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MAXIMAL POSITIVE BOUNDARY VALUE PROBLEMS
AS LIMITS OF SINGULAR PERTURBATION PROBLEMS1

BY
CLAUDE BARDOS AND JEFFREY RAUCH

Abstract. We study three types of singular perturbations of a symmetric positive
system of partial differential equations on a domain £2 C R". In all cases the limiting
behavior is given by the solution of a maximal positive boundary value problem in
the sense of Friedrichs. The perturbation is either a second order elliptic term or a
term large on the complement of Q. The first corresponds to a sort of viscosity and
the second to physical systems with vastly different properties in Í2 and outside Ü.
The results show that in the limit of zero viscosity or infinitely large difference the
behavior is described by a maximal positive boundary value problem in £2. The
boundary condition is determined in a simple way from the system and the singular
terms.

1. Introduction. In this paper we study boundary value roblems for singularly
perturbed systems of partial differential equations. The unperturbed system is of
first order and positive symmetric in the sense of Friedrichs. We study three sorts of
singular perturbations: (1) the addition of e times a positive second order elliptic
system in a domain fi, (2,3) the addition of XP or \P(d/dt) with À » 1 and P
strictly positive in the exterior of ñ and zero in S2. In the first case we study the
solutions He to the Dirichlet problem in S2. Bardos, Brezis and Brezis [1] have shown
that in this case ue^u weakly in L2(fi) where u is uniquely determined as the
solution of a maximal positive boundary value problem for the unperturbed opera-
tor. Here one has the phenomenon of loss of boundary conditions in the limit and
the existence of boundary layers for uc near 3Í2. We prove several more refined
estimates on ue, in particular a uniform bound in //l/2_,,(fi) for any rj > 0.

These estimates yield a proof of the strong convergence of uc to u in all Hs(ü) for
s < {-. This singular perturbation problem is well known and much studied, in
contrast to the problems of the second sort mentioned above. In the latter problems
we study the Cauchy problems

(L + perturbation) ux - 0   on [0, T] X R",

u(0,-) = g(x)    onR",
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378 CLAUDE BARDOS AND JEFFREY RAUCH

describing wave propagation on all of R". The perturbation is very large on the
complement of a region [0, T] X ß. The phenomenon we find is that as X -> oo,

ux -» 0    outside [0, F] X ß,
ux -> u    in[0, F] X ß,

where m is uniquely determined as the solution of a maximal positive boundary value
problem on [0, F] X ß with homogeneous boundary conditions on [0, F] X 3ß
determined by the operator L and the matrix P on [0, T] X 3ß. Note that in the first
problems we passed from one boundary value problem ß to a limiting boundary
value problem on ß while in the present context one passes from a Cauchy problem
on [0, F] X R" to a mixed initial boundary value problem on [0, F] X ß.

In problems of wave propagation one often introduces mixed problems on a
domain [0, T] X ß where the conditions on [0, F] X 3ß describe the interaction of
waves with the boundary. Invariably such models involve idealizations about the
containing walls [0, T] X 3ß. In reality waves always penetrate beyond the walls. A
more complete model would involve an equation on [0, F] X R" which suffers an
abrupt change at [0, F] X 3ß reflecting the fact that the medium in ß is very
different from that in the walls. What is needed then is a theorem asserting that in
[0, F] X ß the solution is approximated by solutions of the mixed problem which
one has proposed as a model. Our theorems provide rigorous results of this type.
This point of view is presented in an unpublished set of lecture notes by Friedrichs
[4] where he predicts, by a formal asymptotic analysis, the results we prove.

Notice that for all three singular perturbation problems considered above the
limiting problem is a maximal positive boundary value problem in the sense of
Friedrichs [3]. This has two important consequences. First, the limiting boundary
value problems are well posed. This is a crucial fact, since in reality one never
observes the limit X -» oo or e -» 0, only X very large or e very small. Then the
quantities inside the region do not satisfy the homogeneous boundary condition
Mu = 0 but do have Mu small. Since the boundary value problem is well set, it follows
that u differs from the limiting solutions by an amount which can be estimated in
terms of Mu. Thus if one observes that there is very little disturbance outside ß this
is sufficient to justify the use of the limiting equations. From a practical point of
view, this gives a criterion for knowing when to use the limiting equations. Second, a
special place is assumed by the maximal positive boundary conditions among the
many well-set boundary value problems. Since "physical" boundary conditions arise
as limits when some parameter is large, we expect the basic boundary value
problems of mathematical physics to be maximal positive.

It should be remarked that, corresponding to the fact that our perturbations are
strictly positive, the boundary conditions we find are not only positive but strictly
positive. If the boundary matrix Av is nonsingular this means (Avu, u)> c\u\2 for
all vectors u in the appropriate boundary space. In particular one does not find
conservative boundary conditions, which satisfy (Avu, u) = 0, with these methods.

There are a few well-understood problems which lead to conservative conditions:
Dirichlet + Neumann problems for utt — A« and some problems in elasticity [4].
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MAXIMAL POSITIVE BOUNDARY VALUE PROBLEMS 379

For these problems the positive definiteness of the perturbation is relaxed to positive
semidefiniteness, and at present we do not have a good general theory encompassing
these examples. On the other hand the inverse problem has a successful resolution in
the category of strictly positive boundary conditions. That is, given a strictly positive
boundary condition, there exist singular perturbations of all three kinds which yield
this boundary condition in the limit. The interested reader is referred to [17] for the
proof.

Some of the problems we discuss have discontinuous coefficients, large in one
region and not large in an adjacent region. One can argue that this too is an
idealization and that one should replace such discontinuities by narrow regions
where the coefficients change rapidly. Our methods can be adapted to treat such
problems provided that in the appropriate limit the width of the narrow regions
shrinks to zero rapidly. The details of this modification will not be described.

An important ingredient in the proof of all of the theorems are estimates, uniform
in the perturbation parameter, of the derivatives of solutions in directions parallel to
the boundaries. This is consistent with the emergence of a boundary layer where
quantities change rapidly as one moves away from the boundary and slowly as one
moves parallel to the boundary (see [14, 15] for a discussion of boundary layers for
problems analogous to ours).

The paper is organized as follows. In §2 we give the notations and we state the
theorems. Theorem 1 is concerned with the limit of vanishing viscosity. Theorems
2-4 deal with the results predicted by Friedrichs. In §3 we prove weak convergence
for Theorems 2-4. §4 is devoted to the tangential regularity theorems whose proofs
have a common thread. In all cases the idea is to take the given equation,
differentiate tangentially and then apply the energy method. The crux is that by an
appropriate change of independent and dependent variables one can cast the given
differential operator into a special form so that the commutator with tangential
differentiation is suitably small. Given these results the proof of strong convergence
is not difficult, with the exception of the problem of vanishing viscosity. Here the
proof of the //1/2 ^ estimate requires new ideas and is especially troublesome when
3ß is characteristic for the unperturbed system. The proofs of strong convergence
and the Hx/2~n estimates are located in §5.

Acknowledgment. In our research we have benefitted from the careful reading
and thoughtful criticisms of J. Ralston. We offer him our hearty thanks.

2. Notations and statements of the results. Let L be the symmetric system of
partial differential operators

(2.1) L = ÍAJ(x)^- + B(x).
i oxj

That is, Aj E C3(R") and B E C2(R") are A: X A: matrix-valued functions with Aj(x)
hermitian symmetric for all x E R". We assume that DßB and DaAj forj = 1,...,«,
| a | < 3, | ß | < 2, are uniformly bounded on R". We denote by

(2.2) &,=-   inf minU:A G spectrum B(x) + B*(x) - Y ~^-\.
2   1ER" OX,
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380 CLAUDE BARDOS AND JEFFREY RAUCH

ß will denote an open set of R" which hes on one side of its smooth boundary 3ß.
We do not assume that ß is bounded but we do assume that 3ß is bounded.

A smooth boundary space N is a continuously differentiable map defined in a
neighborhood of 3ß with value in Tp(Ck), the manifold of /^-dimensional linear
subspaces of C*.

For any m X m hermitian matrix B we denote by B° the kernel of B, by B± the
space spanned by the eigenvectors with strictly positive (negative) eigenvalues
(Cm = B+ ®B° © B   ). We denote by M(B) the space B+ ®B°.

We assume that there is a C3 vector field v(x) defined in a neighborhood of 3ß
with the following properties: (1) on 3ß, v(x) coincides with the unit normal to 3ß
which points out of ß; (2) on a neighborhood of each connected component of 3ß
there are matrix-valued functions U, a+ , a , of class C3 with U unitary and ±a±
strictly positive and diagonal so that

1a+(x) 0 0^
0 a_(x)     0
0 0 0/

In particular, the dimensions of A°, A¿ , A~ and M(AV) are constant on each such
neighborhood.

Concerning norms and inner products, \\\\x will denote the norm in the space X,
| and ( , ) the norm and inner product in Ck and (, ) or (, )% the inner product in

L2(%). We use the symbol L2(%) for both scalar and C*-valued L2 spaces. Thus

del
(2.3)       Ar(x)= 2vj(x)Aj(x) = U*(x) U(x).

(S,SW = f(S,S)dx.
JenJelL

A subspace N of C* is maximal positive for a matrix B if and only if

(2.4) (Rtj,t])>0    V-nEN,
(2.5) dimA = dimM(R).
The classical result is the following: Let N(x) be a smooth boundary space; assume
that N(x) is for any x E 3ß a maximal positive subspace for Av, then (see [3, 8, 11])
for every / E L2(ß) and 8 > 80, there exists a unique u which is a solution of the
following problem:

(2.6) 8u + Lu=f   inß,        u |3i2 E N.

When (2.3) is satisfied, it is clear that M(A„) is a maximal positive smooth boundary
space. Under the same hypothesis it is also true (see [1]) that if E(x) is a smooth
positive hermitian matrix,

E~x/2(x)(M(E-x/2(x)A v(x)E-x/2(x)))

is a maximal positive subspace and therefore there exists for every / E L2(ß) a
unique solution u E L2(ß) of the following problem:

8u + Lu=f,       F1/2w|3ß E m(e~x/2AvE-x/2).

