
MAXIMAL NORMAL FUCHSIAN GROUPS

BY

1. Let .C denote the group of all conformal homeomorphisms of D, the
unit disc. The elements of .C are linear fractional transformations and so 2 is
a topological group. We define a Fuchsian group F as a finitely-generated
discrete subgroup of 2. Then F has a presentation of the following form.

Generators: al, bl, ...,a,b,x, ...,xr,pl, "-’,pa,h, ..-,hi
Relations: x x 1, (1)

We say F has signature (,; ml, ..., mr s; t) and any two groups of the
same signature are isomorphic.

If qr D D/r denotes the orbit-map, then qr(D) can be made into a
Riemann surface with an associated ramification index dr qr (D) N where
N denotes the natural numbers [2, p. 4]. r (D) is obtained from a compact
Riemann surface of genus , by deleting s points and discs. The x, in the
presentation (1), correspond to elliptic elements of r and to those points q of
r(D) such that dr(q) > 1, the p to parabolic and the a, b, hj to hyperbolic.
The ms are called the periods of F.

Following Greenberg [1], F is defined to be a maximal Fuchsian group if there
does not exist a Fuchsian group F0 such that r c 1% and [r0: r] is finite. We
also define F to be a maximal normal Fuchsian group if there does not exist a
Fuchsian group r0 such that r is normal in r0 and Ire:r] is finite.

If I’ is a Fuchsian group with generators , /., , ,,, a topology is de-
fined on the set of all isomorphisms r:F 2 by associating with r the point
(r(/), r(), ..., r()) of 2". On this space, define the equivalence re-
lation r r’ if there exists an angle-preserving homeomorphism of D such
that

-’ (f) t-lr (f)t for all f e r.

This quotient space is denoted by T (1"). Let Max (r) and Max Normal (r)
be the subspaces corresponding to those (r) which are maximal and maximal
normal respectively. Note that Max (1") Max Normal (r). Greenberg
[1] has shown that Max (I’) is either empty or a dense subset of T (I’).
In this paper, we obtain necessary and sufficient criteria on the signature of

r such that Max Normal (1") T (r). This is tantamount to obtaining
criteria on the signature of r such that for at least one [r]e T (r), (r) is a
normal subgroup of finite index in some Fuchsian group r0.
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2. The elements of may be considered as acting on the extended plane.
Let L (F) denote the set of limit points in the extended plane of a Fuchsian
group I’. If P is of finite index in F0, then L (r) L (I’0). Also, for any
Fuchsian group F, L (1) is a subset of C {z z 1} of one of three types.

(a)
(b)
(c)

L (F) has at most two points.
L(r) C.
L (r) is a perfect subset of C [4, Ch 3].

We consider the three types separately. In case (a), Greenberg shows that
Max (r) is empty [1, Theorem 3A] and one can easily check that Max Normal
(r) is also empty.
Groups of type (b) are called Fuchsian groups of the first kind and we call

groups of type (c) of the second kind although this term usually includes the
groups of type (a). If Fr denotes a Fundamental region for r in D, (Fr)
the hyperbolic area of Fr, and 1 is of the first kind then, in the presentation
(1), 0 and

(Fr) 2r{2(, 1) + ’--1 (1 l/m,) + s} > 0 (2)

If I’ is of the second kind then > 0 and the area of its fundamental region is
infinite. However, if a signature (,; ml, ..., my s; t) is given such that the
inequality

2(- 1) + .. (1 l/m,) + s + > 0 (3)

holds, then a Fuchsian group with that signature exists always provided, of
course, that the presentation is consistent [4, Ch 7] and [2].

3. The presentation (1) of a Fuchsian group is obtained from a Funda-
mental region for the group, the generators being those elements which map
Fr into a full neighbour and the relations being obtained from the copies of
Fr which meet at a vertex, it being sufficient to consider one vertex out of a
congruent set, [5], [4, Ch 7]. Thus x, x is a complete system of elliptic
representatives (c.s.e.r.) by which we mean a set of elliptic elements such that

(i) every elliptic element of r is conjugate in I’ to some power of an
x, (1 <_i_r),

(ii) non-trivial power of x, is conjugate in 1 to a power of xj (i j) [6,
p. 46].

