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Abstract

In this paper we present a method for decomposition
of Bayesian networks into their maximal prime sub-
graphs. The correctness of the method is proven and
results relating the maximal prime subgraph decompo-
sition to the maximal complete subgraphs of the moral
graph of the original Bayesian network are presented.
The maximal prime subgraphs of a Bayesian network
can be organized as a tree which can be used as the
computational structure for LAZY propagation. We
also identify a number of tasks performed on Bayesian
networks that can benefit from maximal prime sub-
graph decomposition. These tasks are: divide and
conquer triangulation, hybrid propagation algorithms
combining exact and approximative inference tech-
niques, and incremental construction of junction trees.
We briefly compare the proposed algorithm with
standard algorithms for decomposition of undirected
graphs into their maximal prime subgraphs. The dis-
cussion shows that the proposed algorithm is simpler,
more easy to comprehend, and it has the same com-
plexity as the standard algorithms.

Introduction
Maximal prime subgraph decomposition is also known
as decomposition by clique separators and has been
used to find efficient solutions to a number of graph
theoretic problems such as graph coloring and identi-
fication of maximum cliques (Tarjan 1985). The max-
imal prime subgraph decomposition is used in divide
and conquer algorithms to speed up the solution of
hard (Af79-complete) graph problems. Later, maximal
prime subgraph decompositions have been used in the
analysis of contingency tables (Darroch, Lauritzen, 
Speed 1980) with the goal of generating a compact rep-
resentation of a domain for use in decision support sys-
tems (Badsberg 1992).

Within the framework of Bayesian networks a maxi-
mal prime subgraph decomposition can be exploited as
the computational structure for LAZY propagation and
as the basis for a divide and conquer algorithm for tri-
angulation, hybrid propagation algorithms combining
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exact and approximative inference techniques, and for
incremental construction of junction trees.

(Tarjan 1985) proposed a method for identification 
clique separators. This method has later been modified
by (Leimer 1993) and (Badsberg 1996). The method
presented by (Leimer 1993) is optimized in the sense
that a graph is decomposed exactly into its maximal
prime subgraphs which is a unique minimal derived
system of prime subgraphs. The method presented
by (Leimer 1993) is a little faster than the algorithm
presented by (Tarjan 1985) even though the time com-
plexity remains the same. In (Badsberg 1996) the
method by (Leimer 1993) is extended to hypergraphs.

The method we propose is integrated into the well
known procedure for construction of junction trees for
Bayesian networks. We extend the construction proce-
dure with two simple algorithms, one that makes the
triangulation minimal and one that constructs a clus-
ter tree from the junction tree by recursively aggregat-
ing cliques connected by incomplete separators (in the
moral graph) to larger clusters. We state and prove that
the resulting clusters are the maximal prime subgraphs
of the moral graph of the Bayesian network.

Empirical results of the method are reported and the
resulting algorithm is compared to standard algorithms
for decomposition of undirected graphs.

Definitions and Notation
We shall assume that the reader is familiar with ba-
sic concepts and terminology of Bayesian networks and
graphs. This section is therefore restricted to an intro-
duction of central definitions and the notation used in
the paper.

Bayesian Networks and Junction Trees

A Bayesian network N = (G, 79) consists of a directed
acyclic graph G = (V, E) and a set of conditional proba-
bility distributions 79. The process of adding undirected
edges e = (Y1, Y2) to E for all pairs of not already con-
nected parents of each node and dropping the directions
of all directed edges is referred to as moralization. The
result is the moral graph GM = (V, E~U M) where ~ i s
the set of edges produced by dropping directions of the
edges of E and M is the set of edges added during mot-
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alization. A moral graph GM is triangulated if every
cycle of length greater than 3 has a chord. The pro-
cess of successively adding a set of edges T to a graph
G -- (V, E) such that G -- (V, E U T) is triangulated
is referred to as triangulation. The set of edges T is
called the triangulation and the edges of T are called
Jill-in edges. Thus, the triangulated graph of a directed
acyclic graph G = (V, E) is GT = (V, ~ UM U T)

A triangulation T is minimal, if removal of an edge
e E T results in an untriangulated graph. There ex-
ist mettlods for finding triangulations with a minimal
number of fill-in edges such as for example the LEX
M algorithm (Rose, Tarjan, & Lueker 1976) (with time
complexity O(ne)). Heuristic methods for triangula-
tion are in general not guaranteed to produce minimal
triangulations. A non-minimal triangulation T can be
made minimal by applying a recursive thinning algo-
rithm, that removes redundant fill-in edges added dur-
ing triangulation. Such an algorithm with time com-
plexity O(ITI">) is described in (Kjmrulff 1993).