Finally we recall some facts about traces (see [1]). If for each x E 3ß we write
C* = Ker(A„) © (KerA,,)-1, then for any u E L2(ß) with Lu E L2(ß) the projec-
tion of u |3a on (KerA^)-1  is well defined as an element of //_,/2(3ß). Since
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MAXIMAL POSITIVE BOUNDARY VALUE PROBLEMS 381

KerAy C N for any maximal positive subspace N, if Lu E F2(ß)/c the condition
u |3Ö E N can be made precise in two equivalent ways. First using traces we may
compute the projection of u |3S2 onto N1- and insist that it vanish, and second, we
could demand that the relation

/ (t>, Lu) dx — I (L*v, m) dx

hold for all v E C„\Jß) such that Ay(x)v(x) E N(x)1- for all x E 3ß. Here L* is the
formal adjoint differential operator to L.

Now we give the main statements.

Theorem 1. Assume that 8 > 80 and that EtJ(x) is a family of n2 hermitian matrices
with the following properties:

(i) The matrices D"EU, I a | < 2, are bounded and continuous on a neighborhood o/ß.
def

(ii) For every unit vector £ = (£,, £2,... ,£„) G R" the matrix F£ • £ = 2,7£,-,£,£, is

uniformly strictly positive in ß.
Then, for every f E L2(ß), the sequence ue of solutions to

(2-7) -e2-^Eu-^ + 8ut + Lue=f,       «J8O = 0,
¡j      ■ j

converges strongly in L2(fi), when e goes to zero to the solution of the following
problem:

(2.8) 8u + Lu=f,       (Ewy/2u\düEM{(Evvy'/2AXEvv)-X/2).

Theorem 2. Let 8 > 80 and P a twice continuously differentiable hermitian symmet-
ric-valued function on the complement, ßc, of ß and suppose all first order partial
derivatives of P are bounded on ßc. We suppose that P is uniformly strictly positive on
ßc. We denote also by P the function obtained by setting P(x) — 0 for x E ß; then for
every f E L2(R"), the solution ux of the problem

(2.9) 8ux + Lux + XPux = f   in R"
converges strongly in L2(R"), when X goes to infinity, to the limit u defined by the
relations:
(2.10) u = 0    in ßc,       u = ü   in ß;

(2.11) 8ü + Lü=f   iniï,       Px/2ü\aaEM(p-x/2(A„)p-x/2).

Henceforth we will assume that the operator L depends also on the parameter
t E [0, F] and we will write

L(t) = AQ(t, x)y( + 2Aj(t, *)¿ + B(t, x)

where Aj and B are k X k matrix-valued functions on [0, T] X R" with Aj hermitian
symmetric and D"xAj, D?XB bounded and continuous on [0, T] X R" for | a |< 3,
| ß | < 2, 0 <y < n. The critical hyperbolicity assumption is

A0(t, x)>8xI>0   V(t,x) E [0, T] XR".
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382 CLAUDE BARDOS AND JEFFREY RAUCH

We consider two problems involving a large parameter X:

(2.12) (L + XP(t,x))ux=f   in[0, F]XR"
and

(2.13) [L + XÄ0(t,x)(d/dt)]ux=f   in[0, F] X R"
with Cauchy data

(2.14) Ux(0,.)=g(.)    in{0}XR",       suppg(-)Cß
where Ä0 and P are uniformly positive matrices on ßc and vanish in ß. In either
case, ux is uniquely determined and ux -> 0 on ßc. The problem is to characterize
lim ux = m as the solution of a boundary value problem on [0, F] X ß. We have

Theorem 3. Assume that the matrix-valued function P has the following properties:

(2.15)

P — 0 on ß and there is ay > 0
such that P(t, x)>yl   V(t, x) G [0, F] X ßc.

F G C'([0, F] X ß£) and for \a\= l,D,axP
is bounded on [0, F] X ßc.

Assume that fG L2([0, F] X R"), g G L2(R"). Denote by ux the solution of the Cauchy
problem (2.12), (2.14) by ü the solution of the problem

\LU=f   in[0,T]xQ,       «(0, •)=«(•)    inQ,
1       ' \Px/2UEM(p-x/2ArP~x/2)    m[0,F]X3ß,

and by u the function
\0 ifxEQc,
' u(x)     ifxEÜ.

Then as X - oo, ux -> u in C([0, T\\ F2(R")).

To study the limit in problem (2.13) we will have to impose positivity and
regularity hypotheses analogous to (2.15). Precisely we assume

Positivity. Ä0(t, x) = 0if;cGß and there is a y > 0 such that Ä0(t, x) s* y I if
xEÜc.

Regularity. For | a | < 2, D"XÄ0 is uniformly bounded on [0, F] X ßc.
However, reflecting the fact that the perturbation in (2.13) is more singular than in

the other problems, we will also have to restrict the manner in which Ä0 and Av vary
with time. The result we obtain is false without some such restriction, as we show by
example in Remark 6 following the statement.

Restricted dependence on time. For all (t, x) with x E 3ß the matrix
(Ä0)]/2(Ä0 1/2); maps the eigenspace M(Ä0,/2A„ÄqX/2) into itself. Let K_ be
orthogonal projection onto the complement of this space. For x E 3ß, dK_/dt also
maps M(ÄqX/2AvÄ0x/2) into itself.
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This condition is surely satisfied if Ä0 and Är do not depend on time. More
generally if there are matrix-valued functions R0(x) and Rx(x) on 3ß, scalar valued
functions c0, c, on [0, T] X 3ß all smooth with

i0r [0,F]x3ß = c0(/,x)R0(x),

Aj[0,T]XdQ = cx(t,x)Rx(x),
Then on 3ß, (i0)1/2(i0"1/2), = cJ,/2(3co 1/2/3/)/ and K_ is independent of i. This
example gives the spirit of the restriction; it is a restriction on the amount of
twisting.

Theorem 4. Assume that Ä0 satisfies the positivity, regularity and restricted depen-
dence on time hypotheses above. Assume that f E F2([0, T] X R") and g E L2(R"),
g|a<- = 0. Denote by ux the solution of the Cauchy problem (2.13), (2.14),2 and by w the
solution of the problem

\Lu=f «[ojjxfl,     5(o,•) = *(•)  ¿no,
(2.17) |^/2_ e M(Ä-\/2Aj-v*)    in [o, T] X 3ß.

Then as X -* co, ux -> « m C([0, F]; L2(R")), w/iere u is defined by the relation

u — 0   z/x G ßc,       u — ü   if x E ß.

Remarks. 1. Theorem 1 has been considered in [1] but only the weak convergence
is proved there. Strong convergence and the Hx/2~v estimates were proved by Kato
[7] in less generality (assuming that the matrix v ■ A is nonsingular on the boundary).

2. Theorems 2 and 4 provide proofs for two results predicted by Friedrichs in [4].
3. In the case A0, Aj, B and F do not depend on t. Theorem 3 follows from

Theorem 2 by a variant of the Trotter-Kato convergence theorem (see [10, p. 52] for
a similar argument). In the same vein one could consider the parabolic system

^-^4^ + ̂  + ̂ ^   m[0,F]Xß,

"el[o,r]x3Q = 0.    "e(0,-)=g(-)
as e —■ 0. If the coefficients are independent of t, the Trotter-Kato theorem together
with Theorem 1 describes the limit. If the coefficients depend on /, a separate
argument is required. This problem will not be discussed though no essentially
different ideas are required.

4. The problems discussed in Theorem 4 pose some interesting technical difficul-
ties. For example, because of the discontinuity of A0 + XÄ0 on 3ß, the term
(A0 + XÄQ)du/dt is not a well-defined distribution for u E L2([0, T] X R"). Since
the large coefficient is in the terms of highest order, this perturbation is, in a sense,
more singular than the others. In addition, it is interesting to observe the fundamen-
tal importance of the coefficient of 3/3? in the physical applications. It not only
defines the energy but in many problems is the only coefficient which depends on x

2The existence and uniqueness of the solution of (2.13), (2.14) are discussed in §3.
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384 CLAUDE BARDOS AND JEFFREY RAUCH

and t. The latter point is emphasized in Wilcox [16] where one can find many
examples. Using these as a starting point a variety of examples illustrating Theorems
1 -4 are easily constructed.

5. The physical mechanism excluding waves from [0, F] X (R" \ß) is very differ-
ent in Theorems 3 and 4. In Theorem 3 the principal part of the operator is
unchanged so that the basic objects of geometrical optics, sound speeds and rays, are
not affected by the perturbation. What one has is very rapid dissipation with a half
life of the order l/X in the region R"\ß. For the more singular problems in
Theorem 4 the sound speeds <r(£) are solutions of

detl(A0 + Ä0X)o + 2 Ají] =0

with |||= 1. Thus outside ß one finds that a = 0(1/X). Waves travel very slowly
outside ß.

In particular, there is a C > 0 such that

(2.18) support ux E {(t,x): dist(x,ß) < C\t\/X).

Thus even though there may be no loss of energy in ßc the waves are effectively
excluded.

6. We show by example that the condition restricting the time dependence of A0
and /!„ cannot be entirely omitted. Consider the system

where P(t) is a nonsingular positive symmetric matrix-valued function to be
specified below and Xf signifies the characteristic function of F. Then

Ä0 = P-2,    AV = P-\XQ     _«)/»-•,    i0-V2^i-./2=(l     _0J

According to Theorem 4 the expected limiting boundary condition is that the second
component off'« vanishes when x = 0. We will show that for a suitable choice of
P this limiting condition is not satisfied, that is

second component (P~xux(t,Q)) -«0    asÀ^ ce.

For this example the restriction that Äx0/2d(Ä0l/2)/dt maps M(Ä0x/2AiiÄqX/1)
into itself will be violated.

The substitution ux = Pvx transforms the system to

(i + ax.o.oo,)^ + ( J   _°, )^r + tatW-ty = o.

We choose

p(o=«p(°, 7),
so

p~ip.= (°x   "¿I'     /,(°) = 0-
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Then P = P* and F(0) is positive so we may choose 0 < F so that F is positive for
0 < t < T.

For Cauchy data we take

VX(0,X) = (X[-7\0](*).0)-

It is not difficult to show that the solution vx = (v\, v\) on [0, F] X R satisfies

v'x>0,       i =1,2,
vx > 1    ifx-i/(l + X) <0   and   t<x-T.

Then, for the second component vx in x > 0 we have

3       3
(l+Xht     3, ^x>XX,r0](x-t/(l+X)).

