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Abstraet--This paper addresses the maximal lifetime
scheduling problem in sensor surveillance networks,
Given a set of sensors and targets in a Euclidean plane, a
sensor can watch only one target at a time, our task is to
schedule sensors to watch targets, such that the lifetime of
the survelllance system s maximized, where the lifetime
is the duratien that all targets are watched. We propose
an optimal selution to find the target watching schedule
for senmsors that achieves the maximal lifetime. Our
satution cansists of three steps: 1) computing the maximal
lifctime of the surveillance system and a workload matrix
by using linear pregramming technigues; 2) decomposing
the workload matrix into a sequence of schedule matrices
that can achieve the maximal lifetime; 3) obtaining a
target watching timetable for each sensor based on the
schedule matrices. Simulations have been conducted o
study the complexity of our proaposed methad and to
compare with the performance of a greedy method.

Keywords— Energy cefficiency, lifetime, scheduling,
sensor neiwork, surveiliance svstem.

1. INTRODUCTIONS

A wireless senzor network consists of many low-cost and
low-powered scnsor devices (called scnsor nodes) that
collaborate with each aother to gather, pracess, and

eommunicate information using wireless communications [4).

Applications of sensor networks include military sensing,
traffic  swveillance, environmenl monitoring,  building
structures monitoning, and so on  One important
characteristic of sensor nelworks is the siringenl power
budget of wireless sensor nodes, because those nodes are
usually powered by baltenies und it may not be possible to
techarge or replace the batteries afler they are deployed in
hostile or hazardous environments [15]. The surveillance
nature of sensor networks requizres a long lifetime. Therefore,

it 1$ an important research issue to prolong the lifetime of
sensor networks in surveillance services.

In this paper, we discuss a scheduling problem in sensor
surveitlance networks. Given a set of targers and sensors in
an area, the sensors are used to watch (or monitor) the iarpets,
A sensor can walch rargets thal are within its surveillance
range, and a largel can be inside several sensors’ watching
range. Suppose each sensor has a given energy reserve (in
tenins of the length al lime it can operate correctly) and each
sensor can watch ot most one turget at a time. The problem is
to find a schedule for sensors to watch the targets, such that
all targets should be watched by sensors at anytime and the
lifetime of the surveillance is maximized. The lifetime is the
duration up to the tune when there exists onc target that
cannot be watched by any sensors due to the depletion of
energy of the sensor nodes. By using this schedule, a sensor
can switch oft to save energy when it is not its turn to watch
a target. We assume the positions of targets and sensors are
given and are static. This information can be abtained via a
distribuled monitoring mechanisin [10] or the scanning
method {11].

Extensive reseapch hes been done con extending the
lifetinie; of sensor networks. Authors in [12] studied the upper
bounds o the lifetime of sensor networks used in data
gathering in various scenarios. Both analytical results and
extensive simulations showed that the derived upper bounds
are tight for some scenarios and near-tight (about 935%) for
the rest. The authors further proposed a technique to find the
bounds of lifetime by partitioning the problem into the sub-
problems for which the bounds are cither already known or
gasv to derive. A differentiated surveillance service for
various target areas in sensor nelworks was discussed in [15).
The proposed protocol was based on an cnergv-efficient
sensing coverage protocol Lhil makes full coverage to a
cerlwin geographic arca. It is alse guaranteed to achieve s
certain degree of coverage for fzult tolerance. Simulations
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showed that a much longer network lifetime and a smatl
communication overhead could be achieved.

Another impeortant technique used to prolong the lifelime
of sensor networks is the intradietion of switch on/off modes
for sensor nodes. Hecent works on energy effictency in three
aspects, namely area coverage, request spreading and data
agpregalion, were surveyed in [R]. It pointed out that the hest
method for conserving energy is to urn off as many sensors
as possible, at the same time. however, lhe system must
mairain its functionality. A node scheduling scheme was
developed m [3]. This scheme schedules the nodes (o lurn on
or ofl without afTecting the overull service provided. A node
decides 1o turn off when it discovers thal its neighbors can
help it to momitor its ntonitoring area. The scheduling scheme
works in a localized tashion where nodes make decisions
based on 15 local information. Similar to [3], the work in [ 9}
defined a criterion for sensor nodes to turn themselves off in
arveillance systems. A node can tum itself off if its
momitering area is the smallest among all its neighbors and
its neighbors will bocome responsible for that area. This
process continies until the surveillance area of a node is
smaller than a given threshold. A deplovment of a wireless
sensor network 1n the real world for habitat monitering was
discussed in {13]. A network consisting of 32 nodes was
deploved on a small island t©0 monitor the hubiat
environment. Several energy conservation methods were
adeptad, including the use of sleep mode, energy etticient
comumunication protocols, and heterogeneous transmission
power for different types of nodes.