If the nodes V of a graph G can be partitioned into a
triple (W, S, V’) of non-empty sets where S is a com-
plete separator of VI and V" in G such that every path
from a node Y~ E V~ to a node Y" E V" includes a node
in S, then G is decomposable (or reducible) otherwise G
is prime (or irreducible). Notice the terminology. In the
statistical community a graph G is said to be decom-
posable if G and all its subgraphs can be decomposed
recursively until all subgraphs are complete. We refer
to a recursively decomposable graph as a triangulated
graph.

A cluster tree representation T of a graph G = (V, E)
is a tree where the nodes of T axe subsets (clusters) 
V and the union of all clusters equals V. The edge S
between two clusters C~ and C" of 7" is C~ I-1 C", the
separator of C~ and C". A junction tree (also referred
to as a Markov tree or a join tree) is a cluster tree with
the additional property that every cluster C on the path
between any two clusters C’ and C" includes C’ fq C".

A clique is a maximal complete subgraph. A clique
decomposition of a graph G with respect to a triangu-
lation T consists of all cliques of GT. A clique decom-
position can be represented as a junction tree 7"T where
the clusters are tile cliques of GT.

A junction tree representation of a Bayesian network
N = (G, 79) can be constructed by the followin~ steps:
i) Moralize G to obtain GM, ii) Triangulate GM to ob-
tain GT, iii) Organize the clique decomposition induced
by GT as a junction tree 7".

Maximal Prime Subgraphs

A subgraph G(U) of a graph G = (V, E) is maximal
prime subgraph of G, if G(U) is prime and G(W) is de-
composable for all W with U C W C V. The maximal
prime subgraph decomposition (MPD) of G is the set 
induced maximal prime subgraphs of G.

Notice that a clique decomposition of a graph G with
respect to a triangulation T is a maximal prime sub-
graph decomposition of GT.

A maximal prime subgraph decomposition junction
tree representation 7"MPD of G is a junction tree for
an MPD where the nodes are the maximal prime sub-
graphs of G. A maximal prime subgraph decomposition
junction tree representation of a graph always exists.

In the following section we give an algorithm for the
construction of a maximal prime subgraph decomposi-
tion junction tree and a proof of the correctness of the
algorithm.
Example 1 [Asia]
The single most famous example of a Bayesian network
is the Asia network introduced by (Lauritzen & Spiegel-
halter 1988). The graph of the Asia network is shown
in figure 1.

Figure 1: A Bayesian network for the Asia example.

The maximal prime subgraph decomposition of the
(moralised) Asia network is shown in figure 

Figure 2: The maximal prime subgraph decomposition
of the (moralised) Asia network.

[]

Identifying Maximal Prime Subgraphs
The method we propose for identification of maximal
prime subgraphs of a Bayesian network N = (G, 79)
is based on a junction tree representation 7- of G. A
precondition of the method is that the triangulation T
from which 7" is constructed is minimal. This can be
obtained directly through an algorithm such as LEX
M that guarantees a minimal triangulation or, alter-
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natively, recursive thinning can be applied to remove
redundant fill-in edges.

The main contributions of this paper is the algorithm
for constructing a maximal prime subgraph decomposi-
tion junction tree 7-MPD by aggregation of cliques con-
nected by separators which are incomplete in the moral
graph and the proof of correctness of the algorithm
which follows below. A Bayesian network N = (G, P)
is decomposed into its maximal prime subgraphs as fol-
lows. Let GM be the moral graph of G, let GT~" be the
graph corresponding to a minimal triangulation Train of
GM, and let 7-mi,~ be a junction tree corresponding to
the clique decomposition induced by GT~’". The maxi-
mal prime subgraphs of GM are formed by aggregating
adjacent cliques connected by a separator which is in-
complete in GM. The algorithm is:
Algorithm 1 [Construct MPD Junction Tree]
Let N = (G, ~o) be a Bayesian network. Let 7"mi~ be
a junction tree representation of N constructed from a
minimal triangulation Train of GM. If Construct MPD
junction tree is invoked on Tmi,~, then:

1. Set 7" = Train-
2. Repeat
(a) Let S be a separator of I connecting C’ and C".
(b) If GM(s) is incomplete, then aggregate C’ and

C" in T’.
Until no separator S of 7" such that GM(s) is in-
complete exists.

