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ABSTRACT. Various generalizations of maximal sets from ordinary recur-
sion theory to recursion theory on admissible ordinals are considered. A justi-
fication is given for choosing one of these definitions as superior to the test.
For all the definitions considered to be reasonable, a necessary and sufficient
condition for the existence of such maximal a-r.e. sets is obtained.

0. Introduction. Let M be an r.e. subset of co, the set of natural numbers.
Call M maximal if co - M is not finite, but given any r.e. set A, either (co - A) n
(<u - M) is finite or A O (co - M) is finite. In our generalizations of "maximal
set" to recursion theory on an admissible ordinal a, we always replace "r.e." by
"a-r.e.", but consider several notions in place of "finite". We then study sets
maximal with respect to many of these generalizations of "finite". Our major
result provides a necessary and sufficient condition on admissible ordinals a,
for the existence of maximal a-r.e. sets for some of these definitions; maximal
sets exist for some, but not all, countable admissible ordinals, but for no uncount-
able admissible ordinals. The precise conditions on a can be found at the end
of §5. They are not given here because they require some auxiliary definitions
not suitable for the introduction. The definition of "maximal" used does influence
the existence result for sets maximal under that definition, but only in a very
coarse way; the definition may impose the restriction that the complement of a
maximal set have a short order type. But this restriction rules out the existence
of maximal sets only if there also is no a-r.e., non-a-recursive set whose comple-
ment has an equally short order type.
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342 MANUEL LERMAN

We will study maximal sets in the setting of recursion theory on admissible
ordinals.0) Within this setting, we stress a lattice-theoretic approach. Let .£ be
the first order language of lattice theory. For each admissible ordinal a, let
&(a) denote the lattice of a-r.e. sets, and let Th(&(a)) be the elementary theory
of the lattice 5>(a). Thus we prefer to replace all occurrences of "finite" in the
definition of maximal with a*A-finite (X is a*A-finite if every a-r.e. subset of X
is a-recursive). Equivalently, X is a*A-finite if X is a-finite and has order type
less that a , where a is the least ordinal A such that there is a one-one a-
recursive function with domain a and range A. We have adopted the lattice-theo-
retic point of view because we feel that the most significant known uses and
properties of maximal sets are best formulated in terms of &(a). Lachlan [5]
used their existence to prove the decidability of a certain class of sentences of
£ in Th(€(o))). Machtey [10] showed the same class of sentences of decidable
in Th(ß(a)) for all a for which maximal a-r.e. sets were known to exist at the
time. It is hoped that this paper will yield some information towards the decid-
ability of that same class of sentences of    in Th(€>(a)) for all admissible ordi-
nals a. Soare [20] proved that given any two maximal cu-r.e. sets, there is an
automorphism of S(a>) carrying one to the other. Consequently, any two maximal
<u-r.e. sets have the same 1-type in S. over i.e., any sentence of £ with one
free variable satisfied by one maximal m-r.e. set is satisfied by all maximal o>-

r    i CKr.e. sets. Owings L13J has shown that if a = <Uj  , i.e., a is the least admissible
ordinal greater than tu, then there are at least two different 1-types of maximal
a-r.e. sets over €>(a) (hence there are maximal sets which are not automorphic
to one another over &(a)). We hope, however, that our work will begin to shed
some light on the question of when two maximal a-r.e. sets are automorphic.

The generalizations of "X is finite" which we consider, involve restrictions
both on the order type of the set X and on whether X is to be a-finite, a-r.e., or
a-bounded. In choosing reasonable definitions of maximal set, we require that a
set should not be maximal only because the order type of its complement is suffi-
ciently small. Using such a definition, some maximal sets would be a-recursive
(an uninteresting situation, in our opinion). These are excluded by our preferred
notion of maximal set, which satisfies two basic criteria. First, the preferred
class of maximal sets is definable over 5(a). This fact was important in Lach-
lan's work quoted earlier. Second, the class is invariant under the following
passage to a quotient lattice: Starting with the particular notion of finite used to

(3) We refer the reader who is interested in reasons for generalizing recursion theory
to G. Kreisel, Some reasons for generalizing recursion theory, Logic Colloquium (Pro-
ceedings of the Summer School and Colloquium in Mathematical Logic, Manchester,
August, 1969), North-Holland, Amsterdam, 1971, 139-198. ;
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MAXIMAL a-R.E. SETS 343

define maximal, we obtain a lattice by factoring <%(a) by the ideal consisting of
these same generalized finite sets; a set is maximal with respect to the defini-
tion, if and only if it is a maximal element of this corresponding quotient lattice.
Having determined to adopt a lattice-theoretic approach, this should be the justi-
fication for the use of the word maximal. The definition which we have chosen is
the only one known to satisfy both these criteria. Our preferred definition is also
broad enough to allow maximal sets with a-bounded complement, thus including
Owings' example mentioned above. Yet it is narrow enough to prevent a set from
being maximal solely because its complement is a-bounded (and thus inhibits the
proliferation of 1-types of maximal sets). It remains to be seen whether or not the

facts about €>(a) to be discovered in working with our definition can better be
expressed by means of a different one. A generalization of Soare's automorphism
theorem, mentioned above, to maximal a-r.e. sets could provide a good indication
of the usefulness of our definition.

Our definitions of maximal a-r.e. sets include the nine definitions proposed by
Kreisel and Sacks [3], all of which differ from our preferred definition. Sacks, in
one of his jollier moods, related to me that Kreisel had originally wanted to pro-
pose twenty-seven definitions, and only with much difficulty was Sacks able to
dissuade him from doing so. This was fortunate, else there would have been
twenty-seven somewhat unsatisfactory definitions of a maximal a-r.e. set in [3].(4)
We follow the somewhat dubious precedent set by Kreisel and Sacks in that we
obtain a necessary and sufficient condition for the existence of a maximal a-r.e.
set, not only for our preferred definition, but for all the definitions which we con-
sidered and decided were reasonable. Our justification for this is that little more
work is involved, and the information obtained may prove to be of interest.

Maximal a-r.e. sets for some a > co were constructed by Kreisel and Sacks
[3], and this construction was extended to a larger class of admissible ordinals
by Lerman and Simpson [9]. These sets were maximal with respect to all the
definitions in [3l. Sacks [16] showed that there are no maximal a-r.e. sets for
kJ* (the first cardinal which is not constructibly countable) under any definition
df maximal a-r.e. sets in [3]; in fact, Sacks' proof works for any successor cardinal
of L (Gödel's universe of constructible sets). Simpson [19] extended the class
of admissible ordinals for which it was known that no maximal a-r.e. sets exist,
and Lerman and Simpson [9] showed that there are no maximal a-r.e. sets when-

(4) The twenty-seven definitions were obtained by replacing each occurrence of
"finite" in the definition of maximal set by one of {finite, a.finite, a.bounded). Recendy,
A Leggett has shown that if a-finite is used in all three places, the definition obtained
is extensionally equivalent to our preferred definition. However, the a-finite sets do not
give rise to a quotient lattice of 6(a), so this definition still does not satisfy our second
criterion.
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344 MANUEL LERMAN

ever a is an uncountable admissible ordinal of L. We extend these positive and
negative results to obtain a necessary and sufficient condition (on a) for the
existence of a maximal a-r.e. set.

The outline of this paper is as follows. §1 deals with preliminary definitions
and notation. §2 contains all the facts about a-recursion theory which we use,
and which have nothing to do with maximal sets. In §3, we define various notions
of a maximal a-r.e. set, give criteria for considering a definition reasonable, and
explain why we feel that one definition is superior to the rest.

§4 contains the proof of the nonexistence of maximal a-r.e. sets for various
a, and §5 contains the proof of the existence of maximal a-r.e. sets for various
a. Combining the existence and nonexistence results, we obtain a necessary
and sufficient condition for the existence of maximal a-r.e. sets. We conclude
the paper in §6 with some remarks and open problems.

We have attempted to make this paper reasonably self contained, and thus
hopefully accessible to all mathematical logicians. We assume only familiarity
with Godel's definition of the hierarchy of constructible sets, {La: a an ordinal!,
and the notion of a formula being 2^ definable over Lafor all integers n. Several
theorems are quoted but not proven. The proofs of these theorems follow almost
immediately from definitions, with the exception of Jensen's Sn-projectum theo-
rem [2]. One need only believe Jensen's result, however, to follow our proofs.

Certain abbreviations will be used in this paper. These abbreviations were
recently ratified by the Cambridge consortium of a-recursion theorists, and will
be defined in the paper.

1. Preliminaries. We first introduce the notation which we will be using.
Let a be an ordinal. If A C a, then A will denote the relative complement

of A in a, i.e. |x: x < a and x 4 A\. A will also be used to denote the character-
istic function of A, i.e., that function defined by A(x) = 1 if x e A and x < a, and
A(x) = 0 if x 4 A and x < a.

If / is a function on ordinals and ß is an ordinal, f]ß will denote that function
such that f]ß(x) = /(x) if /(x) is defined and x < ß, and /1^(x) will be undefined
otherwise.

If /: a —*ß and g: ß —*y are functions, then g ° f: a —» y will denote the
function such that g ° /(x) = g(/(x)) for all x < a, if /(x) and g(/(x)) are defined,
and g ° /(x) will be undefined otherwise.

If / is a function, then dom(/) will denote the domain of /, i.e., {x: /(x) is
defined}. If / is a function of « variables, Axj • • • xt[/(Xj, • • •, xn)] will denote
that function g of k variables such that g(y., • • •, yk) = ffy^,"' ,yk> xk+i> '"> x1)
whenever the latter is defined, and g(yv       yk) will be undefined otherwise.

If / is a function, we say that lim^^r) = y if there is a A with r < A < a
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MAXIMAL a-R.E. SETS 345

such that for all v, if A < v < a, then f(v) is defined and f(y) = y.
If y and S are ordinals, then [y] will denote {x: x < y], and [y, 5] will denote

\x: y < x < Si. When confusion is unlikely, [y] and y will be identified.
Let A be a set of ordinals. sup(A) will denote the least ordinal y such that

x < y for all *e/t. inf(A) will denote the least element of A. If A is finite, then
max(A) will denote the greatest element of A.

The following definitions include the basic definitions of a-recursion theory.
Let a be an ordinal. A function / is said to be partial a-recursive if its

graph is Sj over La. f is said to be a-recursive if / is partial a-recursive, and
dom(/) = [a]. A C a is said to be a-finite if A e La. A C a is said to be a-r.e.
if A is the range of an a-recursive function. ACais said to be a-recursive, if
both A and A are a-r.e. A C a is said to be a-bounded if there is a y < a such
that for all x, if x e A, then x < y. A C a is said to be a-unbounded if A is not
a-bounded. ACais said to be y-regular, if y < a and if for all ß < y, A|g is a-
finite. AC a is said to be regular if A is a-regular. Finally, we say that a is
an admissible ordinal if given any partial a-recursive function /, and any a-finite
set B such that B C dom(/), then /(B) is a-finite.

Since there is a one-one a-recursive correspondence between [a] and La, it
suffices to consider only sets of ordinals and functions of ordinals in studying
effective computability over La. This explains why the a-recursive functions
were defined to be total only on [a], and not necessarily on all of La.

a will henceforth denote a fixed but arbitrary admissible ordinal. All func-
tions should be considered to be total functions unless otherwise specified.
Details about the mechanics of a-recursion theory can be found in [3] and [16].
We merely mention the following remarks, which will be used later in this paper
without referring to this section.

Remark. Let A be an a-r.e. set which is not a-recursive. Then there is a
one-one a-recursive function /: a —» A such that /([a]) = A.

Remark. Let A be an a-recursive set which is not a-finite. Then there is a
one-one a-recursive function {: a —* A enumerating the elements of A in order
of magnitude.

Remark. Let A be an a-finite set. Then there is a y < a and an a-finite
function /: y —»A such that dom(/) = [y] and / enumerates the elements of A in
order of magnitude.

Remark (Enumeration Theorem). There is an a-recursive enumeration
\Vf.i i < a\ of all the a-r.e. sets. Furthermore, there is a double a-recursive
enumeration } Wf: i < a and a < a\ such that W^is a-finite for each i < a and
a < a, \J\Wj: a < a\ = W. for all i < a, and if a < r < a, then Vfc WT. for all i < a.

We will sometimes say that two quantities are equal when both are undefined.
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Thus a = b will mean that either a and b are both defined and equal, or both
undefined.

2. Cardinals, cofinalities, and projecta. This section contains a potpourri of
facts which will be used later. Many of these facts are used in most priority
argument proofs in a-recursion theory, so we decided to separate them from the
proofs of our main theorems, and organize them into a separate section.

We say that y < a is an a-cardinal if there does not exist a one-one a-finite
function with domain y and range an ordinal < y. y is a singular a-cardinal if y
can be expressed as an a-finite union, over an a-finite index set of a-cardinality
< y, of a-finite sets, all of a-cardinality < y. y is a regular a-cardinal if y is an
a-cardinal which is not singular.