‘The rest of the paper 1s orgamzed as follows. Section 2 is
the prohlem definition, Section 3 presents our solution that
consists of three parts. Section 3.1 gves a linear
programnming formrulalion that is used 1o compuwe the
maximal hfetime of the surveillance system. In section 3.2,
we show that the maximal lifetime is achievable, and detailed
atgorithms for finding the schedule are presented. Section 3.3
discusses the final schedule timetable tor sensors. Section 4
presciils a numeric example solved by using our method and
simulation results. We conclude our work in section 3.

2. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a sel of targets and a set of sensors thal are
used to watch targets and collect information. We HArst
introduce the following notations:

& = the set of sensors.

¥ = the set of targets.

#=|%; the number of sensors. ;
m=|7] the mumber of targets. Gl

Sy = th(, set of scnsers that are able to watch tarng A
J=ln

Tin = t]Je set of targets thal arc within the surveillance range
of sensor i, i=1,,.., n

= inttial energy reserve of sensor i, i~1,...,n

Netice (hat S¢7) may overlap with $(/) for i, and T{f}
may overlap with Tt for i£5. There are two requirements far
sengors walching targets:
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17 Each sensor can watch at niost one target at a time.
2} Each targel should be watched by ong sensor af anviime.
The probiem of our concern is, for given S and 7., to find
a schedule that meets the above two requirements for sensors
waltching targets, such that the jifetime of surveillance is
maximized. The lifeume of surveillance is defined as the
length of time vntil there exists a tarper j such that all sensors
in N7 man ont their energy.

3. Our SOLTTTIONS

We tackle the problem in three sieps. Firsl, we compule
the upper bound on the maximal lifetime of the system and a
workload mauix of sensors. Second, we successtully
decompose the workload matnx mnto a sequence of schedule
mairices. Finally, we obtain a target watching umetable for
each sensor.

3.4 Find Maximal Lifetine

We use linear programming (LP) technique to find the
maximumn lifctime of the systen. Lel 7. denote the liletime of
the surveillance system, and x; be the variable denotng the
towl time sensor / watching target f, where ie8, j=!. The
problem o finding the maximum lifetime (or sensors
watehing largets can he formulaiced a3 the following:
Ohbjective: Max 1.

st ny =f ¥eT, {1
WwE )
> wy SMin{l i} Vies, (2)
JeTin

Liquation (1) specities that for each target y in 7, the total
time that sensors watch i is equal to Lhe lifetime of the
system. That is, each targel should be walched throughout the
lifetime.

Inequality (23 implies that for each sensor ¢ in S, the total
working timne neither exceeds the lifetime of the svsiem, nor
exceeds its batterv’s lifetime.

The above fermulation is a tvpical LP formulation, where
¥y, 157 and 1</<m, are real numher variables and the
objective is o maxintize L. The optimal results of x; and L
can be computed in pelynomial time.

However, £, obtained fTom computing the above LI
formation, 15 the upper bound on the lifetime, and each x,
specifies only the total time that sensor ¢ should watch target
J in order to achieve this upper bound L. Now we have two
questions:

1) Is this upper bound of lifelime 7. achievable? Tf yes, then
2) How to schedule sensors 1o watch targets, such that cach
value of x4, 1557 and 1 5/<m, cun be actually met?

In answering question 2), we need to find a schedule for
each sensor thutl specifies from what time up to what time
that this sensor should wateh which targst,

The values of x;. 15w and 157<n, obtained from the LP,
can be represented as a matrix;
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We call matrix X,,.,, workload matrix, for it specifics the total
length of ume that a sensor should watch a targel. There are
two important fealures abont this workload matrix:
1) the sum of all clements in cach column is vqual to L {from
e (1Y the LP formulaton).
2) the sum of all elemenits in each row ig less than or equal to
I (from iney. {2} in the L formulation).
In the next step, we need w And the detailed schedule for
sensors Lo watch largets based on the workload matrix.

