f e)\left(h^{-1} f e\right)(y)=f e(y)
$$

and $\left(k^{-1} f e k\right)(f e)(y) \in k^{-1} f(U)$. Now $f(U) \cap U=\varnothing$ since $U \cap A_{f}=\varnothing$. Thus $k^{-1} f(U) \cap V=$ \varnothing. But $f e(y) \in V$ and this is a contradiction. Thus $A_{e} \subseteq A_{J}$ and so, by Lemma 7, e is the smallest idempotent of J. Now by Lemma 5, if $g \in J$ then g respects $A_{e}, g e=e g$ and

$$
e(x)=e(y) \Leftrightarrow e g(x)=e g(y)
$$

Assume f is an idempotent in J. Suppose there exists $z \in A_{f}-A_{e}$ such that $f(z)=z=$ $f(y)$ with $y \neq z$. Choose clopen U so that $y \in U, z \notin U$ and $U \cap A_{e}=\varnothing$ (note $y \notin A_{e}$). define $g \in S(X)$ by

$$
g(x)= \begin{cases}e(x) & \text { if } x \in U, \\ x & \text { if } x \notin U\end{cases}
$$

Then g is an idempotent in I_{e} and so $f g=g f$. But $f g(y)=f e(y)=e(y) \in A_{e}$ and $g f(y)=$ $g(z)=z$ with $z \notin A_{e}$. This is a contradiction. Thus if $f(z) \notin A_{e}$ then $|\{x: f(x)=f(z)\}|=1$. This means that if $x \notin A_{f}$ then $f(x) \in A_{e}$. But then $X-A_{f}=f^{-1}\left(A_{e}\right) \cap\left(X-A_{e}\right)$ which is closed. Thus A_{f} (and hence B_{f}) is open. But then $f \in I_{e}$.

Now suppose $g \in J$. Then $B_{g}=A_{g g-1}$ is open, g respects A_{e} and

$$
e(x)=e(y) \Leftrightarrow e g(x)=e g(y) .
$$

If $g(x) \notin A_{e}$ and $g(x)=g(y)$ then $g^{-1} g(x) \notin A_{e}\left(g^{-1}\right.$ respects $\left.A_{e}\right)$ and $g^{-1} g(x)=g^{-1} g(y)$. Thus $x=y\left(g^{-1} g \in I_{e}\right)$. But then $|\{y: g(x)=g(y)\}|=1$. This shows $g \in I_{e}$. Thus $J \subseteq I_{e}$ and so I_{e} is a maximal inverse subsemigroup of $S(X)$ with smallest idempotent e.

Corollary 11. Let X be a homogeneous 0 -dimensional space. Then $G(X)$, the group of units of $S(X)$, is a maximal inverse subsemigroup of $S(X)$.

Proof. Let e be the identity map on X in the previous theorem.
To see that homogeneity is necessary in this corollary let $X=\{0\} \cup\{1 / n: n \in \mathbb{N}\}$. Then $G(X) \cup\left\{c_{0}\right\}$ is an inverse subsemigroup of $S(X)$. If X is discrete then we apply the last theorem to yield the result of Reilly [5]. We now consider other types of maximal inverse subsemigroups of $S(X)$. This will result in applications to \mathbb{R}^{n} (Euclidean n-space) and I^{n} (Euclidean n-cell). We first make several definitions.

Definition. Suppose e is an idempotent in $S(X)$ and \mathfrak{R} is a decomposition of $X-A_{e}$ $\left(\mathfrak{R}\right.$ is an equivalence relation on $X-A_{e}$). We will call \mathfrak{R} a ray decomposition of $X-A_{e}$ if the following conditions are satisfied:
(1) for any $x \in X-A_{e}$, if $[x]$ denotes the \mathfrak{R}-equivalence class of x in $X-A_{e}$ then $\overline{[x]}=[x] \cup\left\{x_{e}\right\}$ where x_{e} is an element of $A_{e}(\overline{[x]}$ denotes the closure of the set $[x]$ in $X)$,
(2) for any $x \in X-A_{e}, \overline{[x]}$ is homeomorphic to [0,1] or [0,1) via a homeomorphism h such that $h\left(x_{e}\right)=0$.

When we write $[x]$ we shall understand that $x \in X-A_{e}$. If $a \in[x]$ we will use the notation $\left[x_{e}, a\right.$] to mean $h^{-1}[0, h(a)]$ and we will say $y>a(y \geq a)$ if $a, y \in \overline{[x]}$ and $h(y)>h(a)(h(y) \geq h(a))$.