Integrating from time zero yields

v{(t,0) >\t/2(l +X).
In particular, it is not true that vx -* 0 as X -» oo. Thus ux provides the desired
counterexample.

Notation. We will use lower case letters e¡¡, bk, etc. for the functions obtained after
localization and change of coordinates, use £>• for d/dx, in these cases and eventu-
ally use the standard summation convention instead of the sign 2. Finally we will
use the same letter c for several constants, all of them independent of e and X.

3. Basic a priori estimates and weak convergence. It is known (see [1] for example)
that the solution ue of the Dirichlet problem (2.7) lies in Z/2(ß) D //'(ß) and, for
8 s* 80 + 1, satisfies

(3.1) eö\\vuJ\2LHa) + 82\\ue\\2L2m<c\\f\\2Lim.

Here and in all our succeeding work c will be used to denote constants which are
independent of e, 8 and the data of the boundary value problems, in this case/.

Similarly, there is a unique solution ux E L2(Q) of the boundary value problem
(2.9) and we have

(3.2) Re(8ux + Lux, u) > (8 - 80) ( | ux(x) |2 dx.

Since P is strictly positive on ßc this implies that for 8 > 80 + 1,

(3-3) S2\\ux\\h^) + X8\\ux\\2L,(Q,)<c\\f\\2?m.

Finally there is a unique solution of (2.12) and (2.14). Using the relation
"weak" = "strong" proved for instance in [8], one can show that this solution belongs
to the space C([0, F]; F2(R")) and satisfies the estimate

(3.4)

f'Re(L(s)ux(s, ■), ux(s, ■)) ds>-£\\ux(t, OH^oo ~ c||i*x(0, Oll^r*.)

+ 80f'\\ux(s, -)H!»(*■)*■
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From (3.4) we deduce that the solutions of (2.12) and (2.14) with supp ux(0, ■) C ß
satisfy, for 0 < t < F,

(3.5) ||ii^(/, -)Hi»<0) + AH"Alli2([o,,)xno < c||«x(0, OHi^o) + cll/Hi^o.fixB-)-
The last problem (2.13)—(2.14) requires some changes in the underlying theory so we
review some of the basic facts about scar problems. As pointed out in the introduc-
tion (L + XA0(d/dt))u is not a well-defined distribution for arbitrary u E
L2([0, T] X R"). One way to avoid this problem is to write (L + XÄ0(d/dt))u in the
divergence form

This expression does have meaning for u E L2([0, T] X R"),  and if it lies in
L2([0, F] X R") then (A0 + Ai0)w|,=0 is a well-defined element of H__X/2(R") so
the initial condition (2.14) makes sense. An equivalent method (and the one
proposed by Friedrichs) is the following:

Let
5 = [0, F] X R",       S„ = [0, F] X u    for any w C R";
0 = {u E S'(R") | u E C^ÇSq) n C°°(S„,o) and ,4„u is continuous

on a neighborhood of [0, F] X 3ß).

Functions in 0 are smooth up to 3ß from both sides and Avu is continuous across
3ß. We say that u E L2(S) is a weak solution of (2.13) and (2.14) iff (Vu G 0 with
t>(F) = 0)

(«, (l*v - X^Ä0v))s = (/, v)s + (g,(A0 + XAo)v(0, ■)),.

The basic theorem is the following.

Friedrich's Theorem [4]. For any f E L2(S) and g G L2(R"), there is a unique
weak solution ux of (2.13) and(2AA). In addition, ux E C([0, F];L2(R")) and there is a
constant c independent off, g, t E [0, F], and X > 0 such that

(3.6) MI«x(/)lliJ(0«)+ ll«x(/)lli^)^c(||/|||2(S)+ Hglll^ + AllgllV,).

Sketch of proof. For u E 0 we can prove (3.6) by taking the scalar product (in
L2([0, t] X ß)) of (3.2) with u and integrate by parts to obtain

(A0u, u)a \'0 = Re(w, /)[o,í]xa + (A,u, «)[0-í]x3ñ + (Zu, w)[o,<]xa

where the boundary integral involves the limits of u on 3ß from ß and 2Z = 3^0/3i
- B - B* + IjdAj/dXj. Similarly on [0, /] X ßc we have

((^o + xA0)u, u)QC |ó = Re("> /)[o,r]xa< - (Avu, u)[0j]xdSi
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MAXIMAL POSITIVE BOUNDARY VALUE PROBLEMS 387

where the boundary term involves the limits of u from ßc. However, since Avu is
continuous across 3ß the boundary integrals cancel when one adds these expressions.
The positivity of A0 and A0 yields (3.6) after an application of the Schwarz and
Gronwall inequalities.

A similar "adjoint" inequality implies that Vu G 0 with v(T) = 0 we have

L*v — X-r-A0v

Let T = (L*i; — X(d/dt)Ä0v \ v E 0 and v(T) = 0}; then the existence of a weak
solution follows from an application of the Riesz Representation Theorem to the
linear functional |: T -» C defined by

L*v - xj-(Ä0vX ((A0 + XÄo)v(0), g) + (t>, /).

The next step is to show that if ux is a weak solution the there exist ux E 0 such
that as m -» oo,

Ux"-*ux   in L2(S),

Íl + aÍ0-^W-»/   in L2(S),   and

K?(0,-)-g   inL2(R").

This "weak = strong" result is proved with mollifiers as in [8], [11]. Inequality (3.6)
shows that u[,ux,... is a Cauchy sequence in C([0, F];L2(R")). It follows that
ux E C([0, F]; L2(R")) and that inequality (3.6) holds for ux. In particular, there is at
most one solution.    D

We turn next to a discussion of the weak convergence of the solutions as e -> 0 or
X -» oo. In [1] it has been shown that when e goes to zero, the solution ue of (2.7)
converges weakly in F2(ß), to the solution of (2.8). Similarly, the solution of (2.9),
((2.12), (2.13)) and ((2.12), (2.14)) are uniformly bounded (with respect to A) in
L2(R") and C([0, F];L2(R")), respectively. Therefore, there exist some subfamily of
functions (still denoted ux) which converges in L2(R") weak, respectively
L°°([0, F]; L2(R")) weak star, to a limit u. The a priori estimates (3.3), (3.5) and (3.6)
imply that in the case of Theorems 2, 3 and 4 we have, respectively,

I  \ux\2dx*z^j-,        I    I  | ux I2 dx dt < -T-,    and,
Jos X Jn   Jnc A

(3.7)
SUP    f \u\(l> x)\2dx*zT.

Therefore, in the case of Theorem 2, u(x) \QC = 0, and u(t, x) |[0,r]xac — 0 in case of
Theorems 3 and 4. Furthermore, in the sense of distributions we have

8u + Lu — f   in ß       (Theorem 2),    and
Lu=f   in [0, F ] X ß       (Theorems 3 and 4).

The main point will be to prove that u satisfies the boundary conditions given by
(2.18), (2.11), (2.16) and (2.17). Since the solutions of the resulting boundary value
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problems are unique we conclude that not only the subfamily but the whole family
converges weakly. This result has been proved for the case of Theorem 1 in [1]. We
will give a detailed proof in the case of Theorem 2 and give some indications of how
to adapt it for Theorems 3 and 4.

We introduce a neighborhood 0 of 3ß such that Av and all the boundary spaces
are defined and smooth on 0. Next we choose an open cover 0;: / = 1,... ,N of 3ß
with 0, C 0 and so that there are diffeomorphisms

V 0, - ® = (;c eR"||jc|< 1}

with

gt,[e, n ß] = %_ = {xe<$>\xx<o}
and

(r,)^ßv) = Dx.

Choose 0 < Xi G Cq(&,) such that 2¡X/ ** 1 ar>d 2x/ = 1 on a neighborhood of 3ß.
Choose Xo G C°°(R") such that Xo = 0 on a neighborhood of 3ß and Xo = 1 on a
neighborhood of {x \ 2x,(x) < 1). For / > 1, let u'x = (x,ux) ° t/x E L2(<$) be the
localization of u to 0, in the coordinates induced by t,. For u'x we have the
differential equations

U^ak(x)Dk + b(x) + Xp + 8l)ulx^g/    inR"+,

\{lak(x)Dk + b(x) + 8l)u'x = g/    inR"_

where ak, b,p are matrix-valued functions defined on R", with smoothness, symme-
try and positivity properties analogous to Ak, B, P. In addition, ax = Av ° t/1 since
(T/)* ° (3/3'') = Dx. Henceforth we will omit the index /, and extend ux and gf by
zero outside the ball |x|< 1. These functions are uniformly bounded in L2(R").
Now we put vx = px/2ux, so v is a solution of the following equation.3

(3.9) (p-x/2axp-x/2Dx+  2äkDk + Xp)vx = g
v k>\ '

where P(x) — 0 if x E R"_ and P(x) = I if x E R"+ , and where g denotes a function
bounded in L2(R") uniformly in X. If K denotes the orthogonal projector on the
negative subspace of the matrix p~]/2axp~x/2, then d(K^vx)/dxx belongs to the
space L2(R; H](R"~X)) and, therefore, (K_vx)(0, ■) is defined (at least in
//~1/2(R"-1)). Furthermore, DX(K vx) |R is uniformly (with respect to À) bounded
in L2(R_; //"'(R""1)), and K_vx is uniformly bounded in F2(R_ ; L2(R"-')).
Therefore, introducing a new subfamily we deduce that we have:

vx-v   inL2(R_ ;L2(R"-')),
(3.10) X V V        "

K_vx(0,-)^K_v(0,-)    in//-'/2(R"-1).