3.2 Decompose Werkload Maivix

The lifetime of the surveillanee system can be divided
inlo of a sequence of sessions. Tn each session, a sel of
sensors arc scheduled o watch their corresponding Largets;
and in the next session, another sct of sensors are scheduled
to work (sume sensors may work continuously for multiple
sessions). Suppose a sensor will not switch to watch another
target within a session. Thus, the schedule of sensors dwiing a
session can be representod as a metnx. In this matnx, there 1s
only one positive mumber in each colwnn, representing each
target should be watched by one sensor at a time; and at most
one positive number in each row, representing each sensor
can watch at most one target at 2 time and there is no
swiiching to watch other targets in a session. urithermore, all
the non-zero elements in this matrix have the same value,
which is the time duration of this session. Now, our task
bueomes to decompose the workload mauix into a sequenco
of session schedule malrices, represented as:

KILH) 3 oS 0:10-..0 2300.‘.0 000...;,
Xy Xy ¥z =[£00..0| 0002y | 000..0 |
i b [0650] [650.0]  [650.0

where z, i=1,2,....f, is the length of time of session j, und
the total number of sessions, We call this sequence of session
schedule murices the schedule matrices. Considering the
schedule matrix of session 4, all elements in it are gither *0"
or z,, each column has exactly one non-zero element, and
gach rowr has af most one non-zero element (it could be all
“07, indicating the sensor is idle in this session}.

The next, we discuss how to decompose the workload
matrix ime a sequence of schedule matrices. We first
consider a simple special case of #=m, ie., the number of
targets 15 equal to the number of sensors in the system, Then,
we extend the result to the general case of n>m.

321 A Speeial Case n=m

We consider the case n=m. Let R, and C; denote the sum
of row 7 and the sum of column Jf in the workload matrix,
respectively. According to eq. (1) and ineq. (2) of the LP
formation, we have:

=l =12, m &3]

Ri=l,i=1.2.....m )]
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n m
Furthermore, since ZR,- = ZC}- = mxL and r=m, we

i-1 =

have:
]
Z R, =nx1i,. (3)
=1
Combining (4} and (3), we have:
=L =12 n (D]

{3) and (6) imply that for the workload matrix the sum of
cach column is the same as the sume of cach row, all equal to
i.

We divide the workload matrix .Y, by L and denaote the
new matrix by ¥, That is, v, = x4L, for 7j=1,2,..n. For
matrix ¥, .. we have:

2] "
vp20adY y, =Yy, =1, forij =120 (T)
i=1 j=1

From {7, we know mattix ¥,., is a Doubly Stochastic
Mapix 1. 2].

Theorem 1. Mutrix F,,., can be decomposed us:

Fpp=aP tedPyt v el &)
where each P, 1</<y, is a permutation matrix' |, and ¢, ¢1,...,
¢, are posttive real numbers and: ¢4+ o=,
‘(Permutation matrix is a square matrix that has onfy “0” and
“1°* elements, and each row and each column has exactly one
“1" element.)

Proof [t is praved by following the Theerem 5.4 in [1].
a

Thearem 2. the number of permutaton matrices

decomposed in (8) is bounded by #<(n- 1+1.

Proof. The proof can be done by following (he Theorem 3 in

[14]. 5

Therefore, when m=m, workload matrix X,., can be
decomposed into a sequence of schedula matrices:

Xywm=Lx ¥, =l Pte; LR P +c, L P, {9

Furthermore, the total number of sessions decornposed is
bounded. Therefore, the optimal lifetime L 13 achievable in
the case of r=m. We will give an efficient decompasilion
algorithm in section 3.2.3.

3.2.2 General Case n>m
When #=m, matrix X, 15 no longer a square matrix. The

idea ot our method is to “H11” matrix X,,-,, with some dummy

columns to make it o doubly stochastic matrix of order #.

Let Zypuem be the dummy matrix, which has (#—m)
columns. By appending the columns of the dummy matrix to
the right hand side of X, the resulting matrix, denoted by
1, < 18 10 the form as;

SR P RSP
W =|*21%2z¥m

181z pem
ZnZz-Zapom

"'xnm znlzrtZ"'znn—mjn,\,,

To make matrix W,., having the feature of (3) and (6),
i.e., the sum of each column is egual te he sum of cach row,
the dummy matrix Z,.1.m should sansfy the lollowing
conditions:
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1y R, tzzy. —L-R, for ¥i=12,__n. (10
=
) H
nC =Zz,.}. =L, for ¥/=12, . ..n—m. {11

=1

We propose # simple algorithm (o compute (the dunmy
maix Z,.q, .. The algorithm starts to assign values to the
elememnts of 7. p.m from ils top-lelt corner. Tel & and C_,-
record the sum of the remaining undetermined elemenls of
row i and column j, respectively, for /=12 s and
J=12, n—m Imitally, R —({-R;} and (7, <L where R,
and L are computed from matrix \\}.., The strategy of the
algorithin is to assign the remaining swi of the row (or
column), as much as possible, to an element without
violating conditions (10) and (11), and assign the rest
elenents of the row (or column) to . Then, we move down
to the next indetermined element from the top-left of the

matrix. For example, we start with 2. Now R is (I-K))
and (7] is L, i.e., By <7 . Thus, we can assign R 1oz,
und assign O to the rest of clements of row 1 {so condition
(10) is met) Then, COf should be updated to { C) —z1:),
because the remaining sum of column | now bccomes
{7 —z;) and this value is used to ensure that condition (113
will be met dunng the process. Suppose we now come W
element 2, (ie, eclements of z; for &=l...J-1 and
I=1,... j-1, are already determined so far). We compare R,

with C, . There are three cases:
Iy €7 > R it means z,; can use up the remaining valuc the

sun of row f, ie, Ry . Thus, zp— R and the rest
clements of this row should be assigned to 0. So, all
elements of row 7 have boeen assigned and conditon (10)
is met for row i.