For any a-finite set A, let card(A), the a-cardinality of A, be the least y < a
such that there is a one-one a-finite correspondence between A and y. We note
that for any a-finite set A, card(A) is an a-cardinal.

The Sj projectum of a, a*, was introduced by Kripke [4], and is defined to
be the least ordinal y < a such that there is a one-one a-recursive function
/: a —» y. Many of the following properties of a* are well known.

Lemma 2.1. // a* < a, then a* is the greatest a-cardinal.

Proof. Clearly a* is an a-cardinal. Let /: a—»a* be a one-one a-recursive
function. If there were an a-cardinal ß > a*, then since a is admissible, f([ß])
would have a-cardinality > a* since / is one-one, so /([/3]) £ a*. This contradic-
tion proves the lemma.

Lemma 2.2. Assume that a < a. Then there is an a-r.e. set AC a such
that A is not a-recursive.

Proof. Let /: a —♦ a* be a one-one a-recursive function. Then /([a]) is an
a-r.e. set. Since /([a]) is bounded by a*, if /([a]) were a-recursive, /([a]) would
be a-finite. But then f~l: /([a]) —♦ a would be such that f~ X(/([a])) = [a] which
is not a-finite, contradicting the admissibility of a. Hence /([a]) cannot be a-
finite.

Lemma 2.3. Assume that a* < a. Let A be an a-r.e. set which is not a-
recursive. Then there is an a-finite set B C A such that B has order type > a .

Proof. Let / be a one-one a-recursive function enumerating A. Then /([a*])

is a-finite and has order type > a .

Lemma 2.4. Assume that a* < a. Let A be an a-finite set such that A has
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order type > a*. Then there exists an a-r.e. set B C A such that B is not a-
recursive.

Proof. By Lemma 2.2, there is an a-r.e. set C C a* such that C is not a-
recursive. Let / be a one-one a-recursive function enumerating C. Let g: a —»

A enumerate the first a* elements of A in order of magnitude. Let ß = g °
/([a]). B is an a-r.e. set. If B were a-recursive, then since g is an a-finite
function, B must be a-bounded, hence a-finite. But then, since a is admissible,
g- 1(B) = C would have to be a-finite, which is impossible by choice of C. Hence
B cannot be a-recursive.

Lemma 2.5. Let A he an a-r.e. set. Assume that A has order type y < a .
Then A is a-finite.

Proof. Assume that A is not a-finite. Then there is a one-one a-recursive
function / enumerating A. But /([a*]) C A, and /([a*]) is a-finite and of order
type > a*> y, hence A cannot have order type y. This contradiction proves the
lemma.

Lemma 2.6. Let A he an a-r.e. set which is not a-recursive. Let y =
sup(A) and let ß be the order type of A. Assume that y < a. Then y > a* and
ß> a •

Proof. A proof appears in [9l. We offer a slightly different proof. First
assume for the sake of contradiction, that y < a*. Then by Lemma 2.5, Ä]y is

a-finite. Hence A = [y] - A]y must be a-finite, so A must be a-recursive, con-
tradicting the hypothesis of the lemma. We must therefore conclude that y > a*.

We note that A]y is a-r.e., but is not a-recursive, else A = A]y u [y, a]
would be a-recursive. Let /: a —* A]   be a one-one a-recursive function enumer-
ating A]y . For each s < a, let As = \y. (3x)(x < s and f{x) = y)\. Then As is
a-finite for each s < a.

Without loss of generality, we can assume that A is y-regular. For if not,
and v is the least ordinal such that A|    j is not v + 1 regular, then A satisfies
the hypothesis of the lemma with v replacing y, and ß '= the order type of A]v,
replacing ß. Hence by the conclusion of the lemma, since ß'<ß, a*<ß'<ß.

For each x < y, define g(x) to be the least s < a such that [x] - As has
order type < ß. Then g is a partial a-recursive function such that dom(g) is an
initial segment of [y]. Let [8] = dom(g). Since a is admissible, g([8]) is a-

finite. Let A = sup(g([S])). Since g([S]) is a-finite, A < a. We note that y = 8.
For if 8 < y, since A is y-regular, there is a A '< a such that Ax1g = A]$- and
since 8 < y = sup(A), there is an x e A such that 8 < x < y, so A]. must have
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x'order type < ß. Hence [S] - A   has order type < ß, so g(8) is defined. Since

8 = y, by the definition of g and 5, [y] - A* has order type < ß, and since A < a,
[y] - A* is a-finite. Let b: ß —• [y] - A* enumerate [y] - A* in order of magni-
tude. Let p: a —*ß be defined by p(x) = h~ 1 ° /(A + x). Then p is a one-one a-
recursive function from a into /3. By the definition of a*, ß > a*. This completes
the proof of the lemma.

We will next define what we mean by an S2 function. The reader will prob-
ably notice immediately that a function is S2 over La if and only if it is 22 over
La, so we feel obligated to explain our motivation at this point. The definition
of $2 functions is more suitable for recursion theoretic purposes than the defini-
tion <bf 2 2 functions. Furthermore, the definition gives rise to a natural hierarchy
of functions, and it is in terms of Sj functions that we get the necessary and
sufficient condition for the existence of maximal a-r.e. sets. The set of S.
functions does not seem to contain the set of 2, functions, so the {2 :»<&){

d n
hierarchy is not suitable for our purposes. We note, however, that for a = o, the
\Sn: n < &>1 hierarchy and the [2^: n < a>\ hierarchy coincide, so that no such dis-
tinction is necessary in ordinary recursion theory.

Let ß < a and y < a. Let /': a x ß —♦ y be an a-recursive function. We
say that /' generates an S2 function if for all x < ß, lim0._>a / \o, x) exists.
/: j8 —> y is an S2 function if there is an a-recursive function /': a x ß —> y
such that /' generates an S2 function, and for all x < ß, /(x) = lim0._a / '(a, x).
In this case, we say that /' generates f as an S2 function.

If y < a and S < a, then f:y—*8 is said to be a cofinality function if
/([y]) is cofinal with [§].

Let ß < a and y < a. Let /: ß —» y be an S2 function. We say that / is
tame, if there is an a-recursive function /': a x ß —» y such that /' generates /
as an S2 function and (5 < j8)(3a < a)(r> o)(x < 5)(/'(r, x) = /(x)), and (8 < ß)
(3 A < y)(/([5]) C [A]), i.e., /' witnesses the fact that f]s is a-finite and bounded
below y for all 8 < ß. If B C ß < a, then we say that B is a tame S2 subset of ß
if Biß (here B represents the characteristic function of B) is tame.

Let y < a. We define the S2 cofinality of y, s2cf(y), to be the least ordinal
8<y such that there exists an S2 cofinality function /: 8 —»y.

The S2 cofinality of a was introduced by Stillwell [21] under the name
recf(a). The S2 cofinality of a has since appeared in print under many aliases,
among them, the 22 cofinality of a, 22 - cof(a), and cf2(a). We use s2cf as the
abbreviation recently adopted by the Cambridge consortium of a-recursion theo-
rists. S2 cofinality is important in a-recursion theory, because it tells you that
if you simultaneously try to do less than s2cf(a) things a-effectively, and each
thing involves < a steps, then the whole procedure is a-finite. The importance
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of this fact should be evident to those familar with the finite injury priority argu-

ment technique of ordinary recursion theory.
Tameness was introduced in [7], as a way to do Post's problem for admissible

ordinals. It resulted from the observation that the 21 substructure argument of
Sacks and Simpson [17], despite its aesthetic appeal, was unnecessary to obtain
a solution to Post's problem, and that the reason that the argument in [17] works,
is that the indexing of requirements is tame. We noted in [7] that any sufficiently
short tame indexing of requirements will suffice to do Post's problem for all ad-
missible ordinals, and that it is unnecessary to construct one particular such in-
dexing in advance. We will discuss the importance of tame functions in more
detail after defining tame S2 projecta. The definition of tame was introduced
here in order to prove that there is a tame S2 cofinality function /: s2cf(y) —> y.

Lemma 2.7. For all y < a, s2cf(y) is an a-cardinal. If s2cf(a) < a, then
s2cf(a) is an a-cardinal.

Proof. Fix y < a, and assume s2cf(a) < a if y = a. Since s2cf(y) < y,
s2cf(y) < a. Let 8 = card(s2cf(y)), let g: 8 —» s2cf(y) be a one-one a-finite
correspondence between s2cf(y) and 8, and let /: s2cf(y) —* y be an S2 cofinality
function. Then / 0 g: 8 —» y is an S2 cofinality function, hence 8 > s2cf(y),
since 8 = card(s2cf(y)) < s2cf(y), the lemma is proven.

Lemma 2.8. Let h: 8 —»y be an S2 function where 8 is a limit ordinal. If h
is not tame, then s2cf(a) < 8.

Proof. Let h': a x 8 —*y be an a-recursive function generating h as an S2
function. Define /': ax 8 —»a by /'(0, x) = 0 for all x < 8, and /'(a* *) =
linV-.o- /'(r, x) if limr__ ^h \r, y) exists for all y < x, and f'(a, x) = a otherwise.
Let ft be the least A < 8 such that either lim^ _>a f'(a, A) does not exist, or
/'|ax[A+i] does not generate a tame S2 function. \i must exist since b is not
tame. We now note that f'laXfl generates a tame S2 function. Furthermore, if
f'laXß generates /: fi —»aas an S2 function, then / is a cofinality function, since
for all A < a, there are x < u, and o > A such that h '(a, x) ^ limr_cr h \r, x), so
f'(a, x) > A for all a > A. Thus s2cf(a) < 8.

Lemma 2.9. For each y < a, there is a strictly increasing tame S2 cofinality
function g: s2cf(y) —»y.

Proof. There are two cases to consider.
Case 1. There is an a-recursive S2 cofinality function /: s2cf(y) —» y. We

note that every partial a-recursive function with a-recursive domain is an S2
function. Let ß = s2cf(y). For each x < ß define g(x) = sup({g(y): y < xj U i/(x)l).
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Then 8 = ix: g(x) < y\ is an initial segment of ß, so 8 < ß. Furthermore, since
fix) <y, 8 = ß, eise gf g: 8 —» y would be an S2 cofinality function, contradicting

the choice of ß = s2cf(y).  g is strictly increasing by definition, and since every
strictly increasing partial a-recursive function with a-recursive domain is tame,
the lemma is proven in this case.

Case 2. No partial a-recursive function as in Case 1 exists. Let ß = s2cf(y)
and let /': a x ß —»y generate an S2 cofinality function. We note that ß < y <
a, else the identity function on ß would satisfy the conditions of Case 1. We
define g ': a x ß —» y by induction on la: a < aj and then by subinduction on
\x:x<ß\. If limr_0./'(r, y) exists for  all y < x, define g'(a, x) =
limJ._>(7.g \t, x). Otherwise, define g \a, x) = sup({g '(a, y): y < x\ U

If'(a, y):y<ß\).
We first note that if lim^^ / \r, y) exists for all y < x, then limr_0. g'(r, y)

exists for all y < x, since g (r, x) can change its value only if f\r, y) changes
its value for some y < x. sup(lg \o, y): y < xl) < y for all x < ß and a < a, else
Ayg '(a, y): [x] —» y is an S2 cofinality function, which is impossible since

x < ß = s2cf(y). Also, sup(l/'(a, y): y < ß\) < y for all a < a, else Ay/V, y): /3~»
y would satisfy the condition for Case 1. Hence g' is well defined, and total
on a x ß.

Assume that g ' does not generate a tame S2 function. Let 8 be the least

A < ß such that either limcr_ag'(a> ß) is not defined, or g']a><[ß+l] does not
generate a tame S2 function. Let h': a x 8 —> y be defined by 6 '(a, x) =
g '(a, x) for all a < a and x < 8. Then 6' generates a tame 52 function, and for
all a < a there are r and x such that a <r< a and x < 8 and / '(r» *) ^
limA_r/'(A ,x). Let v < y be given, and choose z < j8 such that f(z) > f. Let a
be such that for all r > a, /'(r, z) = f{z). Then for some x < 8, there is a r > a
such that /'(r, x) 4 limjk_r/'(A, x). Fix such an x, and a r for x. Then for all
A > t, g '(A, x) > /(z) > v, so 6 '(A, x) > v. Thus 6 ' generates an $2 cofinality
function, contradicting the choice of 8 < ß = s2cf(y). We must therefore conclude

that g' generates a tame 52 cofinality function g.

Since Axg '(a, x) is strictly increasing, g must be strictly increasing, so the
lemma is proved.

Lemma 2.10. Let A be an a-r.e. set which is not a-recursive, and let ß be
the order type of A~. Then s2cf(a) < ß.