3. Return TMPO = T’.

[]
In order to prove that TMVD is an MPD junction tree

for GM the following lemma is needed:

Lemma 1. Each clique C of Train is a prime subgraph
of GM.

Prvof. By contradiction. Let C be a clique in Train.
Assume C is reducible in GM. Then there exist a com-
plete maximal set S C C such that (C’,S,C") is a
decomposition of C for some C’, C" C C, see figure 3.

c

Figure3: A decomposition of a cluster
(c’,s,c").

C into

But this means that the fill-in edge between Y’ E
C’ and Y" E C" is redundant, contradicting the fact
that the triangulation is minimal. Thus C is a prime
subgraph of GM. []
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Next, we prove the main theorem of the paper.
Theorem 2
The clusters of TMPD constructed with algorithm 1 are
exactly the maximal prime subgraphs of GM.

Proof. First we prove that every separator of 7-MPD is
a complete separator in GM. Let S be a separator of
TMPD and let C’ and C" denote the union of all clusters
on each side of S, see figure 4.

Figure 4: Ct and C" denote the union of all clusters on
each side of S.

The separator S is complete in GM by construction
and due to the junction tree property S -- C’ N C".
Hence, (C’ \ S, S, C" \ is a decomposition of GM.

Next, we prove that all clusters of "]-MPD are prime
subgraphs of GM. Let C be a cluster in TMPD which
is a clique in T,n~n. By lemma 1, C is a prime sub-
graph of GM. Now, let C be a cluster of TMPD con-
structed by aggregation of cliques C1,..., Cn connected
by incomplete separators S1,...,Sn-1 in Train. Using
lemma 1, a decomposition of Ci (for 1 < i < n) cannot
exists. Next, assume there exists a complete separa-
tor S = C~ N C" of two subsets C’, C" C C such that
C = C~ U C". There are three different ways in which
S can be related to C1,... ,Ca and Sx,... ,Sn-l:

1. S could be equal to Si for some 1 < i < n- 1, but
flSi : S = Si as S~ is incomplete for all 1 < i < n - 1.

2. S could be a subset of Ci for some 1 < i < n, but
/-~C~ : S C Ci as Ci is a prime subgraph for all
l<i<n.

3. Due to steps 1 and 2, it must be the case that 3X, Y E
S : xeCi, X¢C~,Y¢Ci,YeC~ for some i and j
where 1 < i <nand 1 < j < n, but X ¢ adj(Y)
implies that S is incomplete.

Thus, the complete separator S cannot exists. Thus,
C must be a prime subgraph of GM.

Finally, C is maximal as all separators of TMPD are
complete separators of GM. []

Corollary 3. The maximal prime subgraph decompo-
sition of GM is unique.

This result has also been proved by (Leimer 1993),
but here it follows directly from the proof of theorem 2
as all separators of 7-MPD are complete separators in
GM and no other complete separators exist. Although
of minor importance, we mention that 7~MPD is not nec-
essarily unique. If two separators Si and Sj are identical
there exists at least three clusters sharing the same set
of nodes and they can be singly connected arbitrarily.

We can establish some further results relating the
clusters of "]-MPD to the cliques of GM.



Proposition 4. The clusters of TMPD formed by ag-
gregation of cliques of Train are not cliques in GM.

Proof. If C is a cluster in "-FMPD and not a clique in
Train then there exists a separator S C C that is not
complete in GM. Therefore C cannot be complete in
GM. []

Theorem 5
The clusters of 7-AIPD that are cliques of Train are also
cliques of GM.

Corollary 6. If C is a clique of Train and all separators
connected to C are complete in GM, then C is a clique
of GM

This follows directly from theorem 5 as the cliques of
corollary 6 are exactly the clusters of theorem 5.

The condition in corollary 6 that all separators have
to be complete in GM is necessary, which follows from
the proof of the theorem. The proof can be found in
(Olesen & Madsen 1999).