In the same way p, p., ..., p, is a complete system of parabolic representa-
tives (c.s.p.r.).
The h, h must be treated differently as, for example, the hyperbolic

element al is not conjugate to a power of an h. Let 2 denote the component
of the set of proper discontinuity of F containing D, as defined in [2, p. 4].

DEFINITION 1. h r is said to be an admitted hyperbolic element of if
h( 1 maps some component of n C into itself.
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LEMYIA 1. If r has the presentation at (1), then every admitted hyperbolic
element of F is conjugate to a power of some hi (1 <_ i <_ ).

Proof. The action of F splits the set of components of 2 n C into distinct
equivalence classes, corresponding to the number of holes in qr (D) and th
number of generators hi, h, h. If Fr is a canonical polygon for F with
surface symbol [4, Ch 7]

where fl, f, f denote ’sides’ of the polygon which lie on C, which gives
rise to the presentation (1), then hi is the hyperbolic generator which maps
over the side ci. Let E denote the equivaleace class contaiaing the com-
ponent i containing the ’side’ fi (i 1, 2, t). Let h be an dmitted
hyperbolic element and let ha o where a is a component of E. So
and hto . Thus -h$ (f) e a. Since no point of a. is a limit point,
there are a finite number of copies of Fr, abutting on a, say Fr u0 (Fr),
u (Fr), u (Fr) t-ht (Fr) such that ui (Fr) is full neighbour of

u+ (Fr). Now u h and similarly ui+l h u. Thus t-ht
and h h-.
Thus h, h, ..., h is a complete set of admitted hyperbolic representatives

(c.s..h.r.).
Thus the signature of a Fuchsian group is dependent upon its systems of el-

liptic, parabolic ad admitted hyperbolic represeatatives, aad we aow obtain
results in this direction for normal subgroups of finite iadex ia givea group.
First note the following result which follows by considertioa of fixed points
[6, p 16].

LEMMA 2. If l? has presentation (1) and a is an elliptic, parabolic or admitted
hyperbolic generator, then tart-1 a implies that r s (rood o(a) and is a

power of a.

In [3] Knopp and Newman prove

THEOaE 1. Let F be normal in I’0 and offinite index , and pl p
be a c.s.p.r, for r0. Suppose that pi is of exponent ri modulo l?, 1 <_ i ’<_ s.

Then a c.s.p.r, for F contains

_
1/ri members.

The proof only uses the fact that p, p, ..., p, is a complete system of
representative for the class of parabolic elements and Lemma 2. It can thus
immediately be applied to c.s.a.h.r, in F0 to obtain the number ofelements
in a c.s.a.h.r, for F. In the case of elliptic elements, we must entertain the
possibility that the exponent r of x modulo 1 is, in fact, equal to the order of

xi. In this case, x 1 and so, corresponding to xi, there are no elliptic
representatives in F. Thus the number of elements in a c.s.e.r, for I would be
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-=l.o(x)l/rr These elliptic representatives are conjugates of x"whlch"
have order o(x)/r. Thus

COROLLARY 1. Theorem 1 is true with parabolic replaced by admitted hyper-
bolic.

COROLLARY 2. Theorem 1 is true with parabolic replaced by elliptic and the
sum restricted to those i such that o (p)/r > 1.

These results enable us to compute part of the signature of a normal sub-
group I’ of finite index in 1% in terms of the finite index and the signature of
I’o. It remains to obtain the genus of r. If I’ is of index in r0 and Fro is a
fundamental region for to, then copies of Fro, corresponding to the coset
representatives of I in I’0, form a fundamental region for r [4, p 257]. When
I’0, and hence 1, are of the first kind we can use the hyperbolic area formula
(2) to compute the genus of r since,

r0/r

4. In this section we obtain a result akin to (4) for groups of the second
kind, using the results and notation of Heins [2]. For r of the second kind, let
2 be as in 3. Let Cr denote the orbit-mapping Cr -- Cr () such that
r (2) is a Riemann surface and r r() -- N the ramification index. Since
1 is finitely-generated, r (2) is conformally equivalent to a compact Riemann
surface less a finite number of points and {ql r (q) > 1} is finite.