Proof. Let / be a one-one a-recursive function enumerating A. Let Aa =
ix: ( 3y)(y < o and fix) = y)|. Let \af: i < ß\ enumerate the first ß elements of
A'7 in order of magnitude, and let {a.: i < ß\ enumerate A in order of magnitude.
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We define an a-recursive function g': ax ß —» a as follows: If a = 0 and x < ß,
then g '(a, x) = 0; if a > 0 and x < /3, then if a^ lim,-^     we define g '(a, x) =
a; and if a^ = limr_0.aTx, then g '(<7t *) = "> where v is the least ordinal such
that <=<•

For each x < ß, let $x = la: g '(a, x) 4- limr _crg '(r, x)}. Let Sx have order
type (i and let js(z, x): i < it} be the enumeration of the elements of Sx in order
of magnitude. Note that Sx is a-recursive. Assume that Sx is a-unbounded, for
the sake of obtaining a contradiction. Then p: = a, and for allz'<a,
g '(s(i, x), x) ^ limr_s(j. x)g '0, x) for every x. By the definition of g', we must
have af4 lim. for all i < a and x < ß. But if a < r then a^< a^,
so the function b '. a —»a defined by ^x(o") = <J*   '*  is a strictly increasing
a^ecursive function for each x < ß, hence the range of h  must be a-unbounded
for each such x. But for all a, ax < ax < a, yielding a contradiction. We must
therefore conclude that Sx is a-bounded for each x < ß. Hence limr _ag '(r, *)
must exist for each x < ß, so g' generates an $2 function g: ß —» a.

Let A < a be given. Since A is not a-recursive, there exists a 8 > A such
that /(8) = a£ for some x< ß. Fix the least such 8. Then limr _ 5 a^ ^ a^ for
this x. Hence g '(a, x) > 8 > A for all a > 8. Thus g(x) > A, so g is a cofinality
function. Hence /3 > s2cf(a). This concludes the proof of the lemma.

Lemma 2.11. Let A be an a-r.e. set which is not a-recursive, and assume
that A C y < a. // card(y) = co, then s2cf(a) = co.

Proof. Since ACy, A has order type < y, so by Lemma 2.10, s2cf(a) < y.
Since a is admissible, s2cf (a) > co. Since card(y) = co and s2cf(a) < y,
s2cf(a) < co by Lemma 2.7. The lemma now follows immediately.

We will next define the tame S2 projectum of y, ts2p(y), for all y < a. We
introduced ts2p(a) in [7] as tp2(a), the tame 22 projectum of a, and used it in
[8] under a different, but equivalent definition. The change from tp2 to ts2p
follows the recommendations of the Cambridge consortium of a-recursion theorists.
The definition we will give below is different from the previous definitions, but
is equivalent to them. The change in definition follows the recommendation of S.
Simpson, who feels that it is more natural to look at maps going up than at maps
going down, and that functions being considered no longer need be one-one. We
completely agree with him, and note also that this change simplifies notation.

We say that /: 8 —» y is a projection if /([8]) = [y]. For each y < a, we
define ts2p(y), the tame S2 projectum of y, to be the least ordinal 8<y such
that there is a tame S2 projection /: 8 —» y.

The importance of ts2p(a) in priority arguments is that it allows a short
indexing of all requirements such that every proper initial segment of requirements
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under this indexing reaches its final set of priorities at some a-finite stage. The
shortness of the indexing eases convergence problems. We use ts2p(a) in a
different way in §4; it enables us to get     projections from v onto o>, uniformly
for all v < ts2p(a).

Lemma 2.12. s2cf(a) < ts2p(a) < a*.

Proof. The fact that s2cf(a) < ts2p(a) is immediate from the definitions.
The proof that ts2p(a) < a* can be found in [8], Briefly, it goes as follows.

Let /: a—»a* be a one-one a-recursive function, and let A = /([a]). Let ß
be the order type of A, and let g: ß —* A be the one-one, onto, order preserving

function. Then /"1 ° g: ß —»a is a tame S2 projection.

Lemma 2.13 (Simpson). ts2p(a) is at least 8 such that not every tame S2
subset of 8 is a-finite.

Proof. We will only need the lemma to show that if 8 is an a-cardinal and
there is a tame S2 subset / of 8 which is not a-finite, then ts2p(a) < 8. Since
the proof of the lemma has not yet appeared in print, we offer a sketchy proof of
this latter fact.

We assume that 8 < a, else the lemma is immediate. Since / is an S2 subset

of 8, there is an a-recursive function /: a x 8 —»i0, 1| such that I(x) =
lira^._a/(a, x) for all x < 8. I is a tame S2 subset of 8 which is not a-finite, so
the function g: 8 —»a defined by g(x) is the least o such that /(r, x) = f(o, x)
for all t> o, is a tame S2 cofinality function. S2 and 22 are identical, so by
Jensen's 22 projectum theorem [l] there is a partial $2 function h mapping a
subset A of 8 onto a. Since h is S2 on A, there is an a-recursive function
b ': a x 8 —* a such that for all x e A, h(x) = lima ^ah \o~, x). For x < 8 and
y <8, define p: 8 • 8 —♦ a by p(8 • x + y)= h '(g(x), y). Since S < a and g is
tame, p is a tame S2 projection. Let q: 8 —»8 • 8 be a tame a-finite projection.
q exists since 8 is an a-cardinal. Then p ° q: 8 —» a is a tame S2 projection,
hence ts2p(a) < 8.

We are now ready to introduce 5? functions. Let /': a x a x ß —» y be an
a-recursive function. We say that /' generates an     function if for all o < a,

limr _ af '(a, t, x) exists for all x<ß, and lim^ _>alim7. _a/'(ff, r, x) exists for
all x < ß. We call /: ß —» y an     function, if there is an a-recursive function
/':axax/3—*y such that /' generates an S} function and for all x < ß, /(x) =
limCT _alimr_a/'(a, r, x). In this case, we say that /' generates f as an
function.

Lemma 2.14. // /: ß —» y is an S2 function, then f is an function.
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Proof. Let /': a x ß —» y generate / as an S2 function. Define g': ax ax
ß —> y by g '{p, r, x) = f\r, x). Clearly g ' generates / as an S? function.

We define s3cf(y), the 5? cofinality of y, for each y < a by s3cf(y) is the
least ordinal 8 such that there is an      cofinality function f: 8 —> y.

Lemma 2.15. For all y < a, s3cf(y) < s2cf(y).

Proof. Immediate from the definitions and Lemma 2.14.

Lemma 2.16. For all y < a, s3cf(y) is an a-cardinal, whenever s3cf(y) < a.

Proof. As in the proof of Lemma 2.7.
We define s3p(y), the     projectum of y, for each y < a by s3p(y) is the

least ordinal 8 such that there is an S? projection /: 8 —» y.

Lemma 2.17. For all y < a, s3p(y) < ts2p(y).

Proof. Immediate from the definitions and Lemma 2.14.

Lemma 2.18. For all y < a, if s3p(y) < a, then s3p(y) is an a-cardinal.

Proof. As in the proof of Lemma 2.7.

Lemma 2.19. Let f: ß —»y and g: y —» 8 be functions. Then g° f: ß~*
8 is an Sj function. If, furthermore, f and g are projections, then g° f is a pro-
jection.

Proof. The second half of the theorem is immediate.
Let /': a x a x ß —► y generate / as an     function, and let g': a x a x y —»

8 generate g as an J, function. Define h : a x a x ß-8byh\a, r, x) =

g'(o, r, f\a, r, x)). Then limcr_alimr _ah '(a, r, x) = g(/f»), so h' generates
g o f as an S? function.

Lemma 2.20. s3cf(a*) = s3cf(a).

Proof. We may assume that a* < a. Let /: a —»a*be an a-recursive func-
tion. We note that A = /([a]) is an a-r.e. set. A cannot be a-recursive, else
f~l: A —» a would be a partial a-recursive function and A an a-finite set, con-
tradicting the admissibility of a since

Let g: s3cf(a) —» a be an S} cofinality function. Then / ° g: s3cf(a) —» a*
is an Xj function. If sup(/° g([s3cf(a)])) = a*, then s3cf(a*) < s3cf(a). But if
sup(/ 0 g([s3cf(a)])) = 8 < a*, then by Lemma 2.5, A n [8] is a-finite, so since a
is admissible, /"\A n [8]) must be a-bounded. But g([s3cf(a)]) C /_\A n [8])
contradicting the fact that g is a cofinality function. Hence s3cf(a*) < s3cf(a).

Let h: s3cf(a*) —»a* be an 5, cofinality function, and let
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b ':a x a x s3c£(a*) —♦ a* be an a-recursive function generating b as an Sj
function. Define p': a x a x s3cf(a*) —> a by p '(a, r, x) = sup({A: A < r and
/(A) < h \<j, t, x)\). Since b \a, r, x) < a*, and since by Lemma 2.5, {A: A < r and
/(A) < b \o, r, x)} is a-finite, limr _ap '(a, r, x) exists for all a < a and x <
s3cf(a ). Furthermore, lima._>alimJ. _ap \o, r, x) = sup(|A: A < a and /(A) < £(*)})
so p' generates an Sj function p. Since 6([s3cf(a*)]) is cofinal with a* and
since each A < a is such that /(A) < h(x) for some x < s3cf(a*), p: s3cf(a*) —»a
is an Sj cofinality function. Hence s3cf(a) < s3cf(a*). This completes the
proof of the lemma.

Lemma 2.21. For all y < a, s3cf(ts2p(y)) < s3cf(y).

Proof. Let /: s3cf(y) —>y be an 5? cofinality function, and let g: ts2p(y)—►
y be a tame S2 projection. Let / : a x a x s3cf(y) —» y generate / as an
function, and let g': ax. ts2p(y) —♦ y generate g as an 52 function. We define an a-
recursive function b': ax ax s3cf(y) —»ts2p(y) as follows, h '(a, r, x)= y if
/ \o~i t, x)= z and y is the least ordinal < t such that g \t, y) = z if such an
ordinal exists, and y = 0 otherwise.

Since g is a tame S2 projection, lim£r_ialimr _aA '(a, r, x) must exist for all
x < s3cf(y). Hence b' generates an 5? function b: s3cf(y) —> ts2p(y). If
sup(£([s3cf(y)]))=S < ts2p(y), then since /([s3cf(y)]) C g(tts2p(y)] n [S]) and since
g is tame, sup(/([s3cf(y)])) < sup(g([ts2p(y) n [S])) = A < y, so / cannot be a co-
finality function. We must therefore conclude that sup(£([s3cf(y)])) = ts2p(y),
hence s3cf(ts2p(y)) < s3cf(y).

Lemma 2.22. Let S be a limit ordinal, and let f': a x a x a> x 8 — 8 be an
a-recursive function such that for each v < 8, Xorxf'(o, r, x, v) generates an Sj
projection fv:o>—*v. Assume furthermore, that s3cf(S) = a>. Then s3p(8) = <o.

Proof. Since 8 is a limit ordinal, s3p(S) > <u. We will define an a-recursive
function b':axaxa>-a)—*8 such that h' generates an projection. Hence
s3p(8) < a) • to. By Lemma 2.18, we can then conclude that s3p(S) = <u.

Let g': ax ax (o —* 8 generate the     cofinality function g. Define
b\oi r, (o • n + m) = / \o, r, m, g '(a, r, n)) for all o < a, r < a, m < co, and n < a.
b' is clearly a-recursive.

Since /' and g' generate     functions we must have limr _ah \o, r, x)
exists for all o < a and x < co • <a. Fix m < <u and n < o. Then since /' and g'
generate 5} functions / and g, lima—alimr _a&'(a, r, o • n + m) = /g(n)(m).
Hence h ' generates an 5? function h: to - &> —» 8 such that for all m < a> and
n < o>, b(u) 'n + m)= fg^(m). Since g is a cofinality function, and since for all
« < <u, fgrny —» [g(n)l is a projection, 6 must be a projection. This concludes
the proof of the lemma.
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3. Definitions of maximal sets. Let M C co be an (U-r.e. set. We say
that M is maximal if M is not finite, but given any tu-r.e. set C, either M nCor
M n C is finite.

This definition of maximal <a-r.e. set is due to Myhill [12]. Myhill hoped
that maximal tu-r.e. sets existed, and that no maximal cu-r.e. set would have as

its Turing degree, the complete cot.e. Turing degree. Friedberg [2] constructed
a maximal &>-r.e. set, but Yates [22] then constructed a maximal w-r.e. set with
complete &>-r.e. Turing degree, ruining Myhill's proposed program.

As we mentioned in the introduction, we feel that the major importance of
maximal tu-r.e. sets is their relationship to 6(o>). Lachlan's [5] decision pro-
cedure for a certain natural set of sentences of S. over 6(<u) uses the existence
of maximal <u-r.e. sets, and their definability over 6(o>). Hence a superior(5)
definition of maximal a-r.e. set, we feel, should be definable over 6(a). Since
one may also want to study certain quotient lattices of 6(a) modulo appropriate
congruence relations, we feel that any reasonable definition of maximal a-r.e.
set should yield a maximal element in one of these quotient lattices. With this
in mind, we offer the following generalizations of finite.

For the rest of the paper, let K = \a] U \k: k is an a-cardinali. Let x e K.
We call F C a an xB-finite set if F is a-bounded and of order type < x; we call
F C a an xR-finite set if F is an a-r.e. xB-finite set; and we call F C a an xA-
finite set if F is an a-finite xB-finite set.