2R =C 7 it 1neans 2, cun usc up the remaining value the

sum of column j, ie, €7 Thus, z,— and the rest

elements of this column should be assipned to O, ie.,
0, k=2.3,... n. By doing so, all elements of column f

have been assigned and condition (11) is met for ¢column f,

3R =C 1 we can detenmine elements in both row / and

column f by z,p— 2 und settng (he rest elements inrow
and in column f to O. Tt is easy to see that condinen (10)
is met for row i and condition (11) is met for column j.
After determining each row (or columnj, we need to
update C; {or K, ), before moving lo the next row (or

column), Each step, we can detertuine the elements in one
row (or column). This process is repeated until all elernents
in Z,.qm are determined. The details of the algorithm are
given below,
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FillMatrix Algorithm
Input workload matrix \,. .
Output: duminy matrix Z, . ;.m.
Begin
RI=L-R.fori=1tom
Cr=L, forj=110n-m;
i=1; =1,
while (/=) && (j<n—8) do
irC; >R, then
fdelermine elemends in row i,
7= R,

z2p =0, for k= j+1 to -,
# sel the rest of row i to 0.
C; = (.J- -z

f=it1:

A
else if ZZ,'I =&y = C.]_ = C‘! b C;
i=]
f#determine elements in column /.

B 50 5!

g i
=0, fork=tl tom;
#f set the rest of columnf to 0.
R =R -z
Frl
else
/fdetermine elements in both row i and feohunn

22 =0, for k = j+1 to n-nr:
zz=0,fork =i+l tom
=it Sl

endwhile

End

Thevrem 3. For a given workload matrix X, FillAMamix

Algorithm can compute Z,. .y, such that e square malrix

(e Do tnml /T 1s 2 doubly stochastic matrix of order &

Pruof. At the beginming of the FillMamdx Algorithn, tow

sums and column sums of the dummy matrix are irgtinlized,

and then the dwmmy matrx is worked out step by step to
satisfy conditions (10 and {11}, So we can prove a general
case: given row sums R, and cohunn sums € of a matrix

Zom 1,2, 0, =12, m, the proposed algerithm can

compute all elements z; that satistv conditions (10} and {11}

We use the induction method to prove the theorem.

1) When r=1, wm=1. according to the }i/lMarrix algorithm,
sinee & =Ry, we have = Ry = () =R =C|. The
conditions {10} and (11} are both met.

2y We assume when nip-1, mSg-1, lhe proposed algonihm
can compute Z,,.,,, such that the conditions {10% and (1)
are hoth met.
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3) When #=p, m=q, according the alporithm, we first
compare C; with [y, there are three cases.

a) If O =R, ,thenset 2, =R, |, 2,70, k=2.3,... m and 2y =0,
k=2,3,...,n. For the row 1 and column 1 where z, have

L
been determined, we have Zzl =z =R =R and
7=1
L .
Zzﬂ =z, =0, =C,. So the conditions (10) and (11)
=1
are both met i row | oand colunn 1. The remaining
umdetermined elements z,, i=2,3,...,n, /=2,3....m, are 10
the mairix Zy. .51 According to assumption 2), the
remaining Matrix £iy.1y.q,.1; can be correctly worked out,
If €7 =K, den set ;= B, 2,470, k=23, ,m und

€y =Cy - Ry . For the row 1 where z; have been

b;

L]
deiermined, we have Zz«___,- =z;; =R =R, , condilicn
J=t
(10} is met. ¥or the column 1 which is updated, we have
O o= C,, it does not violate condition (11). The
remsining  undetermined  elements  zy, =23, .,
L2353 m, are in the matrix Zp,y).,. We continue run
the algorithm to compute the remaining elements in 2.
13- (1t satisties the conditions (10) and (11). Note that

7 monotonously decreases after each round of

assigmment and ZR!— _Z('T > (7 . There musl exist
=2 =1

R 2 Cf

=142, o and Ry =Ry — 7. Then the remaining

matrix is Zppie gy According 1o assumption 2), the
remaining matrix Zi,. 5 1) €0 be corvectly worked out.

in round ! owe set zp;= O, zy=0,

¢} If B>y | similar to b), we can prove this case.
o

et

The proot of cases m=p, m=~¢g-1 and n=p-1, m=g we
sitnilar to 3).