Definition. Suppose e is an idempotent in $S(X), \Re$ is a ray decomposition of $X-A_{e}$ and for every $x \in X-A_{e}, e$ is constant on [x]. A function $f \in R(X)$ is said to be e-admissible if the following are satisfied:
(1) there exists an inverse f^{\prime} of f such that f respects A_{e} via f^{\prime},
(2) for every $x \in X-A_{e}$, either f is constant on $[x]$ or $f[x] \subseteq[z]$ for some $z \in X-A_{e}$,
(3) for every $x \in X-A_{e}$, either $[x] \subseteq B_{f^{\prime}}$ or there exists $x_{f} \in[x]$ such that $\left[x_{e}, x_{f}\right] \subseteq B_{f^{\prime}}$ (may have $x_{f}=x_{e}$) and f is constant on all $y \geq x_{f}$. As before, we will also say f is e-admissible via f^{\prime}.

Note that if f is e-admissible via $f^{\prime},[x] \subseteq B_{f}$, and $f[x] \subseteq[z]$ then $\left.f\right|_{[\bar{x}]}$ is a homeomorphism into $[z]$ with $f\left(x_{e}\right)=z_{e}$; and if $\left[x_{e}, x_{f}\right] \subseteq B_{f^{\prime}}$ then f is constant on all $y \geq x_{f}$.

Theorem 12. Suppose X is a topological space, e is an idempotent in $S(X), \Re$ is a ray
decomposition of $X-A_{e}$ and the following conditions are satisfied:
(1) For every $x \in X-A_{e}, e$ is constant on $[x]$.
(2) If $a \in[x]$ then there exists an idempotent $h \in R(X)$ such that h is e-admissible, $\left.h\right|_{\left[x_{e}, a\right]}=\left.\operatorname{id}\right|_{\left[x_{e}, a\right]}$ and $h(z)=a$ for all $z \geq a$. If, in addition, there exists y such that $[y] \neq[x]$ then h can be chosen so that $\left.h\right|_{[y]}=\left.\mathrm{id}\right|_{[y]}$.
(3) If A is a retract of X and $A \subsetneq A_{e}$ then there exists $h \in R(X)$ such that h respects A_{e} and $h(A) \cap A=\varnothing$.

Now let $I_{e}=\left\{f \in R(X)\right.$: there exists an inverse f^{\prime} of f such that f is e-admissible via f^{\prime} and f^{\prime} is e-admissible via $\left.f\right\}$. Then I_{e} is a maximal inverse subsemigroup of $S(X)$ with smallest idempotent e.

Proof. We first show I_{e} is a subsemigroup. Let $f, g \in I_{e}$ with inverses $f^{\prime}, g^{\prime} \in I_{e}, h=$ $f g, A=g^{\prime}\left(B_{f} \cap B_{g}\right)$ and $B=h(A)$. We show simultaneously that range of $h=B$ and that h satisfies conditions (2) and (3) of the definition of e-admissibility. We can then apply these results to inverses f^{\prime} and g^{\prime} of f and g and use Lemma 2 to conclude that $h \in R(X), h^{\prime}=$ $g^{\prime} f^{\prime}$ is an inverse for h and both h and h^{\prime} are e-admissible (clearly h and h^{\prime} respect A_{e}). This will then show that I_{e} is a subsemigroup. So consider $x \in X$. If $x \in A_{e}$ then $x \in A$ and $h(x) \in B$. If $x \notin A_{e}$ and g is constant on [x] then h is constant on $[x]$ and $h[x] \subseteq A_{e} \subseteq B$. Now suppose $g[x] \subseteq[y]$. If f is constant on $[y]$ then h is constant on $[x]$ and $h[x] \subseteq A_{e} \subseteq$ B. Now suppose $f[y] \subseteq[z]$. Then $h[x] \subseteq[z]$. If $[x] \subseteq B_{g^{\prime}}$ and $[y] \subseteq B_{f^{\prime}}$ then $[x] \subseteq A, h[x] \subseteq$ B and h is a homeomorphism on $[x]$. If $[x] \subseteq B_{g^{\prime}}$ and there exists y_{f} such that $\left[y_{e}, y_{f}\right] \subseteq B_{f^{\prime}}$ with f constant on all $w \geq y_{f}$, then let $x_{h}=g^{\prime}\left(y_{f}\right)$. Then $\left[x_{e}, x_{h}\right] \subseteq A$ and h is constant on all $w \geq x_{h}$. Thus $h[x] \subseteq B$. Now suppose there exists x_{g} such that $\left[x_{e}, x_{g}\right] \subseteq B_{g^{\prime}}$ and g is constant on all $w \geq x_{g}$. If $[y] \subseteq B_{f}$, or if there exists $y_{f} \geq g\left(x_{g}\right)$ such that $\left[y_{e}, y_{f}\right] \subseteq B_{f}$ then $\left[x_{e}, x_{g}\right] \subseteq$ A, h is constant on all $w \geq x_{g}$, and $h[x] \subseteq B$. If there exists $y_{f}<g\left(x_{g}\right)$ such that $\left[y_{e}, y_{f}\right] \subseteq B_{f^{\prime}}$ and f is constant on all $w \geq y_{f}$ then let $x_{h}=g^{\prime}\left(y_{f}\right)$. Then $\left[x_{e}, x_{h}\right] \subseteq A$, and h is constant on all $w \geq x_{h}$, and again $h[x] \subseteq B$. This completes the proof that I_{e} is a subsemigroup.