For the rest of the paper, let / = \ xA, xB, xR: x e K\. For z e /,
z i\aA, aR\ the z-finite sets form an ideal in 6(a), hence if we define C ~z D
for C, D 6 6(a), by C~z D if and only if (C - D) U (D - Q is z-finite, then
«v   is a congruence relation. This is not the case, however, if z e\aA, aR\
and a < a.

Let M be an a-r.e. set, and let y, z e /. We call M a yz-maximal a-r.e. set
if M is not y-finite, but for any a-r.e. set C, either M f~> C or M O C is z-finite.
The definitions of maximal a-r.e. set introduced by Kreisel and Sacks [3] are the
yz-maximal a-r.e. sets for y, z e\coB, aA, aB\.

From the preceding remarks, the only definitions of maximal a-r.e. set which
we would consider reasonable are the zz-maximal a-r.e. sets for z e /, z i |aA, aR\.
For such z, we get maximal elements of the lattice 6(a)/~z< Other definitions
may be useful in that they may be definable over 6(a) or their existence may
imply the existence of maximal sets under some reasonable definition. We feel,
however, that none of the other definitions should be thought of as defining maxi-
mal sets in the true sense of maximality for a lattice theoretic approach.

Of all the reasonable definitions mentioned in the above paragraph, we wish

(5) Again we mean in the lattice theoretic setting.
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to single out one definition, a Aa A-maximal, as being the most natural one at
this time. This is because "F is a A-finite" is definable over 6>(a), hence "M
is a Aa A-maximal" is definable over S(a). It is easy to see that the predicates
"A U B = C", "A n B = C", and "A = B" are definable over 6(a). We use the
same definitions as Lachlan [6]. Define "R is a-recursive" if and only if R has
a complement in 6(a), and "F is finite" if and only if every subset of F is a-
recursive.(6) "Finite" coincides with "a*A-finite". Should other definitions of
maximal a-r.e. set prove to be definable over &(a) and yield maximal a-r.e. sets
which are not a Aa A-maximal, the situation would have to be reevaluated as to
which definition is the best.

We conclude this section with some easy lemmas about maximal sets. These

will be of use to us in subsequent sections.

Lemma 3.1. Let x, y e K, X e {A, B, R\ and v e /. Then
(3.1) // * < y and M is a yXvmaximal a-r.e. set, then M is an xXvmaximal

a-r.e. set.
(3.2) If x < y and M is a vxX-maximal a-r.e. set, then M is a vyX-maximal

a-r.e. set.
(3.3) // M is an xRv-maximal a-r.e. set, then M is an xAv-maximal a-r.e. set.
(3.4) // M is an xBv-maximal a-r.e. set, then M is an xRv-maximal a-r.e. set.
(3.5) // M is a vxA-maximal a-r.e. set, then M is a vxR-maximal a-r.e. set.
(3.6) // M is a vxR-maximal a-r.e. set, then M is a vxB-maximal a-r.e. set.

Proof. Immediate from the definitions.

Lemma 3.2. Let k e K, X, Y e \A, B, R\. Assume that M is a xXnY-maximal
a-r.e. set. Then M is not an a-r.e. set.

Proof. Assume to the contrary that M is an a-r.e. set. Since M is a-r.e., M
must be a-recursive. Let M have order type ß. Since M is a-recursive, if M is
a-bounded, ß = a; hence in any case ß > k since M is not /cX-finite. Let /: ß —»
M be the a-recursive function enumerating M in order of magnitude. Let C =
{y: (3x)(3h)(x = 2u < ß and /(x) = y)l. Since k is an a-cardinal and ß ^_k, both
COM and COM must have order type > k. So neither M n C nor M n C can be
/<V-finite. But C is an a-r.e. set, so we have a contradiction which proves the

lemma.

Lemma 3.3. Let M be an aAaR-maximal a-r.e. set. Then either M is a-
unbounded or M is an a*Aa*R-maximal a-r.e. set.

Proof. Assume to the contrary, that M is a-bounded, but that M is not an
a*Aa*/?-maximal a-r.e. set. M cannot be a-recursive because of Lemma 3.2.

(6) These definitions, we believe, were first noticed by Lacombe.
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Thus M is not a* A-finite. Hence there is an a-r.e. set C such that either M nC
or M nCis a-r.e., but neither M n C nor M n C is a*R-finite. This can only
happen if the intersection which is a-r.e. is an a-bounded set of order type > a ,
and a* < a.

Assume first that M nCis a-bounded, a-r.e., and of order type > a . If
M OC is a-recursive, let D = M n C. Otherwise, by Lemma 2.3, choose D to be
an a-finite subset of M O C of order type > a*. By Lemma 2.4, choose E to be
an a-r.e. subset of D such that D n E is not a-recursive. Since D is a-recursive,
DOB cannot be an a-r.e. set. Then E U D is a-r.e., so since M is aAaR-
maximal, either (E U D) O M or (E U D) n M is an a-r.e. set.

If (E U D) n M is a-r.e., then ((E U D) O Ä0 U D is an a-r.e. set. But
((E U D) n M) U D = M since D C M, so M is a-r.e., contradicting Lemma 3.2. If
(E U D) n M is a-r.e., then (£uD)nji=£nÖniM=InD since D CM, so
D n Eis a-r.e., contradicting the choice of E.

We must therefore conclude that M n C is a-bounded, a-r.e., and of order
type > a*. If M f*i C is a-recursive, let £> = M n C. Otherwise, by Lemma 2.3,
choose D to be an a-finite subset of M n C of order type > a . By Lemma 2.4,
choose E to be an a-r.e. subset of D such that D O E is not a-recursive. Since D
is a-recursive DOE cannot be an a-r.e. set. Then E U D is a-r.e., so since M
is aAaR-maximal, either (E U D) n M or (E U D) n M is an a-r.e. set. In either
case, a contradiction is obtained as in the previous paragraph, proving the lemma.

Lemma 3.4. Assume that there exists a KAnB-maximal a-r.e. set Mj, with
k € K and let y = sup(M j). Then there exists a nAnB-maximal a-r.e. set M such
that M has order type < k, and M C y.

Proof. Let Mj be a k A/<B-maximal a-r.e. set such that Mj has order type ß
and Mj C [y]. We can assume that ß > k, else the lemma is proven.

Let A be the least ordinal such that M1 D [A] has order type k, and let G =
[A, a]. Let M = Mj U G. Then M has order type k, so M is not kA-finite.

Let H be any a-r.e. set. Since Mj is a kAk ß-maximal a-r.e. set, either
MjOHorMjOHis kb-finite, i.e., has order type < k and is a-bounded. Since
MC Mj, we have hereditarily that either M O H or M O W is kb-finite; also
M C [y]. This proves the lemma.

Lemma 3.5. Lei Mj 6e a KAnB-maximal a-r.e. set, for k e K, such that Ml
is a-bounded. Then there is a KAnB-maximal a-r.e. set M D AI j ana" a y < a
SKcii) riß/ M C [y] a«a* M is y-regular.

Proof. Let S = sup(Mj). If Mj is S-regular, let M = Mj and we are done.
Assume, therefore, that Mj is not S-regular. Let y be the least ordinal < S
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such that Mj is not y + 1-tegular. Let M = Mj U [y, cj. Clearly Mj C AI and
AI C [y]. If AI were a-finite, then since Mj n [y] is a-r.e., Alj O [y] would be a-
finite, so Mj would be y + 1-regular. Hence AI cannot be «A-finite. Since
AI C AI j, the rest of the proof follows as in the last paragraph of the proof of

Lemma 3.4.

Lemma 3.6. Let Al be a nAnB-maximal a-r.e. set such that M has order type
ß and Al is a-unbounded. Assume that there is no KAnB-maximal a-r.e. set Mj
such that Mj is a-unbounded and has order type < ß. Let £< ß be given. Then

there is a v < a such that ß = cf • v.

Proof. Since €< ß, there are v < a and ft < cf such that ß «     v + ft. Assume
that fi> 0. Let A be the least ordinal such that M n [A] has order type f • v.
Then A < a. Let Mj = AI u [A]. Then M. is a-unbounded, so M. is not kA-
finite. Since Mj C Al, and M is «A»<B-maximal, for any a-r.e. set H, either H O M
or H n Al is kö-finite, so hereditarily, Mj is «A«B-maximal. But Alj has order
type p. < £ < ß, contradiction. Thus li = 0, proving the lemma.

4. Nonexistence. Throughout this section, let k e K, X e \A, B, R],
where K, A, B, and R are as defined in §3. We prove the nonexistence of kXkX-
maximal a-r.e. sets for various a.

The first nonexistence theorem for maximal a-r.e. sets was proved by Sacks
[16], who showed that there are no aBaB-,naximal a-r.e. sets for a = kK In
[9], Lerman and Simpson proved the nonexistence of several types of maximal a-
r.e. sets for all a > K j*.   Our main lemmas in this section are stronger versions
of those in [S>]> the proofs here being somewhat more complicated.

For much of the work in this section, it suffices to consider only kAkB-
maximal a-r.e. sets. For the sake of notational convenience, we call such sets
k-maximal throughout this section.

Our first theorem gives us one of the two conditions on a necessary for the
existence of a k-maximal a-r.e. set.

Theorem 4.1. // there exists a k-maximal a-r.e. set, then s2cf(a) < k.

Proof. Assume that Al is a k-maximal a-r.e. set. By Lemma 3.4, we can
assume that ß < k, where ß is the order type of Al. By Lemma 3.2, Al is not a-
r.e., hence Al is not a-recursive. Hence by Lemma 2.10, s2cf(a) < ß < k.

Much of the remainder of this section is devoted to proving the following
theorem.

Theorem 4.2. Assume either that there exists a k-maximal a-r.e. set for
some k < a*, or that there exists an aBaB-maximal a-r.e. set. Then s3p(a) = tu.
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Proof. Let y be the least ordinal ft < a such that there exists a «-maximal
a-r.e. set P with P C it if k < a*, and let y = a otherwise. Let ß be the least
ordinal v < a such that there exists a «-maximal a-r.e. set P with P C y and such
that P has order type v if k < a*, and let j8 be the least order type of the comple-
ment of a «B^ß-maximal a-r.e. set if a < a = k. Let AI be a k-maximal a-r.e.
set such that AI C y and M has order type ß if « < a*, and let AI be an aßaß-maxi-
mal a-r.e. set such that AI C y and Al has order type ß if a* < a= k. Let S =
s2cf(a), 7t2 = ts2p(a), and     = s3p(a).

Let ebbe a one-one a-recursive function enumerating M. For each a < a, let
M£r= {y: (3x)(x < a and <£(x) = y)!. For each a < a, let \nu: i < a\ be the ele-
ments of Ma in order of magnitude, and let Im,: i < ß\ be the elements of A4 in
order of magnitude.

If 7r? = co, we are done. Hence we assume that     > co. Under this assump-
tion, we show that     = co, a contradiction which proves the lemma.

We now outline the rest of the proof. If Al is a-bounded, we show that
n2<ß. If M is a-unbounded, we show that     < S. Using these facts, we show
that s3cf(fr2) = co and that s3p(^) = co uniformly for v < ff2. The theorem then
follows from Lemma 2.22 and Lemma 2.19.

Lemma 4.3. If M is a-bounded, then     < ß.

Proof. By Lemma 3.2, Af is not a-recursive. Since y < a, by Lemma 2.6,
a*</3<y<a- By Lemma 2.12, 772 = ts2p(a) < a*. Hence n2<a*<ß.

Lemma 4.4. // Af is a-unbounded, then rr2 < 8.

Proof. Let h ': a x 8 —* a generate a strictly increasing tame $2 cofinality
function h: 8 —* a. By Lemma 2.9, h exists, and we can assume that h' witnesses
the tameness of A. If 8 = a, we are done. We therefore assume that 8 < a. We
will partition a using an a-recursive sequence of a-finite sets, {A.: i < 8\. The
A. will be constructed by induction on the set of stages, [a: a < a\.

Stage 0. For all i < 8, let A° = 0.
Stage a > 0. Let /' be the least i < 8 such that h '(a, i) 4 limr ^ah '(r, i) if

such an i exists. If no such / exists, set A? = Ur<cr AT. for all / < 8 and go to
the next stage. Assume that / exists. Let Da= \x <-a: x 4 \J.;< ? (Jr <0-Ar.\.
Define A?=\JT < aAT. for all i < 8 such that i 4 j, and Aj =\JT < ̂ Aj U D^.
Then go to the next stage.

For each i < 8, set Ai = \Ja < ftAf. Since the construction is a-effective,
each A. is an a-r.e. set.i

We next prove the following assertions about the construction.
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(4.1) If i<8, j< 8, and i £ j, then A. D A. = 0.
(4.2) For all x < a, there is an i <8 such that x € A..
(4.3) For all i < 8, there is a ft < a such that sup( Uy SI- ̂ y) - /*•

Since ( Uf < s^P " (U, < s Ur < X) = Da, and since D^O (UI<sUr<£Ap =
0, (4.1) follows immediately.