The MPD Identification Algorithm

The purI)ose of the previous sections was to introduce
concepts, establish theoretical results including a proof
of the correctness of the algorithm, and describe an al-
gorithm simplifying the description of the main algo-
rithm of the paper:
Algorithm 2 [Construct Maximal Prime Sub-
graph Decomposition Junction Tree]
Let N = (G,79) bc a Bayesian network. If Construct
ma:l:imal pr’irae subgraph decomposition junction tree is
invoked on G, then:

1. Moralize G to o/)tain G/tt.

2. Triangulate GM to obtain GT.

3. Thin out redundant fill-in edges (only performed if
necessary) to obtain GT’.

4. ()rganize the clique decomposition induced by GT’ as
a junction tree T.

5. Construct the MPD junction tree 7"MPD (algo-
rithm 1).

6. Return 7~1pn.

[]
Using the above algorithms the organization of the

junction tree T also determines the organization of the
maximal prime subgraph decomposition junction tree
7)41,r). It is, however, possible to organize TMPD inde-
pendently of tim structure of T.
Example 2 [Asia]
A junction tree for Asia constructed with moral links
(T, L) and (E, B), and fill-in edge (B, L) is shown 
figure 5. Cliques BLS ~md BEL are aggregated to
form the MPD junction tree since the separator BL is
incomplete in GM.

[]

E

Figure 5: A junction tree for the Bayesian network
shown in figure 1.

Applications
In this section we discuss some tasks commonly per-
formed on Bayesian networks that might benefit from
maximal prime subgraph decomposition.

Lazy Propagation in MPD Junction Trees
In (Madsen ~z Jensen 1999) the LAZY propagation ar-
chitecture was described as a junction tree message
passing algorithm. Any computational tree structure
maintaining the independence relations of the corre-
sponding Bayesian network can be used to control the
flow of messages in the LAZY propagation architecture.
An MPD junction tree could, for instance, be used in-
stead of a junction tree.

Message passing and absorption of evidence in an
MPD junction tree proceeds in exactly the same way as
in junction trees. Thus, changing the underlying struc-
ture of the LAZY propagation architecture from junc-
tion trees to MPD junction trees does not impose any
major adjustments to the inference algorithm. LAZY
propagation often produces smaller potentials when
performed in MPD junction trees than when performed
in general junction trees. It can be demonstrated that,
an MPD junction tree does not eliminate the possibility
of introducing unuecessary fill-in edges during message
passing with LAZY propagation. The number of unnec-
essary fill-in edges introduced will, however, be reduced.

Triangulation by Divide and Conquer
In order to obtain a computationally efficient triangula-
tion of the graph G of a Bayesian network we can exploit
the cluster tree representation "]-AIPD of the maximal
prime subgraph decomposition of G. By proposition 4
and theorem 5 we can identify a partial triangulation of
GM. Although a complete triangulation was identified
during the construction of T~4pD, this need not be a
good one. Hence we can re-triangulate the clusters of
THIRD that are uot triangulated already and obtain a
new total triangulation. The non-triangulated clusters
of GM are smaller than the original graph and they can
be triangulated indepeudently. Therefore, the original
triangulation problem is split into a number of inde-
pendent subproblems of smaller sizes. It follows that a
divide and conquer strategy for triangulation consists
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of a maximal prime subgraph decomposition of GM fol-
lowed by a triangulation of all clusters of TMPD. Differ-
ent methods for triangulation can be used for different
clusters, or the clusters can be triangulated in parallel.
It is clear that the efficiency of the approach increases

¯ with a decreasing size of the maximal prime subgraphs.

Hybrid Propagation
Even though efficient triangulations can be obtained
by the divide and conquer approach just described, the
cliques of the junction tree may be too large for infer-
ence by exact methods. When Bayesian networks be-
come so large that probabilistic inference cannot be per-
formed on the available hardware approximative meth-
ods can be applied. In such cases inference can be per-
formed by stochastic simulation or through other ap-
proximation methods. Such methods are also relevant
if the Bayesian network includes arbitrarily distributed
continuous variables for which exact methods do not
exist. Approximative and stochastic simulation meth-
ods are most often applied to the entire computational
structure. In (Dawid, Kj~erulff, & Lauritzen 1995) 
methodology for performing approximate computations
in large junction trees where some cliques are handled
exactly and others by approximation or stochastic sim-
ulation is described. The emphasis of (Dawid, Kjaerulff,
& Lanritzen 1995) is on the methodology for combin-
ing the inference algorithms whereas the construction
of the computational structure for mixed propagations
is not treated. MPD junction trees can be used as the
basis for construction of computational structures for
hybrid propagation.