To show that I_{e} is an inverse subsemigroup we need only prove that idempotents commute. Let f, g be idempotents in I_{e} and suppose $x \in X$. If $x \in A_{e}$ then $f(x)=x=g(x)$ and so $f g(x)=g f(x)$. If $x \in X-A_{e}$ then either $\left.f\right|_{\left[x_{c}, x\right]}=\left.\mathrm{id}\right|_{\left[x_{e}, x\right]}$ or $f(x)=x_{f}$ with $x_{f}<x$. If $\left.f\right|_{\left[x_{e}, x\right]}=\left.\operatorname{id}\right|_{\left[x_{e}, x\right]}$ then since $g(x) \in[x]$ with $g(x) \leq x$ we have $g f(x)=g(x)=f g(x)$. If $f(x)=x_{f}$ with $x_{f}<x$ and $g(x)=x$ then $g f(x)=g\left(x_{f}\right)=x_{f}=f(x)=f g(x)$. If $g(x)=x_{g}$ with $x_{g}<x$ and $x_{g} \geq x_{f}$ then $g f(x)=g\left(x_{f}\right)=x_{f}=f\left(x_{g}\right)=f g(x)$. If $g(x)=x_{g}$ with $x_{g}<x_{f}$ then $g f(x)=g\left(x_{f}\right)=$ $x_{\mathrm{g}}=f\left(x_{\mathrm{g}}\right)=f g(x)$. In any case, $g f(x)=f g(x)$ and so I_{e} is an inverse subsemigroup of $S(X)$.

To show I_{e} is a maximal inverse subsemigroup suppose that $I_{e} \subseteq J$ where J is an inverse subsemigroup. Note first that we can use condition (3) of the theorem, Lemma 3, and Corollary 8 to conclude that e is the smallest idempotent in J and if $g \in J$ then g respects A_{e}. We now show that if f is an idempotent in J then f is an idempotent in I_{e}. We already have that f respects A_{e} and so let $x \in X-A_{e}$ and suppose $[x] \nsubseteq A_{f}$. We will show $f[x] \subseteq \overline{[x]}$ and condition (3) of e-admissibility is satisfied. Choose

$$
a=\max \{z: z \in \overline{[x]}, f(z)=z\}
$$

(we may have $a=x_{e}$). Consider $y>a$. By condition (2) of the hypothesis choose g an
idempotent such that g is e-admissible, $\left.g\right|_{\left[x_{e}, a\right]}=\left.\mathrm{id}\right|_{\left[x_{e}, a\right]}$ and $g(z)=a$ for $z>a$. If $f(y) \notin \overline{[x]}$ then $f(y) \notin A_{e}$ (otherwise $f(y)=e(y)=x_{e}$ by Lemma 4) and so we can also choose g so that $\left.g\right|_{[f(y)]}=\left.\mathrm{id}\right|_{[f(y)]]}$. Then g is in I_{e}, hence in J and so $f g=g f$. If $f(y) \notin[x]$ then $g f(y)=f(y) \notin \overline{[x]}$ but $f g(y)=f(a)=a \in \overline{[x]}$, which is a contradiction. Hence $f(y) \in[x]$. Note that this means that $f(y) \leq a\left(f[x] \subseteq[x]\right.$ and so $A_{f} \cap \overline{[x]}$ must be an interval). Now $a=f(a)=f g(y)=g f(y)$. Thus $f(y) \geq a$. Hence $f(y)=a$ and this shows that $f \in I_{e}$.