Let x < a be given. If x £ \J. < s A., then for all i < 5, =
lim0._a6 '(a, z) = 6 '(x, /). Hence h must be a-recursive, contradicting the adrais-

sibility of a since 8 < a. Thus x e U,- <g A ., proving (4.2).
Since h' generates h as a tame S2 function, for each i<8 there is a ft < a

such that h '(a, f) = h'Qi, /') for all a > ft and / < i. From the construction, we

must therefore have sup((J;s ,^y) = SUP( Uy < ,• Ap < f*. proving (4.3).

We now define / C [5] by z e / « (3 x)(x e A. n Ä1 and (y)(/)(;' < i and
y e A. n M ̂  x > y)). We prove the following assertions about /.

(4.4) / is cofinal with 8.
(4.5) / is a tame 52 set.
(4.6) / is not a-finite.
Let i < 8 be given. By (4.3), there is a ft < a such that sup(Uy < ,• A;.) < ft.

Let   be the least n < 8 such that n > i and such that there exists an x e AI O
An D [ft, a]. Since Al is a-unbounded, such a / must exist by (4.2).  But by
definition of /, ; e /, proving (4.4).

Define /': a x 8 —»{0, 1} as follows, /'(a, z) = 1 if there is an x in Al^ n Af
such that for all y e Al^ n (U-<f A°~), x > y; and /'(ff, z) = 0 otherwise. /' is
clearly an a-recursive function. Let ; < 8 be given. Assume first that /(/') = 1,
1. e., j el. Let v = sup(( (J„ < y      <~> AO- By (4.3), v < a. Since ; e /, there
is a least x e AI D A;. such that x>v. By (4.3), let sup( U„ < y An) = a < a.

Then for each n < ;', Aß = A*, so (U„ < y An) O [v, x] is an a-finite subset of

Al, hence there is a stage r > a such that ((Jn < ?. A^) n [i/, x] C Alr and x e Aj.
We now note that for all A > t, I '(A, /') = 1, so /(/') = 1 = lim A_a/ '(K j). Now

assume that /(/') = 0, i.e., ; il. Let v = sup(((Jn <;- Aß) n Al), let x = sup(Ap,

and let cr = sup( \Jn   . An). Again by (4.3), v < a, x < a, and a < a. Since
Ay n [i/, x] C Al, there is a stage r > a such that A;. n     x] C Alr We note that
for all \>r, I '(A, j) = 0, so /(/) = 0 = lim x      '(A, ;•). Hence / 'generates / as
an 52 function. Since 8 = s2cf(a), / is tame by Lemma 2.8. Thus (4.5) is
proved.

Assume that / is a-finite. Then there is a one-one a-finite function 9,
enumerating / in order of magnitude. Define I, C / by x e I, «=» (3 y)(3 z)

(y = 2 • z and 0(y) = x). Let /2 = / - /r Then /2 and / j are disjoint a-finite
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subsets of /, so since 8 is a limit ordinal by Lemma 2.7, (4.4) tells us that /j
and 12 are both cofinal with 8. Let B{ =\J\A.: i e IA and let B2 =\J\A.: i e lA.
By (4.1), Bj and B2 are disjoint a-r.e. sets. Let v < a be given. By (4.2),
there is an i < 8 and a z > v such that z e A„ Fix such an i and z e A.. Let
ti = sup(( \Jj< i A.) n Al). By (4.3), n< a. Since 7j and /2 are cofinal with 8 and
subsets of /, there are m € I j and » e 72 such that i < m < 8, i < n < 8, and x and
y such that i>/i,y>(i,»e^nH, and y e A  n Al. Note that x e B j and
y e B2. Since v < z < tt < x and v < z < p < y, both AI n ß j and AI D B2 must be
a-unbounded. Since MnBl2M<~\B2, neither AI n Bv nor AI n B, can be «B-
finite, so Al cannot be «-maximal if « < a*, and AI cannot be aßaß-maximal if
a < a = k. This contradiction proves (4.6).

We now note that by (4.5), (4.6), and Lemma 2.7, the hypothesis of Lemma
2.13 is satisfied. Hence by Lemma 2.13, ir2 ~ ts2p(a) < 8, proving the lemma.

We return to the proof of Theorem 4.2. For each cf such that to < cf < n2, we
construct an a-recursive sequence \ cf: i < of a-r.e. sets. The construction
proceeds by induction on the set of stages \a: a < a\. Fix cf.

Stage 0. For all i < cf let cf Q = 0.
Stage a > 0. For all i<£ let cf a= ( U x<crCf x) U\x: x < a and x<y and

(3 /) (3 A) (x = mCT and / = tf • A + Ol.
This completes the construction. For each i < cf» let cf = \J       Cf ,

Clearly for all i < $, Cf is an a-r.e. set.
We now define an a-recursive function g': axaxtr2xir2—*y. For each £

such that tu < cf < 7r2, Aorxg '(a, r, x, cf) will generate an Sj cofinality function.
If cf < co or if A > cf, g '(a.    A, cf) = 0. If tu < cf < rr2 and A < cf, we define g' by
cases.

Case 1. y = a. Define g '(a, r, A, cf) = sup(C^ T n Mr O [a]).
Case 2. y < a. Define g '(a, r, A, cf) = the order type of     f n Alr O ty].

Lemma 4.5. Le/ cf ana* x fee gz've« sucfe /Aa/ cu < cf < n2 and x e Al. Let x =
>»y. Tien

(4.7) there are only finitely many r < cf sac/E» /Aa/ x e C^; a«a"

(4.8) x=lima_am°.

Proof. We note that if x = m? = mTn and r > a, then since Mr C M^, we must

have n < i. Thus j r < must be finite, else we would be able to define
an infinite decreasing sequence of ordinals. This proves (4.7).

Since Al has order type ß, j < ß. We prove (4.8) by induction on \n: n< ß\.
By induction, we may assume that m. = lim^ _an^ for all i < j. Let v =
supdm^! i < /!). Then v < x, and for each y < x, there is a stage tr such that
jz: z < y and z e Al^i has order type < /; for if y < u, there is an xQ e Al
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such that y < xQ < v, and since xQ = lim(r_>anzrfor some i < /', such a a must
exist. For all y < v, let 0(y) be the least cr such that [y] Cl      has order type
< /. Then 6: v —»a is an a-recursive function with a-finite domain, so
sup(0([v])) < a by the admissibility of a. Let A = sup(0([v])). Since [v, x] C Al,
there is a stage p such that [v, x] C Mp and A < p < a. We note that for all t > p,
[x] n Alr has order type /, so x = m? = limr _ar»y, proving (4.8).

Lemma 4.6. For eac6 cf such that o> < f < »r2, Aorxg'(a» ^ *, £) generates an
S3 function Axg(x, cf) suc6 /6a/

(4.9) if y=a andx<£, then g(x, cf) = sup(M nc|)< a; awa"
(4.10) if y< a and x <    /Aen ß = a* and g(x, £) is /6e orrfer /ype o/

M n c|, u/6z'c/b z's < ß.

Proof. Fix f such that ty < £ < ",2'       f*x * <     ^e proceed by cases.
Case 1. y = a. By Lemma 4.4 and Lemma 2.10, n2< 8 < ß, so ^ < ß. Since

every /<B/<B-maximal a-r.e. set P with P a-unbounded is a «A/cB-maximal a-r.e.
set, by Lemma 3.6, there is a v < a such that ß = f • v. By (4.8) of Lemma 4.5
and the definition of C°, if ft < i/, then m^.   +; Thus M H Cf is ex-
unbounded since Al is a-unbounded and ß = f • v. Since C^ is a-r.e. and Al is

—     —a x
either K-maximal or /cB/cB-maximal, MnC^ must be a-bounded.

Since C= and Al are a-r.e. sets, if r < A < a and tr < a, then C^r D Alr O
[a] D       n Alx n [tr]. Hence Arg '(a, r, x, cf) is nonincreasing for r>o~. Thus

lim.   a.g'(Oj r» *> £) exists, else we could define an infinite decreasing sequence
of ordinals. Let y = sup(C* O Al). We have shown in the preceding paragraph
that y < a. If o > y, then since [y, o] C AI U cj, [y, a] is a-finite, and AI U
is an a-r.e. set, there is a r < a such that [y, er] C C^x U Al^, for all A such that
r < A < a. Hence if o > y, then limr _ag '(a,    *, £) < y. But clearly

limr-ag'(cT» T, x, £) > y- Thus limCT-aUmJ._>ag'(o-f »■>*,£) = y. Thus Axg(x, £)

is an 5, function on domain [f] as defined in (4.9).
Case 2. y < a. Then by the hypothesis of the theorem, k < a . By Lemma

3.4, ß < a*. By Lemma 3.2 and Lemma 2.6, ß > a*. Hence ß = a*. By Lemma
2.1, ß = £ • a*. By (4.8) of Lemma 4.5 and the definition of C*, if ft < a* then
m^.fl+x e Cjf • Thus C» D Al must have order type a*. Since k < a*, C^ n Al
cannot be Kß-finite, so since C^ is a-r.e. and Al is K-maximal, C^ O Al must have* x £ x       — —
order type < a . Furthermore, since C= U Al is a-r.e., by Lemma 2.6, Csn Al =

U Al must be a-finite. Consequently, (Cf u AI) n [y] is a-finite.
X £

Since (C* U AI) O [y] is a-finite, there is a stage r such that for all A > r,
(C? . U Al.) O [y] = (Cf n AI) n [y]. Fix such a r. Then for all A > r,
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. n Al. n [y] = Ö O Al O [y]. By definition, lim0._alimr _ag V» *, *, =
limr _ag'(0, t, x, cf) = lira,. _a (the order type of C*r D AL n [y]) = the order type

of Cj* D M n [y] = the order type of      n Af. Hence Axg '(x, cf) is an S} function
on domain [£1 satisfying (4.10).

We note that if x >cf, g '(ct, r, x, cf) = 0 for all a < a and r < a, so g 'generates
an Sj function on all of its domain. This concludes the proof of the lemma.

Lemma 4.7. For each £ such that co < <f < »r-,
(4.11) if y= a, then Axg(x, cf)],: £ —► a is an Sj cofinality function; and
(4.12) i/ y < a, fieri Axg(x, tf)|A: »f —• a* is an     cofinality function.

Proof. By Lemma 4.6, Axg(x, cf)|^ is an     function. Fix cf such that
co < cf < ir2. We proceed by cases.

Case 1. y = a. We must show that g([cf], f ) is cofinal with a. Let A < a
be given. Since M is cofinal with a, there is an x e M such that x > A. Since
cf > co, by (4.7) there is an i < cf such that x ^ C*. Hence by (4.9), g(«, 4) > A,
proving (4.11).

Case 2. y < a. We must show that g([£], 4) is cofinal with a . Assume for
the sake of contradiction that sup(g([cf], cf)) = u < a*. Since k < a* and y < a,
by Lemma 3.2, Lemma 2.6, and Lemma 3.4, ß = a* < a. For each /' <
g(i, 4) < /3 = a* by (4.10), and g(i, cf) is the order type of MO Cj. By Lemma
2.6, XI O cf = AI u Cf is a-finite, since M and Cf are a-r.e. sets. Hence

,  1 i '
(Al UC?) n [y] is a-finite. Thus there is a stage cr such that for all r > a,
(AL U cfj n[y] = (AI U Cf) n [y]. Define 0: cf -»a by <9(i) is the least stage
ct such that Ma n cf ^ has order type < p. 0 is a-recursive, and since cf < rt2 < a
and a is admissible, 0([cf]) must be a-finite. Let A = sup(0([cf])). Then for all
t > A and i < cf, AL n cf,. has order type < p. Since cf > co, by (4.7), for each
x e Al there is an i < € such that x f. cf. By choice of A, we must therefore con-
clude that XI C Ulcf,xn Xlx: i < &. . Since cf < rt2 < a* by Lemma 2.12, and
since p. < a*, (J icf xnA1x: i < cf} has a-cardinality < a* (recall that a* is an
a-cardinal, so there is a regular a-cardinal n < a* such that n > p and n > cf
(namely, 7/ = least a-cardinal > maxip, cf 1); if the above union had a-cardinality
> a , we would contradict the regularity of n), hence has order type < a . Thus

so Al has order type < a , contradicting the fact that
a = ß = order type of Al, and proving (4.12).

Lemma 4.8. s3cf(7r2) = co.

Proof. If y = a, choosing cf = co shows s3cf(a) = co. If y < a, then by
(4.12), s3cf(a*) = co. By Lemma 2.20, s3cf(a) = co. By Lemma 2.21, s3cf(ff2) <&>,
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so since 77 2 is a limit ordinal, s3cf(7r2) = &>, proving the lemma.
We return to the proof of Theorem 4.2. Define an ex-recursive function

b': a x a x to x n2 —»n2 as follows. If £ < to, h \a, r, /', cf) = /' if /' < cf, and
h '(a, T, i, £) m 0 if i > «f. If cj < cf < rr2, we define the ordering <^ r of [cf] by
i <f r; if g '(a, r, z, cf) < g '(ct, r, ;', <f), or g '(c, r, i, cf) = g '(a, r, /, cf) and /' < ;'.
Then Ax6 '(p, t, x, tf) enumerates the first <o elements of    ] in order of magnitude
according to the ordering prescribed by <f r.