For xx < 0 we put p(xx, x) = p(-xx, x).
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From (3.10) we deduce that ux^ü= p~x/2v in L2(B) and K_px/2ux |V|=0
converges to K_ px/2ü \x =0 in H~x/2(Rn~x). Finally we will show that
K_px/2ü\x =0 = 0 or, equivalently, K_v(0, •) = 0. It suffices to prove that
A^ux(0, •) converges to zero in H~X(R"~X). In R+ we have

(3.11) K_p-x/2axp-x/2K_Dx(K_vx) + \K_vx = hx

where hx is uniformly bounded in the space L2(R+ , H~X(R"~X)). The operator
K_p~x/2axp~x/2K_ restricted to K_(Ck) is strictly negative. Therefore we deduce
from (3.11) that we have (with a different hx)

(3.12) -Dx(K_vx) +XßK_vx = hx   inR+XR""1
where ß is a smooth and strictly positive matrix. Denote by A the Laplacian in the
tangential variables x2, x3,...,xn. For ¡x > 0, jti — A defines an isomorphism of
L2(R+; //'(R"-')) onto L2(R+ ; //"'(R""1)). Define wx by K_vx = (¡i - k)wx.
Multiply both sides of (3.12) by wx dx2 dx3.. .dxn and integrate over R"~ ' to obtain

(/Ix.m,a)l2(R"-1)

(3.13) , ,        „,_, ,
= (XßK_vx, wx)í.2(R,-.) - D\K_vx,(ii - A)    K_vx)LHR„-ly

It is not difficult to see that for ¡x sufficiently large one has

(XßK_vx,wx) L2(R»-i) = (A/5(it-Â)n'x,wx)L2(R„-,)>XY!lH'xll2ïi(R,.-i)

where y is a strictly positive constant. Thus

(3.14) -\DX || wx || Jf.pp-ij + Ay || wx\\ 2/1(R„-,) < (hx, wx)i.2(R«-,)

where the right-hand side is bounded in LX(R+ ) since hx is bounded in
L2(R+; //-'(R"-1)) and wx is bounded in F2(R+; HX(R"~X)). Integrating (3.14)
over R+ yields

\Wwx(0, •)II2/i(R-i) + AyHh'xIIÍ2(R+;//1(a^I))<c||vvx||L2(«+;//I(R„-1))

which implies that

IKII^<R+;r/|) = 0(A-')    and    II wx(0,-)|| „1(IP-,, = 0(a-'/2)

as A -» oo. Thus, ||.ir_t>x(0, -)\\H- '(r«-1) < c||wx(0, -)|| wi(R»-i) goes to zero when X
goes to infinity, so K_px/2ux \x =0 converges to zero on H~X//2(R"~X), and the proof
of weak convergence in Theorem 2 is complete.

The proof of the weak convergence in case of Theorem 3 is similar; in fact, the
operator L(t) = A0(t, x)(d/dt) + lAj(t, x)(d/dxj) + B + XP defined in
L2([0, F] X R") is of the same type as the operator 2Aj(d/dxj) + B + XP defined
in L2(R"). The only difference is that the domain [0, F] X ß has a corner and that
the boundary condition is not of constant rank there. If ¿7 is a weak limit point in
L2([0, T] X ß) of ux |[o,r]xo we must show that ¿7 is a weak solution of the boundary
value problem (2.16). Precisely we need to show that

ff (u,L*<p)- (f,<p)dtdx= f(g,<p)dx
J J[o,T]xa Ja
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for all rjp G C(u)([0, F] X ß) such that <p(T) = 0, and <p satisfies the adjoint boundary
condition

<p LAVP-X/2M(P-X/2AVP~X''2)    on[0, F] X 3ß.

Let \¡>e be a simple cut off function vanishing at points less than e units of length
from {/ = 0 or / = F} X 3ß and equal to one at points at last 2e units from the
same corners. We may choose ^ with V ^ = 0(l/e). In this case replacing <j> by \peq>
changes each term in the above identity by a quantity o(l) as e -> 0 so it suffices to
prove the identity with <p replaced by i/yp and then to pass to the limit e -» 0. With tp
replaced by i/yp, it suffices to study the behavior of ux and w on small neighborhoods
of point (/, x) such that x E 3ß, t =£ 0 and t ¥= T, or x E ß, t = 0 or t = T. In these
neighborhoods the analysis proceeds as before.

The weak convergence in Theorem 4 uses the same tools but is somewhat more
difficult. To make the going a little easier we observe that because of the bound (3.6)
it suffices to prove the weak convergence for a set of /, g dense in
L2([0, F] X ß) and F2(ß), respectively. For example we may suppose /G
Q°°([0. F] X ß) and g G C0°°(ß). In this case we will shortly prove in part (4) of
Theorem 5 that ux has additional tangential regularity, uniformly in X. Using the
same localization in x the analogue of equation (3.8) is

(3.15) (a0(t, x) + Xä0(t, x))-¡£ + 2 a,(t, x)D,ux + bu'x = g,
i=i

with ux defined in R+ XR" with support in the open set \x\< 1, and with the
function ä0(t, x) satisfying the hypothesis

(3.16) ä0(t,x) = 0   if x, < 0,       äQ(t,x)>8I   ifx,>0.
Using the tangential regularity we see that in [0, F] X {x, > 0}, Xä0(dux/dt) +
axDxux lies in a bounded subset of L2([0, F] X {xx > 0}) for X>X0. Letting
vx = ä\/2u'x for x, > 0 we find that for X large

3fx i/o i/i ,      , ., 3añl/2
-^ + àëx/2axàôi/2Dxvx + Xä0 W2-^r

lies in a bounded subset of F2([0, F] X [xx > 0}). Let K (t, x) be the orthogonal
projector onto the negative eigenspace of ¿¡Ôx/2axä~Q 1/2. Taking the C* scalar
product (3.17) with K_ vx we find that

\jt | K. vx |2 + Dx (K_ vx, 5" x/2axä-0x/2K_ vx)

(3'18) J ,/,9«o"'/2     \       ,      / 9*-     \+ X^^x,aö'/2-^— vxJ + 2XRe{vx,K_—vxj

lies in a bounded subset of L'([0, F] X {xx > 0}). Letting K+= I - K the last two
terms in (3.18) are written as

(3.19)   \lK_vx,ä0^^K_vx\ + \Uvx,K_äöx/2^^K+vxY

(3.17) X^ + aö'/W/2/Vx + \äö^2^—vx
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and

(3.20)        2XRe(K_vx,1  -K_vx) + 2XRe( K_vx, K_ '^-K+v
ZK_ \     „_   / dK

dt   "-"*/       -.*"-"*.»"-    g,
The first term of each of these is no larger than cX | K_ vx \2. It is in estimating the
last terms in (3.19), (3.20) that we use the restrictions on the time dependence of Ä0
and Av. As observed in (2.18) the vx vanish for xx ** c/X and the matrices ä0,
3<5ö1/2/3r, K_ , and 3AT_/3i at the point (t, x, xx,.. .,xn) differ from their values at
(t,0, xx,.. .,xn) by quantities 0(l/X). On the other hand, the restriction on the time
dependence of the coefficients implies that

, ,, dänK_ä0x/2-^K+ = 0   and   K_-r—K+
(t,o,x') "/

= 0.
O,0,x')

Thus the integrals of (3.18) and (3.19) over [0, t] X {xx > 0} are bounded by

-rpicXf f
J0 Jx,»0

To take advantage of this we set

Qx(t) = \jxjK^(t,x)vx(t,x)\2dx\     .

Note that g(0) = 0. Integrating (3.18) over [0, t] X {xx > 0} then yields

Aßx(0- ff (äni/2axänx/2K_vx,K_vx)dtdx2...dxn

cXf'Q2x(s)ds + cf'Q(s)ds.
Ja Ja

(3.21) °   {^°}

2
A I

Notice that

(3.22) (äöx/2axäZx/2K_vx,K^vx)< -C\K  v

so the integral on the left of (3.21) is negative. Applying Gronwall's method to the
remaining terms one finds that Qx < C//A for OiKT. Notice that the basic
energy estimate (3.6) shows that Qx < C/ fX so the K_ vx components are smaller
than ux itself. Using this refined estimate for Qx in equation (3.21) we find

-¡'J(ä0x/2ax.ä0x/2K_vx,K_vx dx2.. .dxn dt < ct/X.

Because of (3.22) this implies that

WK-äY2ulJL2([0iT]x{Xt>0]) = O(X-x/2)

and the proof is complete.

4. Tangential regularity. The main goals of this section are to show that as e — 0 or
A -» oo the "tangential derivatives" of the solutions to our problems can be esti-
mated independent of e and X.

The Dirichlet problem (2.7) is best known. If f E //^ß) for -1 <s< 1 then
ut E //J+2(ß) n //,. The restriction | s |< 1 arises from the fact that the coefficients
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need not be infinitely smooth. As e -» 0 the derivatives of uc in the directions normal
to 3ß become large. However, some tangential regularity persists.

For the other problems, the solutions need not be smooth when the data are
smooth. The main point is that 3ß is allowed to be characteristic for the differential
operator L (Av may have non trivial kernel). It is well known that this may cause a
"loss of derivatives in the normal directions." Nevertheless, solutions will be smooth
in the tangential directions and this regularity will persist in the limit À -» oo.

To make these remarks precise we define a space of functions whose tangential
derivatives of first order are square integrable.

Definition. A vector field A G C°°(ß;C") is tangential iff (A(x), v(x))= 0 for
all x E 3ß. We say that u E L2(ß) is in Hxi3n(ü) if

u E Hx({x G ß: dist(x, 3ß) > 1})

and Au E L2Xoc(Q,) for all tangential vector fields A.
Observe that if <p G C°°(ß), <p = 0 on 3ß, then for any vector field T, <pT is

tangential so cpTu is square integrable near 3ß if u E H{w. Thus if m G HXan then
dist(x, 3ß)w G //^(ß) so the rate at which nontangential derivatives may grow at
3ß is restricted. The next lemma shows that the above remarks are reversible.

Lemma I. If u E L2(ß) then u E //^(ß) if and only if the following conditions
hold:

(T)u E H\x\dis\{X, 3ß)> 1}.
(2) For any x E 3ß there are k — 1 tangential vector fields A1, A2,... ,Ak~x linearly

independent at x and so that Au E L2Xoc(ß) for i = 1,2,..., k — 1.
(3) For any x E 3ß there is a neighborhood % of x in R" and tp G C°°(9L) so that

<PLn9i = °> V<p(x) ^0 andcfu E Hx(%n ß).