Now let $g \in J$. We know that g respects A_{e}. Let $x \in X-A_{e}$. Note that if $g(x) \in A_{e}$ then since $e g=g e$ by Lemma 5 we have $g(x)=e g(x)=g e(x)=g\left(x_{e}\right)$. Consider [x]. If $g^{-1} g$ is constant on $[x]$ and $y \in[x]$ then $g^{-1} g(y)=g^{-1} g\left(x_{e}\right)=x_{e}$. But then $g(y)=g\left(x_{e}\right)$ and so g is constant on $[x]$. Now suppose there exists $a>x_{e}$ such that $\left[x_{e}, a\right] \subseteq A_{g^{-1} \mathrm{~g}}$ and let $x_{e}<y \leq a$. Then $g(y) \notin A_{e}\left(y \in A_{g}-A_{e}\right)$. If $g(y) \notin[g(a)]$ then choose an idempotent $f \in I_{e}$ so that f is the identity on $[g(a)]$ and constant on $[g(y)]$. Then $g^{-1} f g$ is an idempotent in J, hence in I_{e}. Now $g^{-1} f g(a)=a$ and so $g^{-1} f g(y)=y$ also $(y \leq a)$. But $g^{-1} f g(y) \in A_{e}$. This is a contradiction. Thus $g(y) \in[g(a)]$ for all y with $x_{e}<y \leq a$. Thus if $[x] \subseteq A_{g^{-1} g}$ then $[x] \subseteq A_{g}$ and $g[x] \subseteq[g(x)]$. Now suppose $g^{-1} g$ is such that there exists $a \in[x]$ such that $g^{-1} g$ is the identity on $\left[x_{e}, a\right]$ and constant thereafter. Then $\left[x_{e}, a\right] \subseteq A_{g}$ and $g\left[x_{e}, a\right] \subseteq[g(a)]$ by the above. Now let $y>a$. Then $g^{-1} g(y)=g^{-1} g(a)=a$ and hence $g(y)=g g^{-1} g(y)=g(a)$. Thus $g \in I_{e}, J \subseteq I_{e}$ and so I_{e} is a maximal inverse subsemigroup.

We have several corollaries.
Corollary 13. Let $X=I$ (the unit interval) or \mathbb{R} (the reals) and let e be defined by

$$
e(x)=\left\{\begin{array}{lll}
x & \text { if } & a \leq x \leq b \\
a & \text { if } & x \leq a \\
b & \text { if } & x \geq b
\end{array}\right.
$$

where $0 \leq a \leq b \leq 1$ if $X=I$ and $a \leq b$ if $X=\mathbb{R}$. Then e is an idempotent and if $I_{e}=$ $\left\{f \in R(X)\right.$: there exists an inverse f^{\prime} of f such that f respects A_{e} via f^{\prime}, if $B_{f^{\prime}}=[c, d]$ then $f(x)=f(c)$ for all $x \leq c$ and $f(x)=f(d)$ for all $x \geq d\}$ we have that I_{e} is a maximal inverse subsemigroup of $S(X)$ with smallest idempotent e.

Corollary 14. Let $X=\mathbb{R}^{n}$ or I^{n} and let D be an n-dimensional disk in \mathbb{R}^{n} (or I^{n}) with centre y. Define an idempotent e as follows: if $x \in D, e(x)=x$; if $x \in \mathbb{R}^{n}-D, e(x)=x_{b}$, where x_{b} is the unique element on the boundary of D which intersects the line segment from y to x.

If $x, z \in X-A_{e}$ then we say x is \mathfrak{R}-equivalent to z if x and z lie on the same line segment beginning at y. Then this gives a ray decomposition of $X-A_{e}$ and if $I_{e}=$ $\left\{f \in R(X)\right.$: there exists an inverse f^{\prime} of f such that f is e-admissible via f^{\prime} and f^{\prime} is e-admissible via f\} then I_{e} is a maximal inverse subsemigroup of $S(X)$.

Proof. It is straightforward to see that conditions (1) and (2) of the theorem are satisfied. To see condition (3) note that if A is a retract of X and $A \varsubsetneqq D$ then there exists a point x in the boundary of D but not in A. Since A is closed there exists an open neighborhood U of x such that U is homeomorphic to \mathbb{R}^{n} and $\bar{U} \cap A=\varnothing$. Now there eixsts $h \in R(X)$ with inverse h^{\prime} such that $B_{h^{\prime}}=B_{h}=D$ and $h(A) \subseteq \bar{U} \cap D$.