Incremental Compilation
During the model design and construction phases, the
structure of the Bayesian network will often be changed
frequently. The model is changed both to improve the
conceptual representation of the domain being mod-
eled, but model constructs are also changed to improve
the efficiency of the model. Changing the structure of
the Bayesian network has implications to the structure
of corresponding junction trees and the efficiency of a
Bayesian network is almost always measured as the effi-
ciency of the corresponding junction tree. Therefore, it
is important to consider how structural changes to the
Bayesian network effects the structure of correspond-
ing junction trees. Once a junction tree representation
of a Bayesian network has been generated incremen-
tal changes made to the Bayesian network should pro-
duce incremental changes to the initial junction tree
representation. Methods for dynamically adjusting the
computational structure has been developed, see for in-
stance (Draper 1995) and (Darwiche 1998).

(Draper 1995) argues that if the Bayesian network 
large, then it will often be considerably less expensive
to modify an existing junction tree than to perform a
new compilation and that incremental modification of
a junction tree will often produce more stable results.
This is especially important if the designer is trying
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to optimize the junction tree representation. With the
MPD junction tree as an intermediate representation it
is possible to modify the junction tree dynamically as
changes in the Bayesian network are introduced. These
changes will typically influence only one or a few clus-
ters in the MPD junction tree and only the cliques of
the junction tree constructed from the triangulation of
these clusters have to be modified, while the rest of the
junction tree remains intact. Methods for incremental
compilation based on this idea is under current investi-
gation.

Sample Empirical Results

The utilization of MPD junction trees to some degree
depends on the size of the maximal prime subgraphs
of the decomposition. A series of empirical evaluations
investigating the sizes of maximal prime subgraphs of
a number of large real-world Bayesian networks have
been performed.

The Bayesian networks are decomposed into maxi-
mal prime subgraphs. For each size of the maximal
prime subgraphs, the accumulated number of variables
in subgraphs of this size is computed. These numbers
are related to the size of the maximal prime subgraphs
as illustrated in figure 6.

Munin

1000

.~ soo

600

400

200

A cumulated number of variables --

5 i0 15 20 25 30 35 40

Maximum prime subgraph size

Figure 6: The accumulated number of variables in max-
imal prime subgraphs of equal size as a func-
tion of the size of the maximal prime sub-
graphs for the Munin network.

A typical result is that a large fraction of the vari-
ables lies in small maximal prime subgraphs and a sin-
gle subgraph is quite large. In some networks up to
half of the variables are contained in a single subgraph.
Figure 6 shows the results for a fraction of the Munin
network (Andreassen, Falck, & Olesen 1992) containing
1066 nodes. This network contains 12 maximal prime
subgraphs with 12 or more variables in each. Thus e.g.
an exhaustive search for an optimal triangulation is still
without reach, but the resources can be directed to-
wards the crucial parts of the network.



Comparison with Existing Methods

In this section we briefly compare the proposed algo-
rithm for maximal prime subgraph decomposition (al-
gorithm 2) to existing algorithms proposed by (Tar jan
1985) and (Leimer 1993). Space limitations prohibits
an in depth analysis, instead we refer the interested
reader to (Olesen & Madsen 1999).

The time. complexity of the algorithms for find-
ing maximal prime subgraph decompositions presented
by (Tarjan 1985) and (Leimer 1993) O(ne) where n
is the number of nodes and e is the number of edges of
the decomposed graph.

The algorithm proposed by (Tarjan 1985) finds 
prime decomposition of the undirected graph G, but
the prime subgraphs of the decomposition are not nec-
essarily the maximal prime subgraphs nor does the al-
gorithm produce a unique decomposition.

The algorithm proposed by (Leimer 1993) is a modi-
cation of the one presented by (Tarjan 1985) that deter-
mines the unique maximal prime subgraph decomposi-
tion of G. The algorithm iterates through all separators
in a fixed order resulting in a skewed binary decompo-
sition tree.