Combining 1}, 23, 3) with 4), the proposed alporithm can
correctly compute all elements in the matrix Z,,.,,, such that
the conditions (10) and (11} are both met.

Theorem 3 is proved. . O
Theorem 4. The time complexity of the FiliMarrix
Algorithm 15 Q0.

Proof. It is not difficult to see that the time complexity of the
proposed algorithin is 4. Theorem proved. C

Given a workload matrix .X,., using the proposed
algorithm, we can fill the matrix to make 1t a square matrix
W,., and W, salisfics conditions (3) and (6). According (o
the theorems discussed in section 3.2.1, W, can be
docomposed as (%Y

W, = el x Pytedow Pt e X Py

W simply denote ¢yf. as ¢, #=1.2,..._f, becausy they are
constants anyway. Thus,
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W= X Piteg X Pot. +ep 2 Iy {12y

Let 7 denote the matrix which contains the first m
columns in P; (i.e., the information for the s valid targets by
dropping the s~ dummy columns), i=1,2,... 1. We have

X 2P ey x Pyt e, %P, . (13)
Since P, is a permutation matrix and P, contains the first m
columns of P, there is exactly one positive number in each
column and at most one pesitive number in each row in P, .
Thal is, the maltces ¢, x B =12, 1. arc the schedule

1
mairices. In session 7, sensors are scheduled to waleh their
respeclive largets according to the position of “1” clemenls in
P,' for the period of ¢; time. By following this schedule, the

optimal lifetme I of the surveillance system can be achieved.

The above discussions conclude that a werkload matrix is
decomposable t¢ a sequence of schedule matrices such that
the optimal lifetime can be achieved. In the next section, we
propose an efficient algorithim that decomposes the workload
matrix.

3.2.3. Algoritham for Decomposing Warkload Marix

In this section, we study the details of decomposing
workload matrix. The basic idea of the algonthm is to
represent the filled workload matrix as a bipartite graph
where ope side are sensors and the other are largets, and thus
the problem of decomposing the filled workload matrix is
transformed into the problem of finding perfect matchings m
a bipartite graph.

Notice that the workload matrix i1s already filled with
dummy columns as discussed n scetion 3.2.2. The biparlite
graph consists of twa set of nodes S=(s,, 5. ..., 5,0 and T={¢,,
13, ... L), h=m, represenling sensors and targets respectively.
I'or each non-zero element x,; in the workload matrix, there is
an edge from s, to #, and the weight of the sdge is v; The
decomposing process ts as {ollows. We compute a perfect
matching in the bipartite graph, which has exactly n cdges.
Let ¢; be the smallest weight of the » edges. Deduct ¢; from
the weight of the # edges in the perfect matching and remove
the edge whose weight becomes zero. This operation is
repeated until there is no perfect matching can be fowd in
the bipartite graph.

Notice that each perfect matching corresponds o a
decomposed schedule mairix P, in (12), where all elements of
this matrix is cither 0 or ¢; (the weight found in round /) and
there is only one non-zero clements in cach colunn and each
row. By removing the {r~m) dummy columns i £, it
becomes a vald schedule matrix.

Becauss we try to decompose the matrix by using the
techmque of finding perfect matchings, the questions we
have now are:

13 Does iU gouarantee that there exists o perfeet matching in
every rowrd of the decomposition process?

2) Can this perfect matching method exactfy decompose the
waorkload matrix? That 1s, is it possible that the last round
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of the pertect malchmng will exactly remove ull the

remaining edges m the bipartite graph?

Theorem: 5 and theorem 6 (will appear later) give answers
to the above questions, respectively.

Theorem 5. For any sguare matrix 47 of nonnegatve real
numbers, it all row sums and column sums are same, there
exisls 4 perlect malching on lhe comesponding bipartite
graph.

Proof. Tet L be the sum of all elements in B matrix, and A
denote matrix A=1/Lx F. IL is obvicus to see thal A is a
doubly stochastic mawix, We prove the theorem by
contradictory.

If there does not exist perfect matching in the
comesponding bipartite graph of /. there doas not exist »
positive entries with no two of the positive entries on a line
(tolumn o row) in.4. According v the Kinig theorem [6, 7).
we could cover all of the posiuve entries in the nlawix with ¢
rows and fcolumns, such that ¢ + < #. But, since all of the
line sums of A equal to 1. it follows 1 < e + f < n. This
contradicts to the assumption.