Proof. The only if part is demonstrated by the remarks preceding the lemma. For
the if part it suffices to prove that, for every tangential vector field A, Au is square
integrable on a neighborhood of each x E 3ß. Given such an x and A we may
choose a neighborhood 91, of x in R" with 91, C C 9t of condition (3) and so that
A1, A2,... ,Ak~x, v form a basis of Ck for each x E %x, and <p(x) ¥= 0 for x G
91, \3ß. Then there are functions ay G C°°(9l,) such that

A = a0v + 2a/A-/

and a0 \^ n3B = 0. It follows that a0<p~] E C°°(9l,) so | Au |< c | cpvu \ + c2, | Aju |
is square integrable near x since <pv and Aj are tangential.    D

This lemma allows us to norm Hxm(ü) as follows. Let 0,, t„ X/ be the covering of
ß, diffeomorphisms, and cut off functions introduced in §2. As before, ul —
(X¡u) ° r¡~x for / > 0 so that u' has as its natural domain '$>_ = {x: \ x |< 1 and
x, < 0} with 3ß corresponding to xx = 0. The tangential vector fields which we
choose are given in local coordinates by Dk, k = 2,... ,n, and the function <p is xx.
Then
(4.1) H "Hk» = HXo"llff'(0) + 2 HX/"llffL(0)'

/>o

(4.2) IIX/"ll2WL(a) = llu'lli^., + \\xxDxu'\\2L^ , +  S \\Dk«'\\hl9.y
k 3=2
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The norms arising from different choices of 0,, r¡, x¡ are equivalent. The space
Hxlim(Q,c) is defined in the same way with ß replaced by ßc, and <S>_ replaced by <$ +
in (4.1) and (4.2). We say that u E H¡JR") if u E L2(R"), u\QE //tUß), u |0« G
Hxan(ílc). The norm is

1 wL(R") 1 «L(ß) + ll«l
<n(ß')-

For the problem of vanishing viscosity we will need higher order tangential spaces
(actually only H2m). These are defined as follows. For any integery > 0,

HiJ^Q) = {« G F2(ß): for any y tangential vector

fields A1,...,Af A'A2 • • • A>« G L2í!m(Ü),

and«G//^({xGß:dist(x,3ß)> 1})}.

For y = 2, the norm is

l//2(H) IXo"ll//2(S2)+   2   HX/Mllff^O).
/>0

HX/Wll«i11(B)=  H*I^1«'HhL(«-)+    2   H^*",llffL(»_)+  H«'!!!1«.)-
fc = 2

Theorem 5. There is a 8X> 8n and c > 0 so that if8>8x,X>0 and e > 0 then:
(1) /// G //^(ß) and ue is the solution of (2.1) which arises in Theorem I, then,

^IIVMjl2îL(a) + 52||«e||2ïL(a)<c||/||2ïL(a),

and iff E H2(Ü), then ue E //3(ß) and

edil V u,\\^(0) + ô21|«J j,L(a) « c|| / II Ir^o).

(2) If f E H^R") and ux is the solution of (2.9) which arises in Theorem 2, then
uxEH¡JRn)and

Ô2 II "A H k,<8) + AÔ u "A u HL(0«) < C|1 / !l «L(T)-

(3) ///G L2([0, F]: //.UR")) n //'([O, F]: L2(R")), g G ///JR"), *|a. = 0, and
ux is the solution of (2.12), (2.14) which arises in Theorem 3, then

ux E C([0, F]: ///JR")) n C'([0, F]: L2(R"))
a«i/

sup
o>si«r

I «x(O» k(R") +
d"A
3/ (0

£,2(R")

+ „(8°) + 3"x / x 2
a(/o ii«x(0IISs

c(»í»&Lc0)+fllA0llÍL(r-») +

di
L2(QC)

^(0
3/1 ' <Ä

Z.2(R")
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(4) If f and g are as in (3) with g |a<- = 0 and ux is the solution of (2.13), (2.14) which
arises in Theorem A, then ux E C([0, F]: //t'an(R")) n C'([0, T\. L2(Rn)) and

sup   ( II "a( OH <,(*"> + M\ux(t)\\2HUai) +
o«:rs;r

3«x / x 2

+ MI«x(0llffL(O') + X

Z/(R")

9«a,
3/

c »«»ffL(O) + fll/XOllkniR"-•'n a

(0

+
L2<a<)

9/
3/ (0 ifc

L2(R")

The proof of this theorem is rather technical and involves several ingredients. First
one observes that it suffices to prove the estimates (l)-(4) for solutions which are
known a priori to be quite smooth. The result then follows by applying the estimates
to suitably mollified (regularized) functions. Since such arguments are standard we
will omit them. To derive the a priori estimate there are two distinct ingredients. One
must derive estimates for all derivatives away from the boundary of ß and this can
be done by standard energy estimates (Lemma 2). To derive the estimates near 3ß,
we localize the problem so that ß becomes a half space bounded by the plane
xx = 0. By a change of variables we then cast the differential equations in a
convenient form (Lemma 3). Notice that the reductions are different from those used
in [1] or in §3.

The first step is the proof of the estimates away from 3ß.

Lemma 2 (a priori interior estimates). For any \p E ^(R") with \¡j = 1 on a
neighborhood of dû and (p = 1 — \p, there are constants 82 > 80 and c > 0 so that if
8>82,X>Q,e>0:

(1) If fand ue are as in part (I) of Theorem 5 and ue E C°°(ß), then

eôll((pM£)ll2ï2(n) + Ô2||<pw£||2ïi(£2)

;(ll/Hk»(Si) + ell iiell//¡a„(B) + e\\u Ell//,!a„(!i) + Mk,<a))

and

e&\\<put\\2H,w + 82\\<put\\2H: (Si) <c (H /H îra,(SÎ)+ e||M eUffLiS) \U e"J/L(Ö)

(2) Iff and ux are as in part (2) of Theorem 5 and ux E C(^(ß) D C^ß" ), then

82\\<puxU2H<W + AÔH<P«aH2//'W < cjll/ll2,,^ + II^II^r.)).

(3) ///, g, and ux are as in part (3) of Theorem 5 and ux E C(^([0, F] X ß) n
C$([0, T] X ßc), then
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SUp    (llWOlltf'fR") +  II<P9,"X(0HÍ2(R") + À||<]PKx(0l|2v.([0i,]><in)
o=sís;r

<c  llgllk ,(ß) fil /(OH k ,(0) + (0
L2(R")

+ II"a(0II2yL(r») + II9,"a(0IIÍ2(r»)^

(4) ///, g and ux are as in part (A) of Theorem 5 and ux G C(^([0, F] X ß) n
C(0)([0, F] X ßc), táen

sup   (H<pmx(0IIh'(S2) + A II WOIIW) + ll<p9,Mx(0lli2(n) + *M/«a(0HÍ*(B<))
0<r«£7"

c  ll«llîrLW+/ft    ll/(0Hk„(R») 9/
9/(0 L2(R")

+ ll"A(0llk„(R")+ll9,«A(0llÍ2(R")

+^ll«x(0HlrL(O«>+^ll3««x(')lli»(Q«))*j"

Proof of Lemma 2. These are all straightforward applications of the energy
method. We will sketch the proofs in cases (1) and (4); the others are similar.
Consider ut as in part (1). We have for any i,

where Me is a differential operator of order two whose terms of order two have
coefficients 0(e) and all of whose coefficients vanish in a neighborhood of 3ß.
Multiply this equation by dcpu^dXj and integrate by parts to obtain the estimate

9<P"e
3x,

+ 8
L2(ii)

d<puc
dx¡

d<pue

L2(S2)

3x, Z.2(0)
(|I/HhL(0) + elMtfLw + II«.IIjïL(0)).

Summing over /' yields the first estimate of part (1). The second estimate is derived in
the same fashion.

Next we pass to part (4). In this case, if v = 3(<p«x) with 3 = d/dx¡, i = 1,... ,n,
or 3 = 3(, then

(4.3) (F + Ai0(3/30)ü-/x,
where by explicit calculation of/x one finds

II /a(0IIl2(R",^^( à II «x(0ll hUb-)+ H «x(0IIhLW

+ II<p9í/(OHl2(R") + ll<p/(0W> + "/(OII^r»)).
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The standard energy method for (4.3) (note there is no problem with boundaries
since v = 0 near 3ß) yields the estimate of part (4). This completes the proof of
Lemma 2.    D

Next we describe the localizations required in the proof of the tangential estimates
near 3ß.

Lemma 3. Assume that the entries of the right-hand side of

ax(x) = U(x)
a+(x), 0, 0

0, a_(x),    0
10, 0, 0/

U*(x)

belong to C3(R"), ax(x) is a k X k hermitian matrix, U(x) is unitary, a±(x) is a
strictly positive (negative) diagonal matrix. Let ak(x) (2 =£ k «£ n) be (n — 1), C3(R"),
k X k, hermitian matrix-valued functions. Let e,,(jc) (1 < i, j *£ n) be n2, C2(R"),
k X k, hermitian matrix-valued functions, bk, k — l,...,n, be n C2 matrix-valued
functions. Assume that one has

(4.4)    2(M/'iy>>«2 l^l2   v(|„£2,...,Oe(R"r      («>0).
k = \

Assume that p(x) is a hermitian matrix-valued function with the properties:
p(x) = 0 ifx E R"_ ;_
p(x) |R» belongs to C2(R"+ ) and is strictly positive.
Then for any e > 0, 8 > 0, X > 0, the equation

(4.5) -e[Dl(eiJDJv) + bkDkv] + akDkv + 8v + Xpv = f

can be reduced to an equation of the same type but with "leading" coefficient ax
independent ofx. More precisely, there exists a matrix V (V E C3(R"), V~x E C3(R"))
such that v = V~xv is a solution of the equation

(4.6)     -eDfâjDjv) + ebkDkv + äkDkv + (8q + rx + er2)v + Xpv = V*f

which has the following properties:
(1) the matrices a¡ are hermitian symmetric;
(2) the operator £>-(e(- ■£),-) is elliptic in the sense o/(4.4);
(3) the matrix q is strictly positive;
(A) the matrix p is zero on R"_ and is C2(R+ ) and strictly positive in R"+;
(5) the matrices ëtJ, bk, äk, q, r¡ are smooth (belong to C2(R")) and äx is independent

of x.