Corollary 15. Let $X=\mathbb{R}^{n}$ or $I^{n}, e=c_{y}$ for fixed $y \in X$ and let the ray decomposition of $X-\{y\}$ be defined by $z \in[x]$ if and only if z, x and y all lie on a line segment beginning at y. Then $I_{e}=\left\{f \in R(X)\right.$: there exists an inverse f^{\prime} of f such that f is e-admissible via f^{\prime} and f^{\prime} is e-admissible via $f\}$ is a maximal inverse subsemigroup of $S(X)$ with smallest idempotent c_{y}.

Note that for the above corollary we could have chosen a different ray decomposition of $X-\{y\}$ and this would have resulted in a different maximal inverse subsemigroup, still with the same smallest idempotent c_{y}.

Corollary 16. Let $X=I^{n}$. Then $G(X)$, the group of units of $S\left(I^{n}\right)$, is a maximal inverse subsemigroup of $S(X)$.

Proof. Let e be the identity on X in Theorem 12.
Corollaries 11 and 16 give situations where $G(X)$, the group of units of $S(X)$, forms a maximal inverse subsemigroup. This is not always the case. For instance, if X is a triod then every homeomorphism of X will fix the same point y and so $G(X) \cup\left\{c_{y}\right\}$ is an inverse subsemigroup which properly contains $G(X)$. However, we do have the following result (also proved by Reilly [6]):

Proposition 17. Suppose X is a homogeneous, compact space. Then $G(X)$, the group of units of $S(X)$, is a maximal inverse subsemigroup of $S(X)$.

Proof. Clearly $G(X)$ is an inverse subsemigroup. Suppose $G(X) \subseteq J$ where J is an inverse subsemigroup. Then $A_{J} \neq \varnothing$ since X is compact. Suppose $A_{J} \neq X$. Then by the homogeneity of X choose $f \in G(X)$ and $x \in X$ so that $x \in A_{J}$ and $f(x) \notin A_{J}$. Then $f \in J$ but $f\left(A_{J}\right) \nsubseteq A_{J}$. This contradicts Lemma 7. Thus $A_{J}=X$ and so $J=G(X)$ and $G(X)$ is maximal.

Corollary 18. Let $X=S^{n}$ (the n-dimensional sphere). Then $G(X)$ is a maximal inverse subsemigroup of $S(X)$.

We now consider one last type of maximal inverse subsemigroup of $S(I)$.
Theorem 19. Let e be an idempotent in $S(I)$ such that if $A_{e}=[a, b]$ (where possibly $a=0$ or $b=1$) then e is a homeomorphism on $[0, a]$ and e is a homeomorphism on $[b, 1]$. Define $I_{e}=\left\{f \in R(I)\right.$: there exists an inverse f^{\prime} of f such that $B_{f}=[0, b],[0,1],[a, b]$ or $[a, 1], B_{f^{\prime}}$ is also one of these sets, f respects A_{e} via f^{\prime}, and $e(x)=e(y)$ if and only if ef(x) $=e f(y)\}$. Then I_{e} is a maximal inverse subsemigroup of $S(I)$ with smallest idempotent e.

Proof. Suppose $f \in I_{e}$ with inverse f^{\prime}. We define an inverse g for f by

$$
g(x)=\left\{\begin{array}{lll}
f^{\prime}(x) & \text { if } & x \in B_{f}, \\
f^{\prime} e(x) & \text { if } & x \notin B_{f} .
\end{array}\right.
$$

It is straightforward to check that g is continuous. Clearly g is an inverse for f, g respects A_{e} and satisfies the conditions on B_{f} and B_{g}. The proof for the last condition follows the
corresponding proof in Theorem 10. Now suppose $f, g \in I_{e}$ with inverses $f^{\prime}, g^{\prime} \in I_{e}$ and let $h=f g$. Then $h \in R(X), h$ respects A_{e} and $B_{h}, B_{g^{\prime} f}$ are of the desired form. Now

$$
e(x)=e(y) \Leftrightarrow e g(x)=e g(y) \Leftrightarrow e f g(x)=e f g(y) \Leftrightarrow e h(x)=e h(y)
$$