Theorem 5 is proved. d

Since 1n each round 7. we deduet ¢, from the weight of the
» edges im the perfeel matching, il is equat 1o deduct schedule
ntatrix ¢, from the workload matris. Thal is, the row sumns
still equal the column suras in the workload matrix after this
deduction, According to theorem 5, we can guarantee that
there exists a perfect matching i every round of the
decompositon process.

The next, we propose a simple recursive algorithm for
finding a perfect matcling in a bipartite graph. Let Af denote
a set of edges of a perfect matching. We use (s, ) to denote
an edge trom S to T and (2, 5,) denote an edge from T to S.
There is no direction ol edges in the graph, but this notation
helps o desenbe (he algorithim. The algorithm stars (rom
any cdge o the graph. Each Lime, it tres o find an Adepath
(called sugment matching path). An Af-patk is a path in the
bipartite graph. 1t starts with an .§ node that is not in Af and
end with a 7 node that is also not in 44, and anv edge in the
M-path from ¥ to T should not be in A and anv edge from T
to S should be in A4, We can see that there are always one
mere non M-edges than the M-edges in an Af-path (an M-
edge is an edge in A). Thus, by replacing M-edges in the M-
path by the non M-edges, the number of edges in Af is
incremented by [ We keep on finding this Af-path and

tnereasing the size of A, nntil a perfect matching i1s fourtd, -

For clarity of notation, in the algorithm, “s;edf” simply
meHns ¥, 15 an ¢nd-node of an edge in A and “s,¢Af"" means s,
is not an end-nede of an edge in M. The detailed algorithm is
given as follows.
PerfcctMatching Algorithm
Input: a bipartite graph G=(8 UT, B,
Quiput: a perfect matching M.
Begin
Pick any edge from ' and add to 3,
while there exists a 5;€5 bul 5;&M do
/i pick up an unmatched node
M-path= &,
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if Firel-M-path(s;) then // an Af-paih is tound
Remove M-edges m M-path from M and add in
non M-edges 0.\,
endwhile
Output the pertect matching Af:
End
Trird-Af-paih(s,) {
ffrecursive procedure Lo find an M-paih
for Lelis) and (s, ) gA! do
# 1y a non M-edge from Sto 1
AM-path = M-path + (s, 1),
i grow M-path [rom Sto T
if ;27! then
return true; // an Af-path 1s found
clse
for seeS{r) and (4, s M do
# try an Me-edge from Tto §
M-path = M-puih + (t;, ),
/! grow Ad-path tom T lo §
if Find-Ad-parhis,) then
/t recursive call (o tind a M-path
return true; / an M-parh is foomd
endfor
return false;
endfor
return false;
i
Integrating topether with FillMairix  Algorithm  and
PerfectMorching Algorilhm, we have the algorithm of
decomposing the workload matnix as follows.
DecomposeMatrix Algorithm
Input; the workloud malrix Y. .
Output: a sequence of schedule matrices.
Begin
if n>»1 then
Run FillMfamix Algorithm to obtain a square
matrix #,.,=X .
Construct & bipartite graph (7 from ;...
while Lhere exists cdges in G do
Run Perfectdfaiching Algorithm on G to find a
perlect malching M,
Record ¢, Py, # ¢ simallest weight mAf and
/t P,: permutation matrix of A/
Deduet ¢, from the weight of edges in A and
remove cdges with weight 0,
endwhile
O‘L“l:lllt W= CLP] + et ol
End
The following theorem clamms the correctness of the
Decomposedfatrix Algorithmn.
Theorem 6 The workload malrix can be  exaclly
decomposed inlo a sequence of schedule matrix by the
DecomposeMatrix algorithm in O(|E[xn*) lime, where )| is
the total nunber of non-sero elements in the filled workload
TNHUIN.
Proof. Each time when a perfect matching is found,
supposing the corresponding schedule mattix s ¢, x Py, the
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workload matlrix 1s sublracted by ¢ % P, The remaining
malrix still salisfies the conditions Lhat its Tow sum is ¢qual
te its column sun. According to theorem 5, a perfect
matching can still be found i the graph for the remainng
matrix. Therefore, the workload matrix can be decomposed
step by step, until finelly there 15 a petfect matching that
makes elemems i the remaiing matrix all “0”, after the
schedule matrix of the matching is subtracted from the
remaining workload matnx. The workload matrix is thus,
exactly decomposed by the aigorithm.

Furthermore, since each tme of finding a perfect
matching, at least one edge in the bipartite graph is removed.
‘Therefore, it takes at most [fr] number of runs of the pertect
malching algonithm, where |£| is the total number of non-zero
clements jn the filled workload matrix. Since we use depth-
first search in the PesfectMatching Algorithim, according 1o
[5. 6], it takes O(»") to find a perfect matching in each round.
Therefore, it totally costs G{E]xr’} time to find all schedule
malrices.