Proof. We introduce the matrix

(4.7) V(x) = U(x)
}¡a+(x), 0, 0

0, J-a_(x),    0
0. 0,
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then we have

(4.8)
//,      0,     0'

äx(x) = V*(x)ax(x)V(x) =    0,     -/,    0
\0,      0,      0

Now we put v = Vv and we multiply both sides of (4.5) by V*. The system takes the
form (4.6). The properties (l)-(5) are readily verified.    D

The next result gives the basic a priori estimates for the tangential derivatives near
3ß. The proof is rather technical; the main ingredients are: (1) the localization of
Lemma 3, and (2) the observation that the localized operators nearly commute with
tangential derivatives in the sense that the commutator involves only first order
derivatives in the tangential directions.

Lemma 4. Assume that the coefficients e¡¡, ak, bk, p satisfy the hypotheses of Lemma
3. In addition suppose that a0 E C2([0, F] X "35: Hom^C*)) is hermitian and strictly
positive and that â0 is a C2 hermitian strictly positive matrix on [0, T] X "3o + , and that
â0 = 0 for x E "S_ . Then there are constants 83 > 80 and c > 0 so that for all X > 0,
8>83and0< e:

(1) Ifv E H\R" ) n HX(R" ), supp v E %_ satisfies

(4.9) -eDje.jD^ + akDkv + 8v = g,

then for i = 1 or i = 2,

(4.10) eS IIV v II 2„,n(R„ + 821| v II ̂} < Il g II ̂.

(2) Ifv E C°°(R"+ ) D C°°(R"_ ) n C(R"), supp v E <$> satisfies
(4.11) akDkv + Xpv + 8v = g,

then

(4.12) S2IMIk„(R") + MUv\\%U9+) < c||g||2„L(Rn).

(3)   If  v E C°°([0, F] XRL) n C°°([0, F] XR"+) n C([0, F] X R"),   supp v C
[0, F] X <S satisfies
(4,13) a0(dv/dt) + akDkvk + Xpv = g,

then if

^(0=H«(0l|2r/L(R")+ll9ü(0/9íllÍ2(R„)

and 0 < t < F,

yo

«^(Oj + cfl^)!!^,,,y lam     /

(4.14)
„(R+) +

3ü(í)
3/ ífe

L2(R"+)

+ 3i dy.
//(R")
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(4) If vE C°°([0, F] XRL) n C°°([0, F] XR^), axv E C([0, F] X R"), supp v C
[0, T] X % satisfies

(4.15) (a0 + Xâ0)(dv/dt) + akDkv = g,

then if

«^(O^H^Ollr/UR-^+^^O^Ili2^
(4.16)

+ M\v(t)\\2HUR„+) + X\\dv(t)/dt\\2^+)

andO^KT,

(4.17) S>(t) *£ c$(0) + c/o'||g(,)||2„L(in +

Proof. We prove (1) and (4). The proofs of (2) and (3) follow the same lines and
are somewhat simpler.

Let v be the solution of (4.9). We apply Lemma 3 to cast equation (4.9) in the
form

n

(4.18) -eDiëijDjV + äxDxv + 2 äkDkv + 8qv = g
k = 2

where äx is independent of x and

(4.19) »gil,,,   <c(||g||„.   + ||oll„.   +e||v»ll„. )•• / "      " tan v     "      " tan "tan " tan /

where here and in all estimates up to (4.25) the norms are over R" . Let Me be the
differential operator -eD¡e¡jDj + äkDk + 8q so that (4.18) takes the form Mtv = g.
Take the real part of the scalar product of this equation with v and integrate over
R"_ to obtain for 8 large

(4.20) e||vuHÍ2 + 01lí3||22«||g||L2||i3||L2.

Using the analogue of (4.19) with H^ replaced by L2 we find that the right-hand
side of (4.20) is dominated by (e/2)||VtJll^ + c||c|||i + cllgll^. This yields the
basic estimate

(4.21) ec5||vt;||22 + 52||t7||22^c||g||22.

To estimate II v || „■   and therefore || v || „> , we need estimates for || Dr> \\ j2, 2 < r < n,
"tan "tan ' ^

and \\xxDxv \\ Li. Let D represent either the operator xxDx or Dr for r > 2. Differenti-
ating (4.18) yields

(4.22) Me(Dv)=Dg+[Me,D]v.

Taking the real part of the L2 scalar product with Dv and using (4.21) to estimate
e[v, D]v yields for 8 large

(4.23) e\\Dvv\\2L2 + 8\\Dv\\2L2^c\\g\\2HL + Re(Dv,[Mc,D]v).

We will show that for each D,

(4.24) |Re(Dt3,[ME,/)]F>ü)|<c(||g||2/1   + \\v\\2H,   + ell Voll».  Hull,,'  V\ <*i v 'tt j /i \L'      "tan "tan ''tan "tan/

dt[s) L2(R")
ds.
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Using this estimate in (4.23), summing over all D, and estimating

2«IIV«llJfLll«llJlL<(e/2)IIV«ll|rL + c||«|lifL
yields the desired estimate.

To prove (4.24) we write
Me= -eDxexxDx + axDx + Ne,

defining the operator Ne. It is easy to see that

H[iV„i)]«||L2<c(«|IV«llHL+ll«llJfL + *ll«llLa).
This, together with (4.21), yields the desired estimate for \(Dv,[Nt, D]v)Li\. The
other commutator terms require more subtlety. Consider first the case D — Dr. Then

[-eDxexxDx + axDx, Dr] = -eDx(Drexx)Dx.

Using the facts that v and Drv vanish when xx = 0, two integrations by parts yield

(Dp, Dx(Drexx)Dxv) = (Dxv, Dr(Drexx)Dxv).

Now, by virtue of the symmetry of Drexx,

Re{Dxv, Dr(Drexx)Dxv)= \Dr(Dxv,(Drexx)Dxv)- (dxv, (D2exx )Dxv).

Since v vanishes for xr large, the integral of the Dr( ) term over R"_ vanishes and one
gets

\Re(Dxv, eDr(Drexx)Dxv)\^ ce\\v v\\2L2.

Consider next the case D — xxDx. Here, the critical commutator is

[-eDxexxDx + axDx, xxDx] = -eDxexxDx + axDx — eexxD2 + txx(D2exx)Dx.

Using the equation Mfo = g we have

(commutator) v = g — Nev + exx(Dxexx)Dxv — eexxD2v.

The scalar product of the first three terms on the right with xxDxv is estimated using
the Schwartz inequality and the estimate

IIAT^II^-I- ||ex1(Z>2e„)D1t3||L2<c(e|IVt5lUL+ Hull „L + 8\\v\\ 0).

For the final term write T = ~xxexx, so we must estimate | Re(F>,t5, eTDfv) \. The
symmetry of T implies that

Re(/>,£>, TD2v)={Dx(Dxv, TDxv)~ (Dxv,(DxT)Dxv).
Integrating over R"„ the integral of />,( ) vanishes since T = 0 when xx — 0. Thus

|Re(D,t5,£rD2t3)|<ce||vt5||22<||g||22.

The proof of (4.24) and therefore (4.10) with i = 1 is complete.
To prove (4.10) for /' = 2 one proceeds as before. With D' a second tangential

derivative, one differentiates (4.22) to obtain

(4.25) M(D'Dv) = D'Dg + D'[Me, D]v + [Me, D']Dv.
Next one takes the real part of the L2 scalar product with D'Dv. The crucial

estimate analogous to (4.24) is

\Re(D'Dv, D'[Me, D]v)\^ c(\\g\\2„L+ \\v\\2hL + e\\ V v\\ hL\\v\\ hL)
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with a similar estimate for the term coming from the extreme right-hand element in
(4.25). These estimates, which rest essentially on the symmetry of exx and a,, are
proved via integration by parts in a manner analogous to the proof of (4.24).

Next we prove part (4) of the lemma. Apply Lemma 3 to reduce (4.15) to a system

(4.26)
3u

(¿0 + Xä0)^- + 12äkDkv = gdi

where äx is independent of t, x and
9||\g(s)W„>,(R") +

(4.27)

dt ||//(r»)

c[\\g(s)\\„U*")

de
dt[ ' /,2(R")

+ llt>(0

+ 3? L2(R")
+ M\v\\hUxK) + X

/f,,„(R">

3t5
3/ ¿2(R"+)/

T,

Let Qx be the differential operator (ä0 + Xä0)(d/dt) + 2"xakDk; then the basic
energy estimate for Qx is Vw G C'([0, F] X R"_ ) n C'([0, F] X R"+ ) with äxw E
C([0, F] X R") and supp w E [0, F] X %.

(4.28)     r](t)^C71(0) + cf'i1(s) + \(w(s),Qxw(s))\ds,       0<
•'o

where
T,(S) = ||w(i)|||2(R„) + X||w(S)|||2(R,+).

Applied to w — v this gives for 0 *£ t < T,

|ô(Oll|2(RO + Mlt5(Olli2(R»+,
(4.29)

:(||t5(0)||22(R„) + A||i5(0)||22(R.,)+/,||g(,)||22(R„)^).