The method for maximal prime subgraph decompo-
sition we propose, is based on arranging the cliques of
GT in a arbitrary junction tree and then inspecting
the separators of the junction tree. Hence, the order
in which the separators are inspected is unimportant.
This enables parallel instead of sequential inspection of
separators.

The methods proposed by (Tarjan 1985) and (Leimer
1993) are both based on decomposition of undirected
graphs. The method we propose is based on decompo-
sition of the moral graph of a directed acyclic graph.
For instance, the graph of a Bayesian network. For
the sake of comparison with the existing methods it is
therefore fair to disregard the moralization step of the
method we propose. The time complexity of the three
methods is O(ne), see (Olesen & Madsen 1999).

Conclusion
In this paper wc have presented a method for max-
imal prime subgraph decomposition of Bayesian net-
work. The method is similar to the method of (Tarjan
1985) as modified by (Leimer 1993). The advantage 
the proposed method is that it integrates nicely into the
construction of junction trees for Bayesian networks.
Furthermore, the requirement that the cliques of the
triangulated graph are arranged in a specific unique or-
der is relaxed and the separators of the triangulated
graph can be inspected in any order.

The maximal prime subgraphs are organized into an
MPD junction tree. The MPD junction tree can serve
as the computational structure for LAZY propagation
and for hybrid propagation schemes. Furthermore, by
maintaining the MPD junction tree structure as an in-
termediate representation between the Bayesian net-
work and a corresponding junction tree methods for

divide and conquer triangulation, and incremental con-
struction of junction trees can be employed efficiently.

The results of empirical experiments indicate that a
maximal prime subgraph decomposition typically pro-
duces a few relative large maximal prime subgraphs and
a number of small maximal prime subgraphs. Further
research is needed in order to draw precise conclusions
on the importance of exploiting maximal prime sub-
graph decompositions.

References
Andreassen, S.; Falck, B.; and Olesen, K. G. 1992. Di-
agnostic function of the microhuman prototype of the
expert system MUNIN. Electroencephalography and
Clinical Neurophysiology 85:143 -157.
Badsberg, J. H. 1992. Model search in contingency
table by CoCo. In Dodge, Y., and Whittaker, J., eds.:
Computational Statistics, COMPS TA T, 251-256.
Badsberg, J. H. 1996. Decomposition of graphs and
hypergraphs with identification of conformal hyper-
graphs. Technical Report II-96-2032, Department of
Computer Science, Aalborg University, Denmark.
Darroch, J.; Lauritzen, S.; and Speed, T. 1980.
Markov fields and log-linear interaction models for
contingency tables. Annals of S~atistics 8(3):522-539.
Darwiche, A. 1998. Dynamic jointrees. In Proceedings
of the l~th Conference on UAI, 97-104.
Dawid, A.; Kj~erulff, U.; and Lauritzen, S. 1995. Hy-
brid propagation in junction trees. In Advances in
Intelligent Computing, volume 945 of Lecture Notes in
Computer Science. B. Bouchon-Meunier et al. 87-97.
Draper, D. 1995. Clustering Without (Thinking
About) Triangulation. In Prxvceedings of the 11th Con-
ference on UAL 125-133.
Kjmrulff, U. 1993. Aspects o[ efficiency improvement
in Bayesian networks. Ph.D. Dissertation, Depart-
ment of Computer Science, Aalborg University, Den-
mark.
Lauritzen, S. L., and Spiegelhalter, D. J. 1988. Lo-
cal computations with probabilities on graphical struc-
tures and their applicatior~ to expert systems. Journal
of the Royal Statistical Society, B. 5(}(2):157-224.
Leimer, H.-G. 1993. Optimal dccomposition by clique
separators. Discrete Mathematics 113:99-123.
Madsen, A. L., and Jensen, F. V. 1999. Lazy propaga-
tion: A junction tree inference algorithm based on lazy
evaluation. Artificial Intelligence 113(1-2):203---245.
Olesen, K. G., and Madsen, A. L. 1999. Maximal
prime subgraph decomposition of Bayesim~ nctworks.
Technical report, Aalborg University, Denmark.
Rose, D.; Tat:inn, R..~ and Lueker, G. 1976. Algo-
rithmic aspects of vertex elimination on graphs. Siam
Journal of Computing 5(2):266-283.
Tarjan, R. E. 1985. Decomposition by clique separa-
tors. Discrete Mathematics 55:221--232.

UNCERTAINTY 601