Theorem 6 ix proved, u

3.3, Obiain Schedule Timelable

We have obtoined a sequence of schedule mattees by
decomposing the workload matrix. Fach schedule natrix
specifies sensors watching targets for the same period of time
{called a scssion). In fact, there is no need for all sensors to
start walching their corresponding targets at the same time,
and switch synchronously to other targets (or switch ofT) at
the end of a session Each senscr’s schedule can be
independent from the others. That is, sensors can switch
or/off and switch 10 watch other targets asynchronously from
each other. To come up with the targetr-waiching timetable
tor sensor /i, we simply take the i-th row of all the schedule
matrices, and combine the time of the consecutive sessions
that it watches the same target {(in this case there is no need
for scnaor 7 to swilch). Finally, we have an independent
rimetable for each sensor.

Smce global clock synchronization is acluevable in sensor
networks by using some localized method (161 or time
synchronization scheme | 17], sensors can cooperate correctly
according to the timetable to achieve the maximal network
lifetime,

4, EXPERIMENTS AND SIMULATIONS

4.1 A Nvmeric Example

We randomiy place € sensors {in clear color in Fig, 2) and
3 targets (in grey in Fig. 1) in 2 50x350 two-dimensional
free-space region. For simplicity, the surveillance range of alt
sensors is set to 20 (our solution can work for any system
with non-uniform surveillance tanpe). Fig. 1 shows the
surveillance relationship between sensors and targets, with an
edge between a sensor and a target if and only if the target is
within the survetllanee range of the sensor. The initial energy
reserves of sensors, in terms of hours, are random numbur
penerated in the range of [0, 50] with the mean at 25, oy
shown in Tab. 1.

2488

s
.8} ‘
e,
(1% /
0
/ .
}J
ft?‘ !
(N !
7 :

™
(
- /‘_

©

Fig. 1. An example system with 6 sensors aud 3 targets.
Tab. 1. The initial energy of 6 sensors (hr.).

Sensors 1 2 3

E, 156526 342627 248717
Sensors 4 5 G

E; 21.7847 466865 34.531D

We follow the three steps in our method to tind the
timelables for he sensors,

Firsd, we use the linear programming, deseribed in section
3.1, to computc the maximum lifetime f. and the workload
matrix that achieves L:

L=405643tr,
15.6926 0 0
0 10.2454 18.7199
Yo o| 248717 0 0
S 017.9125 0
0 12.4064 21 8444
0 0 0

In the workload matrix, we can see target 1 is only
watched by sensors 1 and 3 for 15.6926 hr., 248717 hr,
respectively, The total time for target 1 to be watched is
40,5643 hr., which is the lifetime of the surveillance system.

Second, we run the FillMatrix Algorithm, proposed in
section 3.2.2. to append a dummy matrix to the workload
matrix to make it a square matrix Fg.,;. where the sum of
each column and the sum of each row are all equal to L:

Wee =

13.6926 0 0 248MNM7 0 4
0 10.2454 18,7199 11.5000 0 0]

248717 0 0 4.093¢11.59%0 0.
01791235 0 0 226518 0

i 0 12.4064 21.8444 0 63135 G
0 0 0 0 G 40,5643

Then we run the DecomposeMatrix Algonthm, proposed
in section 3.2.3, ta decompose Wy, into a sequence of
schedule matrices ¢ X P, ¢; % #,, ., and o5 X% (i.e, the
decomposition terminates at round 3), such that

W= e ) T eaPy+. - esPs.

By removing lhe dummy columns ol the schedule

malrives, we have:
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30936 D 0 0 0 0] 11.5990 0 0
0 4.0936 0 061518 0 t O o
Vo= 0 o (|61 518 0 . + ) 0 {
hAa ) 0 ] 0 1] 0 111.5990 4]
4] 0 40936 0 0 6.1518 0 011.599
4 0 0 ] 4] 4] 0 ¢ 0
f O 0 0 0 0 Finally, we oblain target watch timctables for sensors
] 063135 0 012.406¢ based on The above schedule malix, The Gmetable for the 6
4|6 3133 0 0], 124004 0 0 scnsaors is shown in Tab. 2,
0 6.3135 DN 0 0] 0
{ ) 0 012.4064 0
0 0 g 0 0 0
Tab. 2. The schedule limetable [or 6 sensors
Sensors Watching Duty (lime duration and waiching tarpels)
1 O-4.0936 4.0936~28.9633 28.8953~40,5643
Tarpet 1 | Turn off Target
2 0-10.2454 10.2454~28.9053 28.8053~40.5043
Target 2 Target 3 Turn off
1 (-4 05936 4.01936~28 3633 28 895340 5643
) Tum off Target 1 Tum off
0~10.2434 10.2454~16.5589 16.53385-28 89513 28 8953~40) 5543
: Turn off Target 2 Tum off Target 2
5 0~10.2454 10.2454~16.5589 16.5589--28. 8953 28.8953-40.5643
Target 3 Turn off Target 2 Target 3
6 0~-40.5643
Turn off

It is easy to see that the timetable in Tab. 2 satisfies the
surveillance conditions that each sensor can watch at most
one target at a tune and each target 1s watched by a sensar at
auvtime.