We want to estimate Z>rt3 for 2 =£ r < n,  dv/dt,  and x,Z>,t3.  Differentiating
equation (4.26) with respect to xr for 2 < r =s n or with respect to t, one finds

ßx(F>t5) = Z)g+[Ox,F>]t5
where D = d/dt or D — Dr, 2 < r =£ n. Since 5, is independent of t, x, the commuta-
tor satisfies | (v(s), [Qx, Dr]v(s)) | «= c$(s), so by (4.27),

(4.30)     HÇ?x(/)t5)(5)||22(in < c*(í) + llg(^)ll^L(R», + 119^(0/9^112^)

where $ is defined in part (4) of the lemma. Notice that äxDv = Däxv is continuous
on [0, F] X R" so we may apply the basic energy estimate (4.28) with w = Dv.
Similarly, differentiating equation (4.26) with respect to xx and multiplying by xx
yields

Qx(xxDxv) = xxDxg+[Qx,xxDx]v.
Notice that even though Dxv need not be continuous on R", xxDxv is and we may
apply the basic energy estimate (4.28) with w — xxDxv. Toward this end observe that

I (xxDxv(s), [Qx, xxDx]v(s)) |< c<P(s) + \ (xxDxv(s), axDxv(s)) | .
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However, the differential equation (4.26) shows that | (xxDp, axDp) |< cO(j) +
II g(s)\\ \\xvy so with (4.27) this yields

(4.31) \(xxDxv,Qx(xxDxv))\< c<b(s) + c\\g(s)\\2HUxry

Apply the basic identity (4.28) to Dp, 2 < r < n, dv/dt, and xxDp using (4.30)
and (4.31) to estimate the result of applying Qx to these functions. Adding the
resulting expressions to (4.29) yields (4.17) and thus completes the proof of Lemma
4.    D

End of Proof of Theorem 5. Using the estimates of Lemma 4 for the localiza-
tions u'e, u'x, I > 1, and the estimates of Lemma 2 for XoME> Xoux a°d summing yields
the estimates of Theorem 5. This process has only one hitch, that is, for the u'c the
right-hand sides of the localized equations come from the right-hand side of the
equations defining ux or ue and terms from the commutator of multiplication by x'
with the differential operators entering the equations defining wx, uc. Both types of
terms enter in the terms called g in Lemma 4. The commutator terms are lower
order. However, the commutators may have large coefficients. Nevertheless, they can
be estimated by using the basic energy estimates (3.1)—(3.5). In deriving the //¿n(ß)
estimate in the first part of Theorem 5, the commutator terms are estimated by using
the Hx¡¡n estimates.    D

5. Strong convergence and the Hx/1 ~v estimate. In this section we show how the
tangential regularity of Theorem 5 can be used in the proofs of Theorems 1-4. First,
using energy identities, the proofs of Theorems 2 and 4 are given. The proof of
Theorem 3, which is similar to these, is omitted. Finally, we prove a uniform
//|/2_1'(ß) bound for the solutions ue of problem (2.7), and the strong convergence
follows easily. We call attention to the Hx/2~n(Q,) bound which is not an easy
consequence of Theorem 5 and is of independent interest.

Proof of Theorem 2. Our notation is the same as in the statement of Theorem 2.
Since the operators 81 + L + XP are uniformly strictly accretive for 8 > 80, X > 0, it
suffices to prove the assertion of the theorem for a single 8 > 80. We will assume
that 8 > 5, where 5, is as in Theorem 5. Since the inverse operators (81 + L + XP)~X
are uniformly bounded for X > 0, it suffices to prove the convergence wx -> u for/in
a dense set S in L2(R"). We take &= //^(R"). Theorem 5 then yields a uniform
estimate || ux || H\ (R»j < constant independent of X.

The standard partial hypoellipticity argument shows that the map t>t-> Ap |3a is
continuous from the Banach space, {v E L2(ß): Lv E L2(ß)} with norm
v i-» || v || L2(S2) + ||Lu||L2(S2), to //~1/2(3ß) (see [1]). Thus the weak convergence
ux^u in L2(ß) and the differential equations (8 + L)ux=f in ß imply that
AVU\ \do.^Apu |3ß weakly in //~1/2(3ß). The same differential equations and the
fact that {ux: X > 0} is bounded in //¿„(ß) imply that [A„ux}x is bounded in H](T)
where T is any compact neighborhood of 3ß on which v is smooth. Thus [Avux |aa}x
is bounded in //l/2(3ß) and therefore precompact in L2(3ß). It follows that
A,ux la -> A„u |3S2 strongly in L2(3ß).
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We next show that, as X -» oo,

(5.1) f  (A„(ux-u),ux-u)do^0.

First to see that this integral is meaningful, let K(x) for x G 3ß be the hermitian
operator on C* defined by K(x) \nuXX(Ay) = 0, K(x) |rg(/M = (A, |rg(/Wr'. Then KA
= / on rg Av, so the integral is equal to

f  (Av(ux - u), KAv(ux - u)) da,
JdQ

which makes sense since A„(ux — u) E L2(3ß). In addition, the convergence (5.1)
follows from the fact that Av(ux — u) -» 0 in L2(3ß).

The classical energy identity is

2(0 - 80)\\ux - «||22(S2) < ([(« + L) + (8 + L)*](ux - u), ux - u)L2(Çl)

= Re((5 + L)(ux- u),(ux- u))Li(it) + j  (A„(ux- u),ux- u) do.

Thus, the convergence of ux to u in L2(ß) follows from (5.1) and the differential
equations (8 + L)(ux — u) — 0 in ß.    D

Proof of Theorem 4. As above, it suffices to prove that ux -> u in
C([0, T\. L2(ß)) for/G L2([0, T\: HlJR")) n Hx([0, T]: L2(R")) and g G //'JR")
with glßc = 0 since these are dense subsets of L2([0, F] X R") and {g G L2(R"):
g \QC = 0), respectively. Then by Theorem 5, {ux: X > 0} is bounded in
C([0, T\. HxtJRn)) n C'([0, T\. L2(R")). As in the proof of Theorem 2, Avux-Avu
weakly in H~x/2((0, T) X 3ß), and the tangential regularity implies that {Avux}x is
bounded in Hx((0, T) X T) where T is a compact neighborhood of 3ß. Thus {Avux}
is bounded in H]/2((0, T) X 9ß), hence precompact in F2((0, T) X 3ß) so Avux -*
Avu strongly in L2((0, F) X 3ß). For this problem, the energy identity in [0, /] X ß
for 0 < t < F yields

UK - u)(t)\\20w <cf\\(ux - u)(s)\\2L2Wds
Jo

+ ï(( (Av(ux-u),ux-u) dtdo
L •'•'[0,;]x3i2

cf \\(ux - u)(s)\\2Limds + C\\A V(UX - w)IIÍ2((o,0X3C)-
Ja'0

Gronwall's inequality shows that

H "A - MHc([0,r]:L2(S2)) < C\\AXUK ~ ")H Z.2((0,r)x3ii)

and the proof is complete.    D
The strong convergence asserted in Theorem 1 is an immediate consequence of

Theorem 6 which asserts the boundedness of {ue: 0 < e} in Z/1/2-,,(ß) for any
Tj > 0. This result is sharp in the sense that if s > \ then wE will not, in general, be
bounded in /F(ß). To see this, observe that if uc were bounded in /F(ß) we would
have wE — u in /F(ß) so the trace theorem yields ut |aa ^ u |9ß in /F~1/2(3ß). Since
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ue |3fi = 0 it follows that u solves the boundary value problem (L + 81 )u = f in ß,
u[àa = 0. Unless Av(x) ^ 0 for all x E 3ß, there exist f E L2(ß) for which this
boundary value problem will have no solutions. Thus, except when Av is negative, we
cannot expect to have {ut: e 3= 0} bounded in /F(ß) for any s > {. To see whether
there is boundlessness in Hx/1 we consider the special case

(eD2 + Dx)ue = 1,       0<x<l,

«£ = 0,       x = 0,l,

with explicit solution
u£x) = x - (I - e'x/c)/(l - e-x/f).

In this case ue is bounded in Hx/1 away from x = 0 but is not bounded in
Hx/2(0, a) for any a >0.

The statement and proof of Theorem 6 are complicated by the fact that 3ß may be
characteristic for L. In the noncharacteristic case one has llwell//'/2-i(a) <
c||/ll^i (a). In the characteristic case the components of ue in the nullspace of
(Ev ■ v)~x/2Ap(Ev ■ v)~x/2 may be less smooth than the others. To compensate for
this correspondingly more regularity of these components of/is required in order to
bound the Hx/2~v norm of uc.

Theorem 6. Suppose Q<i\and P0 = (ptT0 E C0'(ß: Hom(C*)) where <p E C°°(R")
is supported near 3ß, <p = 1 on a neighborhood of 3ß, and ir0 is orthogonal projection
on nullspace (Ev ■ v)~x/2Ar(Ev ■ v)~x/2. Then there are positive constants ô4 s* ô0
and c so that if0<e,8>84 and ue is the solution of (2.1) then

(1) Regularity of (I - P0)ue: for all f E //t'an(ß),

||(7- P0)ue\\Hv2-HQ) < c\\f\\HLm.

(2) Regularity ofP0ue: for allf E //.^(ß) with P0f E //'(ß),

(5.2) II^o"eII//'/2-(«)<c(H/IIhL(0,+ II Po/II//'(O))-

Remark. (1) The content of the assertions of Theorem 6 is independent of the
choice of P0, since if F0 and P0 are equal on 3ß, then for any g G //^(ß),
(P - P°)g E H\Q) and ||(F0 - /30)gll„.(0) < c||g||HL(0). In particular the right-
hand side of (5.2) defines a norm and a corresponding Banach space which, up to
equivalence of norms, does not depend on F0.

Proof of Theorem 1 assuming Theorem 6. As in the proof of Theorems 2 and
4, we may assume that 8 > 8X and / G //'(ß) n //¿^(ß). If ß is bounded it follows
from Theorem 6 that (we: 0 < e} is bounded in Hx/2~r>(ü) and therefore is
precompact in L2(ß). Since ue -* u weakly in L2(ß) it follows that ue -> u strongly in
L2(ß).

If ß is not bounded, choose <p G C°°(R" ) such that <p vanishes on a neighborhood
of ß' and <p(x) = 1 outside some compact set. The above argument proves that
ut -> u in L2Xoc(il). We complete the proof by showing that yuc -* (pu in L2(ß). It
suffices to show that {<pt/E} is a Cauchy sequence in L2(ß) since we already know
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that <puE^(pu. Subtract equation (2.7) for one value e, of e from the same equation
for a different value e2, multiply by <p2(ue — uc ) and integrate by parts to find

(8 - 80)\\<pue¡ - <pwj|22(ß) < c(e,II«„ll«L(0) + e2II"£2II<„("))■

Only the tangential norms occur since qp = 0 near 3ß. By Theorem 5 the right-hand
side converges to zero as e, and e2 converge to zero and the proof is complete.    D

Proof of Theorem 6. Part (1). By Theorem 5 we see that if 8 > 8X, || ue\\ H¡ (C¡) <
c\\f\\H\ (ß). To prove the theorem it suffices to show that the localizations,
u't = (X/"e) ° t/\1 - 1,2,..., as in (4.1), (4.2), satisfy

(5-3) \\(l-PoH\\H^-HR.:L^-^<c\\f\\HL

wherep0 = F0 ° t~'.
Theorem 5 shows that u[ is bounded in L2(R_ ;//') and ex/2u[ is bounded in

//,(R_ ;//') where for ease of reading we abbreviate HX(R"X) to Hx when confu-
sion is unlikely. Spaces L2(R"~') and H~X(R"~X) will be treated similarly. We may
write the differential equation satisfied by u[ with all the tangential derivative terms
on the right-hand side to obtain

-eDxexxDxu[ + axDxu'e + 8u'e = gE

with llg£ll¿2(R .l2) =£ c\\ f \\ fj^tQy Let we = e\{2ule (the / dependence of we is sup-
pressed); then if à — e\x/2axe\x^2, we have

(5.4) -eF)2wE + à/J)|w£ + Ôen'H'f = ge   in®_

where gE is bounded in the same way as gE. Extend exx and ä from <S_ to R X R"_1
to be C2 functions independent of x for | x \ large and so that exx is positive definite
for all x. Extend wt and gE to all of R X R"_l by setting them equal to zero in
R+ X R"~ '. Denoting the resulting functions by the same symbols we, gE, we have

(5.5) -eD2we +äDxwe + 8e\-xxwc = gc +8(xx) ® eDxwe(0)    inRXR""1

where

eDxwe(0) = lim Dxwe(xx)
x,s0

exists in HX/2(R"~1) since we E H2(R_ XR"-1). The next lemma studies the regular-
ity of solutions to this equation. A crucial idea is to use the multiplier äDxwe.