Let x D define D as a universal covering surface of and let be the
group of conformal automorphisms of D leaving hr o X invariant. Then
e (D) is conformally equivalent to Cr x (D) so that r o e. r x where r is
the conformal mapping. Now P is of the first kind and let d denote the rami-
fication index ofe (D). Then r is such that r o d r so that the ramification
indices of and er () agree at corresponding points.

Also hr (2) is the double of Cr (D) and the number of deleted neighbourhoods
of point-like boundary elements of hr (2) is twice the number of such boundary
elements of Cr(D). Hence r(D) has this number of boundary elements
which will be the number of parabolic generators of . The genus of Cr (2)
will be 2- (t 1 ), if r has presentation (1) with > 0. We thus have

TEOaE 2. Ifr has signature (,:ml,m, ...,m;s;t) where > 0,
has the signature (2, W (t 1) m, m, m, m, m, m 2s; 0).

THEOREM 3. If F is normal in F0 and of index where F, F0 are groups of the
second kind, then is a subgroup of o of index , where , o are defined as above.

Proof. Since the set of discontinuity is the same for r and l0 we have
br (2) - ro (2) such that



If r, ro denote the conformal mappings defined, as above, for F, F0 respectively
then

(7oo)or=0 oo(rox)=0 o(0ox)=r0.
--1Thus# r0 ororissuchthstogr 9r0. Let us denote the orbit of

x eDunderrbx. Thus(xt) xroxeD. LetPi Thusx
(x) ((x)r) (x)0foreveryxeD. SofornyD,x x
where o (x) e o. Let x, y be distinct points of D such that d (x, y) < e/2,
where d denotes the hyperbolic metric, nd x, y re not fixed points of P or
P0. Suppose

x xO() y yO()
Since d is inwrint with respect to elements of 2, d(x, y) d(x, y)
d (x, yv-) <
Thus d (y, yO<vo-) < e. But Po cts discontinuously on D nd does not

fix y. Therefore 0 (y) 0 (x) nd x- x nd yO’- y, i.e.
xo (x)x- fixes two points of D. Thus x x0 (x) e Po nd we hve proved thut
P P0. The following diagram is commutative

9(D)

o (a),ro(D) ;ro
Let t, [P0" i], so that the inverse image of ech point of o (D) under
contains ’ points while the inverse image of ech point of St0 () contains
points. But r, ro re homeomorphisms, so that ’.

5. We now aim to determine for which signatures does there exist a group
F such that I’ is normal and of finite index in some other Fuchsian group
Thus without loss we can assume that the index is a prime p.
The periods in the signature of a group can be considered as unordered as

re-ordering of the elliptic (or parabolic or admitted hyperbolic) generators
merely defines an automorphism of the group. In the signature, we use rn
to denote that the period m is repeated p times.

TIEOlE 4. Let r0 have signature (; ml ..., mr s; t) with presentation
(1) and F be normal in Fo of index p, a prime. Suppose that

(a xl x, have order p
(b) xl x,, (o >_ have exponent > 1 mod r
(c) pl pa have exponen > 1 mod I’
(d) h h, have exponent > 1 mod F.

Then F has the signature

(p/+ (p 1)(a + B + t 2)/2; m,+/p,..., m,/p, ,+,...,’,n

+ p(s ); t + p(t t)).
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Proof. All exponents will be 1 or p. From Theorem 1 the number of para-
bolic generators of F is

p -i lip -5 p -+i 1 -5 p (s f).

From Corollary i to Theorem 1, the number of admitted hyperbolic generators
will be -5 p (t ). From Corollary 2 the number of elliptic generators
is (a 5) -5 p (r a)with corresponding periods m/p (i -5 1, ..., a)
and m (i a -5 1, ..., r) the latter being repeated p times. Each elliptic
generator x of order m contributes (1 1/m) to the area formula (2). Thus
we can without loss, include the trivial elliptic generators of F without alter-
ing the area formula. Let g be the genus of F.

Case A. F and F0 are of the first kind so 0 and from equation (4)

(Fr0) (5)
(Fr)

2{2(g 1) -t- ’,% (1 pimp) + p ,I-+l (1 l/m,) -t" -b p(s )}

Substituting in (5) gives

g p/-t- (p 1)(a + 2)/2.