Similarly, for to < cf < 7r2, we define the ordering <^ of [<f] by z <ß j if
£) < gU> £) or      £) = «(/. £) and * < /, where g is given by Lemma 4.6.

6: a) x 7T2 —» tt2 is defined by 6(z,     = z if z < £ < w, 6(z, f) = 0 if £ < i < to, and
\xh(x, £) enumerates the first <u elements of   ] in order of magnitude according
to the ordering prescribed by < , if £ > tu.

Lemma 4.9. For a//      ?r2, Aovxib'(o-, r, x, f) generates \xh(x,     as an
function.

Proof. The lemma is clear if £ < co. Fix £ such that tu < f < zr2. Define the

ordering <f of [£] by z'<|; if limr _ag '(tr, 1 z, £) < limr_ag '(tr, r, /, f), or

limr _ag '(a. ri    £) = limr _ag '(a. »» /, £) and z < /. Since g 'generates an 5?
function, limr _ag '(a, r, x,     exists for all a < a and x < cf, so <^ is well
defined for all o < a. Since Arg '(o, r, x, f) is a nonincreasing function, for

each o < ex, if xQ <^ Xj <^ • • • <^ xn are the first « + 1 elements of [£] under

<^, and if A is chosen such that for all r > A and i<n, g '(o, r, x., £) =

limr _ag '(a, r, x^, £), then xQ <^ r x, <^ r... <|  xn are the first rz + 1 elements

of [£] under <^ r for all r > A. Hence limr _ ab '(o, r, z,     exists for all o < a
and z < cu, and yields the first to many elements of [£] under <^ in the correct
order. If y < a, then the definition of g 'did not depend on a, so <f. and <^
coincide, for all      a, and lim0._alimr _ab '(a, r, z,     = lirar_aA'(0, r, z, f),
so h ' generates 6 as an Sj function.

Assume that y = a. We proceed by induction on \n: n < to}. Assume by
induction that for all / < n, there is a stage     such that for all o > s.,
limr_a& '(a, r, /,     =      £). Fix such stages |s;.: ; < n\.

Let /0 be the least stage ft < a such that ft > maxCls^.: / < «i) and for all
/ < rz and o > ft, limr _ ag' (o, t, h(j, £), £) = g(h(j, ^), f). zQ must exist since n
is finite and g'generates g as an     function. Let AQ = max(|g(6(;, £), f):
/ < »2}). Let x be the least element of Al such that x > AQ. Since Al is a-unbounded,
x must exist. By (4.7) and the definition of g', L = \z: (3tr > x)(3r > o)
(g '(c» r» z, f) < *)! must be finite. Choose     > /Q such that for all z e L and
all o > sn, limT _ag '(a, r, z, f) = g(z, f). We note that \h(j, ^):   < n\ C L.
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Fix a such that s < a < a. Let /, be the least t such that for all r > t and all
z e L, g '(a, t, z, cf) = g(z, cf). /j exists since L is finite. Then for all r> <j,
i '(a, r, «, cf ) = *X«, cf ). Thus the induction hypothesis is verified for j = n, and

the lemma is proved.

Lemma 4.10. Assume that cf < nr Then for each x < cf , there is an i<co
such that h(i, cf ) = x.

Proof. The lemma is clear if cf < co. Fix cf such that co < cf < n2, and fix
x < cf. Let g(x, cf) = v. Assume first that y = a. Let zeAl be such that z > v.
Then by (4.7) and (4.9), g(y, cf) < v for only finitely many y < cf, since z e AI D

for all but finitely many y < cf. Hence A?(z, £) = x for some i < co by the

definition of h.
Assume now that y < a. As noted in the proof of Lemma 4.9, for all y < cf,

g(y> f) = linir_ag '(0, r> y> f )• If there are only finitely many y < cf such that
g(y> f ) £    we are done by the definition of h. So we may assume that there are
infinitely many y < £ such that g(y, cf) < v, and derive a contradiction to prove
the lemma. Recall that Arg'(0, r, y, cf) is nonincreasing for all y < cf.

Let S = {r: (3y < cf )(g '(0, r, y, <f) < v and (a)(a < r =» g '(0, a, y, tj)> v))}.
If S were a-unbounded, then defining p: S —' £ by p(r) = y if y is the least z < f
such that g '(0, r, z, £) < v and g '(0, tr, z, f) > v for all a < r, since S is a-
recursive hence of order type a. by the admissibility of a, p would be a one-one
a-recursive function. Hence a <q<n2<a by Lemma 2.12, yielding a contra-
diction. Hence S must be a-bounded. Let A = sup(S). Let / = (y: y < cf and
g (0, A, y, cf) < vi. Since g(y, cf) < v for infinitely many y < cf and by choice of
A, / must be infinite, but clearly / is a-finite. If x e M then x < y, and by (4.7),
x e     . for all but finitely many ye]. Hence M C U   ,(% ° cf. n[y]). But

card(/) < a* and for each ;' e /, card(M Ancf n[y]) < v < a*. Since there is a
regular a-cardinal r/ < a such that 1/ < n and cf < n, \J-ej(Mxf^C?     [y]) must
have a-cardinality < n < a*, hence order type < a*. Thus AI must have order type

< a . But A4 has order type > a by Lemma 3.2 and Lemma 2.6. This contradiction
proves the lemma.

We now complete the proof of Theorem 4.2. By Lemma 4.9 and Lemma 4.10,
h: co x tt2 —» 772 is such that for each cf < rr2, \xh(x, cf): co —» cf is an projec-
tion, and h is an $3 function uniformly in cf < ?72. By Lemma 4.8, s3cf(772) = co.
Hence by Lemma 2.22 s3p(7r2) = co. Let fy n2 —♦ a be a tame $2 projection, and
let f2: co —> tt2 be an     projection. By Lemma 2.14 and Lemma 2.19 ft ° f2m.co—*
a is an S? function, and is clearly a projection. Hence s3p(a) < co. Since a is a
limit ordinal, s3p(a) > co, so s3p(a) = co. This contradiction proves the theorem.
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Theorem 4.11. Let k€ K, x e \A, B, R\. If there exists a k.xkx*maximal
a-r.e. set, then s3p(a) = tu and s2cf(a)< k.

Proof. Assume first that there exists a kAkA-maximal a-r.e. set Al. By (3.5)
and (3.6), Al is a K-raaximal a-r.e. set. Hence by Theorem 4.1, s2cf(a) < k. If
k < a*, then by Theorem 4.2, s3p(a) = tu. Assume k = a. If AI is a-unbounded,
then Al is a KBicB-maximal a-r.e. set, so by Theorem 4.2, s3p(a) = tu. Assume
that Al is a-bounded. By (3.5), Al is an aAaR-maximal a-r.e. set, so by Lemma
3.3, Al is an a*Aa*i?-maximal a-r.e. set. By (3.6), Al is an a*Aa B-maximal a-r.e.
set, so s3p(a) = cu by Theorem 2.2.

Assume next that there exists a /cftcR-maximal a-r.e. set Al. By (3.3) and
(3.6), M is a k-maximal a-r.e. set, so by Theorem 4.1, s2cf(a) < k. If k < a*,
then by Theorem 4.2, s3p(a) = tu. Assume k = a. If Al is a-unbounded, then Al
is a Kß«B-maximal a-r.e. set, so by Theorem 4.2, s3p(a) = tu. Assume that Al is
a-bounded. By (3.3), Al is a aAaR-maximal a-r.e. set, so by Lemma 3.3i Al is an
a Aa ß-maximal a-r.e. set. By (3.6) Al is an a Aa B-maximal a-r.e. set, so
s3p(a) = tu by Theorem 2.2.

Assume, finally, that there exists a KBxB-maximal a-r.e. set Al. By (3.4) and
(3.3), Al is a K-maximal a-r.e. set, so by Theorem 4.1, s2cf(a) < k. If k < a*,
then by Theorem 4.2, s3p(a) = tu. But if k = a, then again by Theorem 4.2, s3p(a)= tu.
Thus the theorem is proved.

5. Existence. In this section, we construct xx-maximal a-r.e. sets
for x e / and for certain admissible ordinals a. Combining this result with the
nonexistence results of §4, we obtain a necessary and sufficient condition for
the existence of xx-maximal a-r.e. sets in terms of cofinalities and projecta of a.

As we noted earlier, Friedberg [l] first constructed an tuAcuA-maximal a-r.e.
set. His construction was generalized by Kreisel and Sacks [3] to get an cuBcuA-
maximal a-r.e. set whenever a*= tu. Lerman and Simpson [9] pushed this con-
struction a step further to obtain an cußaA-maximal a-r.e. set whenever ts2p(a) =
tu. Below we construct an aBSA-maximal a-r.e. set whenever s3p(a) = tu, where
ß = s2cf(a).

Our construction differs from previous constructions in that we are forced to
use an      function in constructing maximal sets, whereas $2 functions sufficed
for previous constructions. To our knowledge, this is the first use of Sj func-
tions in priority argument constructions. They have subsequently appeared in
Shore's [18] proof of the density theorem for the a-r.e. degrees. Sacks has been
predicting constructions of this kind. He reasoned that just as 52 functions are
needed to generalize finite injury priority argument constructions, there should
be a similar notion for infinite injury priority argument constructions. We use the
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function to generate e-states, not priorities, but the function is of the type
Sacks had in mind.

We feel that the best way of presenting the existence proof, is by defining
certain functions, and presenting the construction and proof in terms of these
functions. Unfortunately, much of the intuition is lost by describing the con-
struction in this manner. Therefore, we will occasionally digress, and try to
intuitively describe what is happening. We hope that this will aid the reader to
follow the proof.

Theorem 5.1. Let a be an admissible ordinal, and let ß = s2cf(a). Assume
that s3p(a) = to. Then there exists an aBßA-maximal a-r.e. set AL

Proof. One should imagine the construction as taking place on a x to. We
will refer to the point (x, y) e a x to as row x, column y.

We will define a partial a-recursive function with a-recursive domain
g': a x ß —* a. g: ß —» a will be the partial function defined by g(x) =
lim^ _ag '(cr, x), for all x < ß such that lim0.^ag'(cr, x) exists. Otherwise, g(x)
will be undefined, g will be strictly increasing on its domain, G, and g(G) will
be Al. As a result, Al will have order type < ß.

Since s2cf(a) = ß, by Lemma 2.9, there is a strictly increasing tame S2
cofinality function /: ß —» a. Let /': axj8 —»a be an a-recursive function
generating / as a tame S2 function. / will pick out a strictly increasing sequence
of rows of a x ß, of order type ß and cofinal with the rows of a x tu. Elements
of M will be associated with these rows in increasing order, at most one element
with each row, so Al will have order type < ß.

Since s3p(a) = to, there is an     projection b: to —» a. Let h': ax ax to—>a
be an a-recursive function generating h as an Sj function, i'will serve two
purposes in the construction. At each stage r, h' is used to associate an a-r.e.
set with each point of a x to. If (a, x) e ax to, then ^'(o-r x) ls associated
with (a, x)at stage r. These a-r.e. sets are then used to determine e-states.
b is also used to pick out a column for row f'(r, x) at stage r. If a column is
associated with row j'(r, x) at stage r, we call this column tp'(r, x). If no column
is to be associated with row f'(r, x) at stage r, we may define tb '(r, x) = to.
Thus <f>': ax ß —> tu + 1 will be a partial a-recursive function with a-recursive
domain defined during the course of the construction. <p: ß —»to + 1 defined by
cf>(x) = lima_a<£ '(a, x) will have the property that for each e < to, tf>~ ̂ [e]) is
bounded below ß. Hence for each e < to, we will eventually try to maximize the
e-states of all sufficiently large elements of Af.

e-state functions were introduced by Friedberg [l] to construct maximal tu-
r.e. sets, and all known constructions of maximal a-r.e. sets use some device
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similar to the e-state function. The e-state function we use depends on one more
parameter than is the case with previous constructions of maximal sets, since we
use a different e-state function for each row of ax co which is in the range of /.

We define the e-state function E: ßxcoxaxa—»tu by

E(y, e, x, o-)=23l2c*': /'< e and x e W*'(/•'(©-y) <r i)k

The following properties are standard for e-state functions, and are easy to
verify.

(5.1) m<n =» [(E(y, m, x, o) < E(y, m, y, o)) =» (E(y, n, x, o) < E(y, «, y, o))];

. if o < r and for all i < e, h'(f'(o, y), o, i)
= h'(f'{r, y), r, i), then E(y, e, x, o) < E(y, e, x, r); and

.(5-3) £(y, e, x,o)<2e+1.