So $h \in I_{e}$. We now show idempotents commute. Suppose f is an idempotent in $I_{e}, f \neq e$ and f is not the identity on I. Without loss of generality assume $[0, a) \cap A_{f}=\varnothing$. Then f is one-to-one on $[0, a]$ (if $f(x)=f(y)$ then $e f(x)=e f(y)$ and hence $e(x)=e(y)$, but e is one-to-one on [0, a]). Furthermore, if $x \in[0, a]$ then $f(x)=e(x)$ (if $f(x) \in A_{e}$ then $f(x)=f(y)$ for some $y \in A_{e}$, hence $e(x)=e(y)=f(y)=f(x)$; if $f(x)=e(x)=b$ then $\left.x=0\right)$. This means that if f is an idempotent in I_{e} then

$$
f(x)=\left\{\begin{array}{lll}
x & \text { if } & x \in A_{f} \\
e(x) & \text { if } & x \notin A_{f}
\end{array}\right.
$$

Clearly two such idempotents commute. Thus I_{e} is an inverse subsemigroup of $S(I)$.
To show that I_{e} is maximal suppose $I_{e} \subseteq J$ where J is an inverse subsemigroup and $g \in J$. It is straightforward to show that A_{e} and J satisfy the conditions of Corollary 8 and hence e is the smallest idempotent for J. Now apply Lemma 5 to conclude that g respects A_{e} and $e(x)=e(y)$ if and only if $e g(x)=e g(y)$. To show the remaining conditions we may assume, without loss of generality, that g is an idempotent and $A_{g}=[c, d]$ with $0<c<a$. But then $g(x)=g(y)$ for some $x, y \in[0, a]$ where $x \neq y$. Thus $e g(x)=e g(y)$ and hence $e(x)=e(y)$, which is a contradiction. Thus $g \in I_{e}$ and so I_{e} is a maximal inverse subsemigroup of $S(I)$ with smallest idempotent e.

Note that it is possible to make slight modifications and prove a similar theorem if X is the reals.

As an example of this last theorem let $X=[-1,1]$ and suppose $e(x)=|x|$. Then $I_{e}=\{f \in S(X): f$ maps $[0,1]$ homeomorphically onto $[0,1]$ and either f is an odd function $(f(-x)=-f(x)$ for all x) or f is an even function $(f(x)=f(-x)$ for all $x)\}$ is a maximal inverse subsemigroup of $S(X)$. Or, let X be the reals and again let $e(x)=|x|$. Then $I_{c}=\{f \in S(X): f$ is a homeomorphism from $[0, \infty)$ onto $[0, \infty)$ and f is either an odd or even function\} is a maximal inverse subsemigroup of $S(X)$.

All of the maximal inverse subsemigroups we have considered thus far have contained a smallest idempotent e. As Reilly [5] remarks, this is not always the case for $S(X)$, where X is discrete. Since every inverse subsemigroup is contained in a maximal inverse subsemigroup, to produce examples of inverse subsemigroups with no smallest idempotent one needs to find subsemigroups J of $S(X)$ of commuting idempotents such that $A_{J}=\varnothing$. For instance, if X is the reals, define f_{n} for $n=1,2, \ldots$ as follows:

$$
f_{n}(x)=\left\{\begin{array}{lll}
n & \text { if } & x \leqslant n \\
x & \text { if } & x>n
\end{array}\right.
$$

Then $J=\left\{f_{n}: n=1,2, \ldots\right\}$ is a subsemigroup of commuting idempotents but $\bigcap_{n=1}^{\infty} A_{f_{n}}=\varnothing$ and so $A_{J}=\varnothing$.

The author would like to thank the referee for many helpful comments and suggestions.

REFERENCES

1. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Math. Surveys 7, Amer. Math. Soc. (Providence R. I., I (1961), II (1967)).
2. R. D. Hofer, Restrictive semigroups of continuous selfmaps on arcwise connected spaces. Proc. London Math. Soc. (3) 25 (1972), 358-384.
3. K. D. Magill, Jr. and S. Subbiah, Green's relations for regular elements of semigroups of endomorphisms, Canad. J. Math. 26 (1974), 1484-1497.
4. J. W. Nichols, A class of maximal inverse subsemigroups of T_{X}, Semigroup Forum 13 (1976), 187-188.
5. N. R. Reilly, Maximal inverse subsemigroups of T_{x}, Semigroup Forum 15 (1978), 319-326.
6. N. R. Reilly, Transitive inverse semigroups on compact spaces, Semigroup Forum 8 (1974), 184-187.
7. B. M. Schein, A symmetric semigroup of transformations is covered by its inverse subsemigroups, Acta. Math. Acad. Sci. Hungar. 22 (1971), 163-171 (Russian).

Department of Mathematics
University of Florida
Gainesville, Florida 32611