Case B. F and F0 are of the second kind so > 0. From Theorem 2,
0 has the signature

(2/+ (t 1); m(), ..., m();2s; 0)

and I has the signature
(2). m(,)/p, ,+,(2-5 (-5 p(t ) 1);m+/p, ...,

2(/ - p(s f)); 0)
and from Theorem 3 and equation (4)

) (F o )

since , 0 are of the first kind. Substituting in this equation we obtain

g p -{- (p 1)(a -5 -[- 2)/2.

We note that F being normal in F0 of index p places certain restrictions on
a, f, . Thus there exists a homomorphism of F0 onto Z if and only if

(a) a + f + isevenifp 2
(b)
(c) . > 0ira+ f-5 0.

This follows since such a homomorphism exists if and only if Z is a factor
group of F0/Fg where F is the first derived group of F0.

Provided the inequalities (2) and (3) are satisfied for the integers of a
given signature, we have pointed out that there exists a Fuchsian group of that
signature. Further, if the inequality is satisfied for F, it will be satisfied for
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I’0 from (4) for groups of the first kind and Theorem 3 and (4) for groups of
the second kind. Thus we have the converse to the above theorem.

THEOREM 5. If a is the signature of a Fuchsian group of the first or second
kind, which can be written in the form given at the end of the statement of Theorem
4 for some p, a, , where a, , t satisfy conditions (a), (b), (c) above, then
there exists a group with signature (r and a group o such that F is normal in
Fo of index p.

6. The remainder of the paper is devoted to obtaining this result in a
manageable form. To this end, we adopt the following notation.

Let (,; ml, ms, mr s; t) be the signature of a Fuchsian group.
Define the equivalence relation on the periods of a by m m if m m.
Let the q equivalence classes contain nl, n, ..., nq periods respectively. For
a fixed prime p define

(, p)

_
[n,/p] (6)

where [a] denotes the largest integer in [a]. Also define

l(a, p.) r pk(a, p) (7)

so that (, p) is the number of periods which do not fall into sets containing
p equal periods. We can assume that the periods of are ordered such that
the first p are equal, the next p are equal, and so on up to the p/ (, p)’-th
period.
Now consider the parabolic generators of . Define

s (, p) least non-negative residue s (mod p) (8)

and in the same way define (, p) for the admitted hyperbolic generators.
From Theorem 5, we see that if is to be the signature of a group I’ which is
to be normal in I’0 of index p, then F0 must have at least l(z, p) elliptic-
generators of periods pm(.,)+, ..., pmr whose exponents are p rood
at least s(a, p) parabolic generators whose exponents are p mod I’ and at
least t(a, p) parabolic generators whose exponents are p rood I’. Finally,
define

n(a, p) l(z, p) q- s(a, p) -t- t(a, p). (9)

LEMMA 3. Let (r (,; m m2 mr s; t) and let

n(a, 2) 2n’(a, 2)-l-e(a, 2) wheree(a, 2) 0orl.

Then there exists a group with signature and a group Fo such that is of
index 2 in F0 if and only if " >_ n’ ((r, 2) + e ((r, 2) 1.

Proof. We must choose a, t, t to satisfy Theorem 5. The number s’
of parabolic generators of 10 satisfies s =/ q- 2 (s’ ) so that s’ (s q- t)/2.
Thus/ is an integer

___
0 with the same parity as s, so set f3 23’ q- s (, 2).

Note that t is bounded above by s. Similarly t 2’ -b (, 2). Since the
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prity of , t is determined by z, we must choose a so that a -- -- is evem
From Theorems 4 nd 5, group I with the periods of z will be normal in F
nd of index 2 if nd only if l0 hs periods {n} of the following form"

n-- m_ (i 1, 2, ...,b) where0 _< b _< /c(z, 2)

n_ 2m (i 2b- 1,..., 2k(z, 2))

n_a 2m (i 2k(z, 2)- 1,-.., r)

n_.b 2 (i r - 1, -.., r - 2a - (, 2)) where a >_ 0.