Let y < ß. We say that y requires attention at stage a if one of the following
holds:

(5.4) /'(tx, y)t lim^/'(r, y);
(5.5) limr_ac£ '(r, y) is undefined;
(5.6) limr_^(p '(r, y) is defined, and for some z< limr_CTc6 \r, y),

*'(/'(a, y), o, z) 4 lim h'if'io, y), r, z);
r—cr

(5.7) limr_cr<p '(r, y) is defined, and limJ._0.<p'(r, y) ^ cu, and

limJ._cr g'(r, y) is undefined;
(5.8) there are x < a, y < a, e < tu, and v such that

y<v<ß,    x = lim g'(r, a),     y = ljm g'(r, v),
r—o- r—cr

e = lim <&'(r» y),   and   E(y, e, x, tx) < E(y, e, y, cr).
r—cr

T6e construction.

Stage 0. For all y < ß, g '(y, 0) and <p '(y, 0) are undefined.
Stage o > 0. Let y be the least v < ß such that v < a and f requires attention

at stage a. If no such y exists, set g'(o,v) = lim^^g'fr, v) for all
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v < inf({/3, a}) such that lim,._a g '(/, v) exists; otherwise, g \o~, v) is undefined
Also, set cb'(a, v) = limr_0.<p '(r, v) for all 1/ < inf(!/3, ff!) such that
limr _ a <p '(/•, i/) exists; otherwise, cb'(cr, f) is undefined. Then go to the next
stage.

If y exists, we proceed by cases, and say that y receives attention at stage a.
Case 1. y requires attention at stage a through (5.4).
For each v < y, define g'(cr, v) = lim,. _ a g \r, v) whenever limr_£rg'(r, f)

is defined. If v > y or limr_>(rg '(r. f) is undefined, then g '(a, v) is undefined.
For each v < y, define tp '(o-, v) = limr_0.tp '(r, v) whenever limr _ a <f> '(r, i/) is
defined. If v > y or limJ._0.tp '(r, v) is undefined, then <p '(ff, v) is undefined.
Then go to the next stage.

The ultimate purpose of the construction is to maximize the "e-state" of
g(y) for all sufficiently large y < ß and all e < tu; by "e-state" here, we mean
F(a) = 2{2e_I: i < e and x e Wfc^}. However, we only allow ourselves ß rows
to approximate h. Hence when /' changes value at stage a, we need to use a new
row, which gives us a new e-state function. We therefore erase all the mistakes
we made, and start over again, leaving intact the work we have done which we
still think may be correct.

Case 2. y requires attention at stage a through (5.5), but not through (5.4).
We define g '(tr, v) as in Case 1, for all v < ß. Also, define tb \a, v) as in

Case 1 for all v < ß such that v £ y. If y = 0, set <p '(a, y) = 0. If y 4 0,
<P '(o~; y) is defined as follows. Let e1(cr) be the least i < co such that
h '(/'(o". y)» °~t 0 / yitav_yh'(f'(a, v), a, i) if such an i exists. Otherwise, let
et(a) = tu. Let e2(a) be the least i < tu such that limv_y<p'(tT, v) < i if
liml/_^tp'(tr, v) exists and is less than cu. Otherwise, let e2(a) = tu. Let e(cr) =
inftfe^o-), e2(tr)J). Set tp'(tr, y) = e(a). Then go to the next stage.

In this case, we think we have the correct row, but have not yet chosen an
e = e(tr) for which to maximize the e-state of g(y). We now choose such an e.
We try to choose this e so that for each i < cu, \y < ß: lim0._atp'(a, y) = i\ is not
cofinal with ß. This allows us to maximize e-states for all e < cu. b tells us
when we have the correct e-state, so we can then go to the next e-state, and h'
approximates to this point.

Case 3. y requires attention at stage a through (5.6), but not through (5.4)
or (5.5).

Proceed exactly as in Case 2.
In this case, we find out that b' was a bad approximation to b for certain

values z at previous stages, so we lick our wounds by cancelling the part of the
construction dictated by the bad approximation, and prepare again to maximize
the e(tr)-state of g(y), using a new guess at the values of b.
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Case 4. y requires attention at stage a through (5.7), but not through (5.4),
(5.5), or (5.6).

For all v < ß, v £ y, define g '(a, v) as in Case 1. Set g '(a, y) = a. For
all v < ß, v £ y, define <p'(a, v) as in Case 1. Set c6'(ct, y) = Iimr_crc6'(r, y) if
limr_0.<p'(r, y) exists; otherwise, <p'(.o, y) is undefined. Then go to the next
stage.

In this case, we have fixed upon an e-state which g(y) should maximize, but
do not yet have a candidate for g(y). We thus appoint a as such a candidate.

Case 5. y requires attention at stage a through (5.8), but not through (5.4),
(5.5), (5.6), or (5.7).

For all v < ß, define <p'(cr, v) as in Case 4. For all v < ß such that v ^ y,
define g '(a, v) as in Case 1.

Let x = limr_c.g '(r, y) and e = limT_0.t*'(r, y). Let v be the least tt such
that y<fi<ß, limr _a g '(r, ft) exists, and E(y, e, x, a) < E(y, e, liny^ g'(r, p), o).
Let y = limr _a g '(r, v). Set g '(a, y) = y. Then go to the next stage.

In this case, we have found a candidate, y, for g(y), with greater e-state than
that of the previous candidate, x. We thus make y the new candidate for g(y).

This completes the construction. Since the construction is a-effective, g
and 4>' are partial a-recursive functions with a-recursive domains. We define Al by

x e Al « (3tr > xKi/ < ct)(i/ < ß =» g'(o-, i/) ^ x).

M is clearly an a-r.e. set.
For each y < ß, define

By = \a: (3i/ < y)(u requires attention at stage a)\,

and

B<v = Ict: (3 v < y)(v requires attention at stage o^\.

The following assertions are easy consequences of the construction. We
leave them to the reader to verify.

(5.9) If y requires attention at stage a, then some v < y receives attention
at stage a.

(5.10) If a > t and g'(a, i) and g '(r, i) are both defined, then g '(a, /') >

(5.11) If a > r, g '(tr, 0 and g '(r, /) are both defined, and g V, z') = g '(r, /),
then z < /'.

As is the case with most constructions of maximal sets, there are three basic
lemmas needed to prove Theorem 5.1: Lemma 5.8 which says that for each y < ß,
B   is a-bounded; Lemma 5.14 which says that Al is not aß-finite; and Lemma 5.18
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which says that for each a-r.e. set C, either M n C or M H C is /SA-finite. In
order to keep the proofs of all lemmas at a reasonable length, and since many
facts proved along the way are used in the proofs of more than one of the basic
lemmas, we will use a sequence of lemmas to prove the basic lemmas.

Lemmas 5.2 through 5.7 are proved with the intent of proving Lemma 5.8. We
use an induction argument to show that By is a-bounded. Assuming By is a-
bounded for all v < y, we show that B    is a-bounded. We then show in succession,
assuming B    is a-bounded, that y requires attention through each of (5.4)
through (5.8) a-boundedly often. This implies that By is a-bounded.

Lemma 5.2. Let y < ß be given. Assume that for all v < y, Bv is a-bounded.
Then B<y is a-bounded.

Proof. Define an a-recursive function iff': a x y—► a by if/'(o, v) =
sup(Bv|a). Since By is a-bounded for each v < y, lim0._a,/r '(a, v) exists for
each v < y. Let iff: y —»a be defined by iff(v) - lim£r_>a^''(a, v). Then iff is an
S2 function. Since y < ß = s2cf(a), sup(^([y])) < a. But then B<y is a-bounded,
proving the lemma.

Lemma 5.3. Let y < ß and S < a be given such that snp(B<y) < 8. Then

(5.12) if v.<y and a > 8, then f'(o~, v) = f'(8, u). If, furthermore, for all
o>8,y does not require attention at stage a through (5.4), then for all a>8,

/'(<*, y) = /'(5,y);
(5.13) if v<y and a > 8, then tb'(p, v) is defined. If, furthermore, for all

a > 8, y does not require attention at stage a through (5.5), then for all <r>8,
<f>'(cr, y) is defined;

(5.14) if v<y and a > 8, then <f>\o, v) = <p'(S, v) and h '(/'(a, v), a, e) =
limr^0. h '(/'(a, v), T, e) for all e < <p'(o, v). If, furthermore, for all a>8,y does
not require attention at stage a through (5.4), (5.5), or (5.6), then for all a> 8,

<f>'(a, y) = <p '(5, y) and h '(/'(a, y), a, e) = limr _a h '(/'(cr, y), r, e) for all
e<<f>\8, y);

(5.15) if v < y, a > 8, and <b'(8, v) = e < co, then g'(tr, v) is defined. If
v < y and g '(8, v) is undefined, then g '(a, v) is undefined for all a>8. If,
furthermore, for all a>8,y does not require attention at stage a through (5.4),

(5-5), (5.6), or (5.7), and <f>'(8, y) = e <co, then g \a, y) is defined for all a > 8;
and if g (8, y) is undefined, then g '(a, y) is undefined for all a>8; and

(5.16) if v<y,a> 8, <f>'(8, u) is defined, and <f>'(8, v) = e < co, then
g '(a, v) is defined and g '(a, v) = g '(8, v). If, in addition, v < u < ß and

limr     g '(r, n) is defined, then E(y, e, g \8, v), a) > E(v, e, limT^ag'(/, p), a).

Proof. If v < y, and o is the least A > 8 such that / '(A, v) 4 f\8, v), then
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/'(o", v) ^ limr_CT/'(t, v) = /'(8, f). Hence v requires attention at stage ff through
(5.4), contradicting the hypothesis of the lemma. Thus (5.12) must be true.

If v < y and ff is the least A > 8 such that <fi '(A, v) is undefined, then
limr_0-+ !<p'(r, i/) is undefined. Hence v requires attention at stage a + 1
through (5.5), contradicting the hypothesis of the lemma. Thus (5.13)must be true.

If v < y and a ■> 8, then by (5.13), <p'(ff, v) is defined. Assume that v < y
and ff is the least A > 8 such that <f> '(A, v) £ <p'(8, v). Then Iimr_,0.tA'(r, v) =
<p'(S, v). But by choice of ff, c£(ff, v) is defined by <p'(ff, v) = lirnr    t*'(r, j/).
Thus we have a contradiction unless <£'(ff, v) = <p'(8, j/). Since c6'(8, V) =
limr _at*'(r, v) for all ff > 8, if ff is the least A > 8 such that h '(/'(A, v), A, e) ^
limr_A h '(/'(A, 1/), r, e) for some e < <p'(8, v), then y requires attention at stage a
through (5.6), contradicting the hypothesis of the lemma. Hence (5.14) must be
true.

If v < y and a > 8, then by (5.13), limr_0.+        v) is defined, and by (5.14),
limT_a+lcp'(T, v) = c6'(S, v). Hence if c6'(S, v) = e < cu, then g '(ff, v) must be
defined, else v would require attention at stage ff + 1 through (5.7), contradicting
the hypothesis of the lemma. Furthermore, if g '(8, v) is undefined, then for all
° >    g      v) = linr—o-g (r, v) = g '(°\ v)' Hence if g '(8, v) is undefined,
g '(ff, v) must be undefined for all ff > 8. Thus (5.15) must be true.

Assume that 1/ < y, ff > 8, c6'(8, v) is defined, and c/>'(8, v) = e < cu. By
(5.15), g '(ff, v) is defined. For all r such that 8 < r < a, g '(r, v) is defined by
g'(r, *0 = limA_,rg'(A, v) unless v requires attention at stage r through (5.7). In
the latter case, since v < y, we must have r e B<iy, hence r < y, contradiction.
Thus for all r such that 8 <t<o, g '(r, v) = limA_rg '(A, v) = g'(8, v). In par-
ticular, g '(ff, v) = g '(8, v). Next, assume also that v < ft < ß and limT_a.g '(r, ft)
is defined, but E(v, e, g '(8, v), ff) < F(v, e, lim^^g '(r, ft), ff). By (5.12),
/ V, f) = /'(8, v) = limr _a/'(r, v) = /r», and by (5.14), for all i < e,
bXf\o, v), ff, 0 = limr-cr£ '(/V, v), r, i) = lim,._,a A'(/(f), r, 0. Also, for all
i < e, limr_0. /!> '(/O), r, i) = h '(/(v), 8+1, j), else if ff is the least A > 8 such
that Iimr^Ai'(/r», r, /) ^ A'(/(./), 8 + 1, i), then limr^a6'(/'(ff, v), r, 0 =
^ \{{v), 8 + 1, i) ^ h '(/'(ff, y), ff, 0, hence v will require attention at stage a
through (5.6), contradicting the hypothesis of the lemma. Also, by (5.14),
limr _a g '(r, v) = g '(8, y). Hence v requires attention at stage ff through (5.8),
contradicting the hypothesis of the lemma. Thus (5.16) must be true. This con-
cludes the proof of the lemma.

Lemma 5.4. For eacb y < ß, there is a 8 < a such that for all o, if 8 <o < a,
then y does not require attention at stage 0 through (5.4).

Proof. Since /' generates an 5. function, there is a 8 such that for all
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a > 8, /'(ct, y) = /'(8, y). Such a S witnesses the truth of the lemma.

Lemma 5.5. If v<co, then tb\o, v)<co for all a such that <h'(a, v) is defined.