Lemma 5. There are positive constants c and 85 so that for any s G [-1,1],
r G [-1,1], 8 > 85, 0 < e < 1, and g G HS(R: Hr(Rn~1)), there is a unique v G
HS+2(R: Hr(R"~x)) such that

(5.6) -eD2v + äDp + 8e\-xxv = g

and, in addition,

(5.7) llull//s(R:H'(R"-')) < c8~l\\g\\H.(gL.Hr(JK.-iyi,

(5.8) Hàull//,+ .(R://,(R»-i))<c||g||//I(R://,(R.-i)).
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Proof of lemma. Except for estimate (5.8) this result is standard. The estimate
(5.7) for s = 0 and r = 0 is proved with the multiplier v and for r = 1 with
multiplier 2j=2 D2v. By interpolation the result follows for s = 0 and 0 < r < 1. For
s = 1 the multipliers D2v and 2j=2 DxD2v yield estimate (5.7) for r = 0 and 1,
respectively. By interpolation (5.7) follows for 0 < s < 1, 0 < r *s 1. The values
-1 < 5 < 0, -1 < r < 0 are obtained by duality.

The critical additional step in proving (5.8) is to use the multiplier äDp to obtain

-eRef       (Dx2v,äDp)+ f       HâD.ull2
•'rxr" ;Rxr"

<c(fi||tj||L2(Rxr-i)+  llgllL2(RXR»-|))(llaF>,ü||í.2(RXR„-,))

The right-hand side is dominated by c\\g\\^■n^jp-^WäDpW^rnx«1) Dv virtue of
(5.7) and

-eRef (D2v,äDp)=-^ f (Dp,(Dxä)Dxv)•/R_XR"-' ZyR_XR"-'

is bounded by a constant times II g"ll z.2(rxr"_1) dv tne standard energy estimate
(multiplier = v). This proves (5.8) for s = r — 0. For s = 0, r = 1 the multiplier is
2"=2 äDxD2v and for s — 1, r — 1, the multiplier 2"=2 äD\D2v is used. The general
case follows by interpolation and duality.    D

We can estimate the trace Dxwe(0) using

\\eDxwe(0)\\Hw2(sr-^<c\\eDxwe\\L2tR_.H,)\\sDfwe\\L2ill_.L2).

The basic tangential regularity estimate in part (1) of Theorem 5 implies that

e,/2\\DxwE\\L2(R _:Hl)<c 11/11 HUa)

and the function eD2we is estimated using the differential equation (5.4):

HeZ>2wE||¿2(R_.0) = \\äDxwe + 8euxwe - ge\\Li(R_:Liy

The basic energy estimate (3.1) for ue implies that the norms of 8w and el/2Dxw are
bounded by c 11/1| „i .Thus,

"tan

H ̂>JI¿>(R_ :£.')< CE"'/2 U/H „L(ß).

In total, ||e7),H>e(0)|| „v^-i, < e|| /1| H>m,ay Then> for any 0 < r/ < ^,

Hö(^,)®eF>livE(0)||r/-1/2-,(R;//I/2(Rn-1))<c||/||//L(n).

Thus, the right-hand side of (5.5) is bounded in 7f_I/2-,»(R: L2(R"   ')) and Lemma
5 yields the important estimate

llflwj ffV2-,(R:L2(R.-l)) < C|| / || HUa),

which implies (5.3) and therefore completes the proof of part (1).    D
Remark 1. If / G //^(ß), reasoning as above shows that gE in (5.4) is uniformly

bounded in L2(R_ : HX(R")) and IIeF»,w(0)|| ff3/2(R»-i) < c|| /II Him(üy Thus we have a
bound on gE 4- 8 ® eDxw(0) in H~x/2~ri(R: //') and the corresponding estimate

(5.9) ||(J - p0)u'e\\ ffi/2-,(R_^idp-i,, < c|| / II „2 (0)
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follows if a, is three times differentiable and exx is twice differentiable. This estimate
is needed in the proof of part (2).

Proof of Theorem 6. Part (2). In the notation of the proof of part (1) we need to
prove

(5.10) llFo^ll//'/2-^:L2)<c(||/||//2an(S2)+ ||Ro/H/f'(D))-

The basic idea is that multiplying equation (5.4) by F0 eliminates the term äF>,wE and
P0we can be estimated from the resulting equations.

First, observe that taking a different (finer) open cover 0¡ if necessary and making
a smooth orthogonal change of basis in C* we may suppose that for z E Ck and
x E suppwE that p0z = tt0z = (zx, z2,.. .,zh0,0,...,0).

Next, we make a closer analysis of the equation satisfied by we. In (5.4) all
tangential derivatives were absorbed in gE; here we will separate the term 2"äkDkwE
so

n

(5.11) -eD2we + 2äkDkwe + 8ëuxwe + bwe = he + ke
i

where b is bounded independently of 8, and ke denotes the terms other than -eD2w
which contain a factor of e. For these we have the trivial estimate

ll£Jl£.2(R_://l)SSCe||Vu||//2an.

The tangential regularity yields

(5.12), HMV^ctf-Ml/Hîra.«»,
and

(5.12)2 || PohE\\ ffi(R_xR"-') < ell p0f II ff.(a).

The equation for we is broken into the components in range p0 and the rest.
Toward this end, let px — I — p0, vvE = pxwe, w° = p0we. The remark following the
proof of part (1) shows that

II w¡\) //|/2-'(R_://'(R"-1)) ̂ ell / II //■'„(n)'

so for y > 2,

WajDjw] || //'/2-,(R_;Z.2(Rn-,)) < ell /1| „2an(a).

The üjDjW® part of OjDjW is written as (note Djp0 — 0)

ajDjW? = ajDjP2w° = ajPoDjW?.

Thus, multiplying (5.11) by p0 yields
n

-e/)2vwE° + 2 PaCijP0DjW° + 8p0ex-xxp0w? + p0bw°

(5.13) '  , " \= Po\K + K- **r>.' - H' - 2 ajDjwl   .
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Since p0 is just projection on the first / variables, we may let v = ((we0),,... ,(w°)¡)
to obtain v E HX(R_ XR") n /F2(R_ XR") and

n

(5.14) -e£>2t; + 2 rj(x)DjV + 8q(x)v + b(x)v = g
7-2

where g is the first / component of the right-hand side of (5.13), r, b, and q are
C2(R": Hom(C')) with r and q hermitian, q positive definite and all independent of
x for | * | large. We use two estimates for the solutions to (5.14), both valid
uniformly for 0 < e and 8 large,

(5.15) 5|l«ll//l/2-,(R.Z,2)<c||g||//./2-,(R:L2),

(5.16) eôll«Ni,i(R_:i.2:) ̂  c||g|li2(R XR„-,).

Postponing the derivation of these estimates, we complete the proof. Write
g = gx + g2 where g, is the first / components of he — 8exxxw¡ — bwx — 2"^2 ajDjw]
and g2 the same components of ke and let vx and v2 be the corresponding solutions
of (5.14) with ü, G 77'(R_ : L2); then v = vx + v2 and (5.12), together with (5.16)
show that

Sllu2ll/,'(R.:Z.2)<Cll/ll//12i„(Ö)-

To estimate vx we use (5.15). This requires an estimate for g, in Hx/2~n(R_ : L2).
Inequality (5.12)2 boundsp0he in this space. On the other hand (5.9) shows that

llôer.y1 +H1 + 1 aJDyc\\H>/2-.(R_..L2)<c(8\\f\\HL+ \\f\\HL).
j>2

This together with the estimate for p0he yields

II g\ II ff'/2(R_:l?) ̂C8{\\ p0f || w>(a) +11/11 hUO))-

Estimate (5.15) yields

\\VX\\Hl/2-,{jl_.L2)*ic(\\p0f\\ff>(a)   +   11/11^(0)).

Adding the estimates for vx and v2 yields, for large 8,

II « II W'/2-n(R   :Z.2, ̂  c(|| p0f II H,çQ) +   || / || „2an(a)) .

Since

HFoh'£II//|/2-'(R„:L2) =  Ht'lli/'/i-^R^L2).

this proves (5.10). Thus, to complete the proof of Theorem 6, it suffices to prove
estimates(5.15) and (5.16) for the solutions!; G//'(R   XR""1) of (5.14).

The proof of (5.15) proceeds in several steps, each one an application of the
energy method with a different multiplier. First, one shows that, for 8 large,

(5.17) 8II vII L2(R :¿2, *£ c||gil L2(R:Z_2).
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This is proved by multiplying (5.14) by v and integrating over R_ XR" ' to
obtain

e/|/)1t;|2 + e(ô-e)/|tJ|2<(/|«|2)'/2(/|g|2),/2

which also proves (5.16). Next, one shows that

(5.18) 9Mà>QL.:L>)*cWg\\&VU:L*y

This is proved using the multiplier D2v. Interpolating between (5.17) and (5.18)
yields

(5.19) 8lle||„,<c||gll„,,       O<0<1,
where He is the interpolation space [F2(R_ : L2), HX(R : L2)]e. For 0 < r/ < { and
0 = {- - ti, He = HX/2~\R_ : L2) so (5.19) for this value of 0 is exactly (5.15) and
the proof is complete.
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