The generators corresponding to the period n (i > b) will all have exponent
2 mod 1 and so

a 2(/c(, 2) b) -t- l(a, 2) - 2a’ - (, 2)

and a t t is even.
It remains to determine the possible genera. Let r0 have genus g and so,

by Theorem 4,

= 2g-t-1/2(a-t-/+- 2)

2g + n’(z, 2) + ((, 2) b) + a’ + s(a, 2) 1 + ’ + u’
Now g, ] (a, 2) b, a, ’, u all take non-negative values and g and a are
unbounded. Provided condition (c) is satisfied, i.e. in all but a finite number
of cases, we can choose g ]c(z, 2) b ’ ’ 0 and a’ _> 0, giving
5" >_ n’ (a, 2) + e (a, 2) 1. In the finite number of exceptional cases, we
find that the criteria for the existence of F0 is the same inequality.

LEMMA 4. Let a (5"; m m m, s; ). Then there exists a group
F with signature a and a group Fo such that F is normal in Fo of index p where p
is a prime > 2 if and only if

[25"/(p 1)] >_ (25" + n (a, p) 2)/p (10,)

and [25"/(p 1 )] (25" 1 )/p. (11 )

Proof. Using the same notation and argument as Lemma 3, we must have
p’ + s (, p) and t pt’ - (, p). Also a group 1 with the periods of

will be normal in I’0 of index p if and only if r0 .has periods {n} of the form"

n m_(_l) (i 1,2, ..., b)where 0

_
b

_
](, p)

n_(_)b pm (i pb + 1, p , p))

n_(_x) pm (i p(cr, p) + 1,..., r)

n_(_) p (i r + 1, ..., r - a’) where a >_ 0,provided b, a, cn be chosen such that W f - 1
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Let l0 have genus g. Then by Theorem 4

5" pg d- 1/2 (p 1)m (12)

where m ad-f-u- 2

n(a, p) 2 + a’ d- p(k(a, p) b d-/’ d- #’)

so that m _> n (, p) 2.

If the only solution of (12) in the range g _> 0, m >_ n (, p 2, gives m 1,
then a + f - 1. In the remaining cases, as in Lemma 3 with the ex-
ception of a finite number, we obtain the possible values of 5" by taking
k(, p) b ’ 0 and g >_ O, a’ >_ O. The general solution of the
linear diophantine equation (12) is given by g 5" 1/2 (p 1 )y, m py 25".
We require that 5" 1/2(p 1)y >_ O, py 25" _> n(a, p) 2 and that

py 25" -1 does not give the unique solution of (12) i.e. that there exists
an integer y such that

25"/(p- 1) _> y_> (25’-t-n(a,p) 2)/2

and that y (25" 1)/p is not the unique solution of these inequalities.
These conditions are equivalent to (10) and (11) and in the finite number of
exceptional cases the same criteria are obtained.

7. If we substitute p 2 in (10), it reduces to the inequality of Lemma 3
and (11) becomes trivial. Thus Lemma 4 can be taken to include all primes.
From our definitions in 1, Max Normal (r) T(r) if and only if, for all p,
either

[25"/(p 1 )] < (25" -t- n (a, p) 2)/p

or [25"/(p 1)] (25" 1)/p. Of course, since r is finitely-generated,
we need only investigate these for a finite number of primes. Indeed, if
5" _> 2, 25" d-n (, p) 2 > 0. Thus if p 1 > 2% the inequality always
holds. If 5" 1,25"n(a,p) 2 > 0unlessn(a,p) 0. Thus thein-
equality holds for all primes p > 3 except, perhaps, those such that
r s 0 (mod p). Similarly for 5" 0. The equation is invalid in
the cases 5" 0, 1.

THEOREt 6. Let (5"; ml m. ..,m s; t) be the signature of a Fuchsian
group F of the first or second kind as defined in 2. Then

Max Normal (F) T (r)
if and only if either

[25"/(p 1)] < (25" d-n(a,p) 2)/p

holds

or [25,/(p 1)] (25" 1)/p

(a)
(b)

for all primes p <_ 25" d- 1 if 5" > 1
for all primes p <_ 3 or such that r s 0 (mod p) if 5" 1
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(c) for all primes p such that r, s, =-- 0, 1, 2 (mod p) if " 0
where [a] denotes the largest integer in a and n (, p is defined at (9).

Remark. It had been conjectured independently that if the periods of
a were co-prime in pairs then max (1) T (1). A study of the above result
in such a situation and the fact that Max (1) c Max Normal (I’) shows that
this is false.
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