4 2 Simulations

We conduct some simutlations to study the complexity of
our preposed solution and compare its performance with a
greedyv method.

The simulations are condueted in a 5050 two-dimensional
free-space region. Sensors and targets are randomly
distributed inside the region. Again, the surveillance range of
all sensors is set 20 {excepl the sinulations for Fig. 3(a)).
The initial energy reserves of sensors are the random
numbers in the range of {0, 50], with the mean value of 23
hours. The results presented in the [gures are the means of
1{M} separate runs.

A Grewth of decompaosition steps is linear

According to Theorem 2, we know the number of steps [or
decomposing the workload matrix, dencted by ¢, is bounded
by 1<(m-132+1. In the simulations, we tound that 7 is linear to
the size of svstem.

Fig. 2{ay and Fig. 2(b) show the increase of 7 versus the
change of N (humber of sensors) and A4 (number of targets),
respectively. when one of the two variables is fived. From the
figures, we can sce a stronp lincar relatiomship between ¢ and
N (or AN, This result tells us that the actual number of steps
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for decomposing the matrix is linear to the size of svstem in
real runs.

i
330 — : \

Then number of decomposing
steps {t)

70 80 90 100

The number of sensors (N}

Fig. 2(a). t versus N when Af=10.
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Fig. 2{b). r versus M when N=100.

B. Comparison with a greedy method

A preedy  algorithm  is proposed to compare the
performance with our optimal selution. The basic idea of the
greed method is to allocate sensors to largets in such 4 way
that each sensor is allocated to watch one target in its litetime
and the total working time of the sensors allocated to targets
are balanced as much as possible. I first assigns the sensors
that have only one target in their surveillance range to their
respective targets. Then, the remaining sensors arc assigned
o the targets such that the total time for targets being
watched is as balanced as possible among all targets.

We set =100 and M=10. Fig. 3(a} shows the lifetime
versus the change of surveillance range of sensors. From Fig.
MYa), we can see lhal when the surveillance range is small,
lwo wurves are verv close. This is because with a small
surveillance range, scnsors usually have got only one target
within its range. There is hardly any room that our
optimization method can take advantapes. As the surveillunce
range becames larger, more sensors are able to cover
multiple targets, which gives our method more room 1o
schedule the sensors properly to achicve (he maximum
lifetime. That is why the pertormance pap between the two
methods becomes more significant as the increase of the
surveillance ranges.

FFig. 3(b) shows the lifefime versus the munber of sensors
placed in the same region. This simulation shows how the
lifetime is affected by the density of sensors. Fig. 3(h}
exhibils lhe similar trend as in Fig. 3(a). As more sensors
deploved in the same region, the density becomes higher. A
target can be watched by more scnsors and there is a4 higher
chance for a largel Lo be in the watching range of muitiple
sensors. Thus, owr optimal algorithm can take more
advantages by optimizing the schedule and the performance
hecomes more signifivant than the greedy method in this kind
of situations.

From Fig. 3(a) and Fig. 3(b), we can conclude that our
optimal algorithm has significantly hetter performance in the
situation where sensars have larger coverage TANEE OF SCTSEs
are densely deployed.
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Fig. 3(a). Lifetime versus surveillance range.
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100
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Tha lifetime of surveillance
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The number of sensors (N)

Fig. 3(b). Lilclime versus & when M=10.

5. CONCLUSIONS

This paper addressed the maximal lifetime scheduling
problcm in sensor surveillunce networks.

Our solution consisls of three seps: [) compuie the
maximum lifetime of the system and lhe workload matrix by
using linear programming method; 2) decomposc the
workload malrix into a sequence of schedule matrices by
using perfect matching methed. This decomposition ¢an
preserve the maximum lifctime; 3) oblain target watching
timeiable for sensors. [t is not difficult to see that our solution
is the optimum In the sense that it can find the schedules for
semsors watching targets that achieve the maximum lifetime.
Simulations have been conducted to show that the steps of
decomposition is linear to the size of system and our method
can take morc advantuges o the situation that senses are
densely deploved or sensors have larger coverage ranges.
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