Proof. We show by induction on \v: v < co\ that if <p'(o, v) is defined, then
tb'(o, v)<v.

By induction, we can assume that <p'(A, p) < p. for all A < a and ix < v, or
A < a and ft = v, whenever <p'(A, p) is defined. <f>'(o, v) can be defined in one of
three ways: Either 4>'(a, v) = limr _a.<p'(T, v), so by induction, <p'(tr, v) < v, or
tb\o, v) = 0 if v = 0 in which case <p'(tj, v) < v; or <p'(tr, f) = e(tr) where v > 0
and e(a) is defined as in Case 2 of the construction. In the latter case, v must
receive attention at stage a, e(a) < e2(a), and e2(tr) = lim^_tV cf>'(cr, p) + 1 =
<p'(o-, i» - 1) + 1. Note that <b\o, v - 1) = limr_a<p'(r( v - 1) and that
limr_£rc^'(r, i/ - 1) is defined, else V— 1 requires attention at stage er; so v
cannot receive attention at stage tr. By induction, <p'(a, v - 1) < v - 1, so
e2(cr) < v. This completes the proof of the lemma.

Lemma 5.6. Let y < ß be given, and assume that sup(B<?,) < a. Then there
is a stage 8 < a such that for all a > 8, y does not require attention at stage a
through (5.5) or (5.6).

Proof. Let 0Q < a be such that sup(B<7,) < SQ and for all a > SQ, y does
not require attention at stage a through (5.4). SQ exists by Lemma 5.4. Let t?2
be the least i < co such that limv_.yC/>'(S0, v) < i if such an i exists, and e2 = a>
otherwise. By (5.14), (5.9), and the definition of 8Q, if a > 8Q and y requires
attention at stage a through either (5.5) or (5.6), then y receives attention at
stage er, the construction proceeds through either Case 2 or Case 3, and e2(a) =

er Let el be the least i < co such that  limo.^a&,(/'(o0, y), a, i) 4
limv_y h '(/'(Sq, v), Sq, t)« if such an i exists, and e^ = co otherwise. Let e =
inf({cj, e2\).

Assume first that e < co. Let 8j be the least A such that Sn < A < a and for
all a > A and i < e, h'(/ '(A, y), a, i) = limT _ ah'(/ '(A, y), r, i). Since e < co, the
definition of h ' implies that 8l exists. By (5.12) and (5.14), if a > Sj and y
requires attention at stage o through (5.5) or (5.6), then ex(tr) «      hence e(tr) =
e = cb'(a, y).

If there is no a e By such that a > 8j and y requires attention at stage a
through (5.5) or (5.6), choose 8 = Sj to prove the lemma. Otherwise, choose 8
to be the least stage a e By such that a > 8j and y requires attention at stage a
through (5.5) or (5.6). Then for all a > 8, cb\a, y) is either defined by cb'(a, y) =
limr^0.<p'(r, y), or tp'(a, y) = e(o) = e. In either case, <f>'(o, y) = t? for all er > S,
so for all a> 8, limr_0.c£'(r, y) is defined. Hence if o~ > 8, y cannot require
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attention at stage a through (5.5). Since cA'(tr, y) = e = limr ^a<p'(r, y) for all
a > 8, by choice of 8 > 8V y cannot require attention at stage o through (5.6) for
any a > 8. Hence the lemma is proved if e < co.

Next assume that e = co. We define an a-recursive function      a x to —»a
as follows: If a < 8Q and i < co, ^'(cr, z) = 0; and if a > 8Q and i < co, </f'(cr, z) =
sup(|A: A <a and h'(f'(80, y), A; i)4 b'(f'(80, y), a,        By definition of h',
limo._>ah'(f'(80, y), cr, z) exists for each i < co, so limcr_ai/f'(a, /') exists for
each i < co. Define ifi: co —» a by ^f(z') = limcr_a^'(o', z). ^ is an S2 function.
If y < co, then e2 = limv_^0'(on) v) + 1 = c£'(on, y - 1) + 1 which is defined by
(5.13), and c/>'(o0, y - 1) < cd by Lemma 5.5. Hence e2 < co, so e < co yielding a
contradiction. Therefore, y > cu and since s2cf(a) = ß > y, s2cf(a) > cu. Hence
^([co]) cannot be cofinal with a. Let 8. = sup(v/([co]) U \8Q\). Then Sj < a and
for all a > 8, and all i < co, h'(f'(80, y), a, i) = b '(f'(8Q, y), 8V i). Now if
a > 5j and y requires attention at stage a through (5.5) or (5.6), since Sj > S0, y
will receive attention at stage cr, the construction will proceed through Case 2 or
Case 3 at stage a, and e(cr) = e = c6'(cr, y). The proof is now completed exactly
as in the preceding paragraph.

Lemma 5.7. Let y < ß be given, and assume that sup(B<y) < a. Then there
is a stage 8 < a such that for all a > 8, y does not require attention at stage o
through (5.7) or (5.8) .

Proof. Let 5n < a be such that sup(B<iy) <§0 and for all a > §0, y does not
require attention at stage cr through (5.4), (5.5), or (5.6). 8Q exists by Lemma 5.4

and Lemma 5.6. By (5.9) and the choice of 8Q, if o > öQ and y requires attention
at stage o, then y receives attention at stage o, and the construction proceeds
through Case 4 or Case 5 at stage o.

Let B = By n {ct: a > 5n}. If B is finite, then the lemma follows immediately.
So assume for the sake of contradiction, that B is infinite. Let {A;: i < co\ be the
first co elements of B in order of magnitude. By (5.13) and (5.14), for all o > S0,
<p'(cr, y) is defined; and 4>\o, y) = c6'(S0, y) = limr_0.<^'(r, y) for all o > 8Q.
Hence for all i such that 0 < i < co, limr_>A <p"'(j, y) is defined. Furthermore,

g '(A., y) is defined for all i < co and if A; < o< A; + j, g \o, y) = limr _a g '(r, y) =
g (A., y). Hence if 0 < z < cu, y does not require attention at stage \. through
(5.7), so y must require attention at stage A; through (5.8). But then for each i
such that 0 < z < co, since A. > §„, by (5.12), (5.13), and (5.14), /'(A., y) = /(y),
0'(Af, y) = c6'(S0, y) = limr-A _c6'(r, y), 6 '(/'(A., y), A., /) = h'(f(y), 8Q, /) for aU
j < cfi '(80, y), and <f>'(80, y) <co. By Case 5 of the construction we must have
£(y, cb'(80, y), g '(A., y), A. +1) < £(y, c6'(ö0, y), g '(A.+1, y), A.+1). By (5.2),
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%, <P'(S0, y), g y), \n) < E(y, <p\80, y), g '<Af+,, y), A.+ 2). Thus
|E(y, <p'(80, y), g \\., y), A.+1): i < co\ is infinite, and <p'(80, y) < o>, contradict-
ing (5.3). This completes the proof of the lemma.

Lemma 5.8. For each y < ß, By is a-hounded.

Proof. The proof is a straightforward transfinite induction on {y: y < ß]
using Lemma 5.2, Lemma 5.4, Lemma 5.6, and Lemma 5.7.

We define the partial function g: ß —»a by g(x) = limcr_>ag '(a, x). Similarly,
we define <p: ß —» co + 1 by <p(x) = lim(T_>acp'(cT, x).

Our next basic lemma is Lemma 5.14, which says that M is not aß-finite.
Lemmas 5.9 through 5.13 are aimed at proving this lemma. The proof is almost
immediate from the following two facts: The range of g is cofinal with a; and M
is exactly the range of g. The other lemmas provide some necessary information
about g.

Lemma 5.9. // g(y) is undefined, then there is a 8 < a such that for all
a > 8, g '(a, y) is undefined. Furthermore, cf> is total on [ß].

Proof. Let y < ß be given. By Lemma 5.8, there is a 8 < a such that
sup(B,y) < 8. Fix such a 8. Note that B<y+1 = By.

For all a > 8, g '(a, y) = lim^^g'(/, y). Hence by (5.16), if g \8, y) is
defined, then g '(a, y) = g '(8, y) for all a > 8. In this case, g(y) = limcr_>ag'(o; y)=
g '(§, y) is defined. Therefore g '(8, y) must be undefined. But then for all
a't ^> S '(a> y) = lirnr_a g '(j, y), so g '(c, y) must be undefined. This proves
the first part of the lemma.

By (5.13), <p'(8, y) is defined, and by (5.14), <f>'(a, y) = <f> \8, y) for all
a > 8. Thus cri(y) = limCT _a<p'(cr, y) = cf>'(8, y), completing the proof of the lemma.

Lemma 5.10. dom(g) is cofinal with ß.

Proof. We assume, for the sake of contradiction, that the lemma is false.
Then there is a y < ß such that for all v, if y < v < ß then g(y) is undefined.

Fix such a y, and fix v such that y < v < ß. We first show that cf>(v) = co.
(Note that by Lemma 5.9, co(y) is defined.) Assume that cb(y) = e<co. Let 8 < a
be such that sup(BJ/) <8. 8 exists by Lemma 5.8. By (5.13) and (5.14), <f>\8, v)
is defined, and cb'(a, v) = tf>'(8, v) = <p(v)= e for all cr>8. Hence if a > 8,
limr_0.cp'(r, v) = e. Let 8, > 8 be such that g'(8j, v) is undefined. 8j exists
by Lemma 5.9- We now note that v requires attention at stage Sj through (5.7),
contradicting the choice of 8j > 8. We must therefore conclude that cf>(v) = co,
and so 0'(tr, v) = co for all sufficiently large o.

We next show that for all i < co, b(i) = lim£r_(ai '(/(y), o, i). For assume not.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



376 MANUEL LERMAN

Let i be the least ;' < to such that h(j) £ lim0._ai& '(/(y), ff, j). Since the range of
/is cofinal with a, h(i) = limr_alim0._a6'(r, a, i) = limv _ßlim0.^ah'(f(u), °"» 0-
Thus there is a 1/ such that y < v < ß and Um0._ah'(f(v), ff, i) 4
lima_ai& '(/(y), er, i). Fix the least such v. Let fQ be the least cf < a such that
sup(B<v) < £ and such that if v requires attention at stage ff through (5.4), then
0" < £■      exists by Lemma 5.8. Also, iff < cfn: <p'(tr, i>) is undefined! is cofinal
with f0, so limr_^ c6'(r, i/) is undefined. Let cfj be the least cf < a such that

b'(/(f),    j) - \ima_ab '(/(y), a, /') for all / < i. Since i < co,     must exist by
the definition of h'. By choice of y and £0, and by (5.12) and (5.14), if a > t;Q
and ;' < i, then lim^^b '(/'(ff, ft), a, j) = limM_v£ '(/(ft), a, j) =
lim^lim^^ '(/(ft), a, fi = * '(/(y), f0, /). Let <j = max(jcf0, f jj). If c; = cjQ>
then since limr_£<p'(r, i/) is undefined, i> requires attention at stage £ through
(5.5); and if > cj0 since b'{{'(£, t/), tj, » ^ lim,.^ A'(/'(£ v), r, ,), either

v requires attention at stage f through (5.5), or v requires attention at stage £
through (5.6), or limr ^e<f>'(j, v) is defined and limr_^ ci'(r, v) < i. In either of
the first two cases, <£'(£, v) is defined by Case 2 or Case 3 of the construction;
<f> '(£, v) = e(f) < ej(cf) = i, hence c6 '(£, v)<co. In the third case, <£'(£ i/) =
limr _ ^ <p'(r, i/) < i < to. By induction on itr: f < a < a\, since 6 '(/'(ff, v), ff, /) =
lim,..^ '(/'(ff, f), r, /) for all / < i and ff > f, c6'(ff, f) = limr_ „.<£'(/, i/) =
<£'(£, ") < to, for all ff such that £ < a < a. Hence <p(v) = <£'(£, v) < co, contradict-
ing the fact that cp(v) = co for all v such that y < v < a. Thus for all i < co, Hi) =

Uma_ab'(f(y), ff, i).
Let S2 be such that sup(B^,) < 82 < a. §2 exists by Lemma 5.8. By (5.14),

<ß'(82, y) = c6(y) = co, and h'(f(y), 82, i) = h(i) for all i < co. Hence 6 is an a-
recursive function. Since a is admissible, and since h([co]) = a, we must have
a = co. Hence ß = s2cf(a) = co, and since y < ß, y < co. By Lemma 5.5,
^'(c, y) < tt> for all ff such that c/>'(ff, y) is defined. But since <p(y) is defined
and c6(y) = limcr_ac6'(ff, y), c6(y) < co. This contradicts the fact that we previously
showed that <£(y) = co, and completes the proof of the lemma.

Lemma 5.11. \J\B^: fi < ß\ is cofinal with a.

Proof. Let £ < a be given. If no y < ß requires attention at any stage
ff > £ through (5.4), then /(v) = /'(£, v) for all v < ß, hence / is an a-recursive
function. Since a. is admissible and / is a cofinality function, we must have
ß = a. Thus there is a y < ß such that £ < y.

At most one v < ß receives attention at any given stage ff, and the least v
which requires attention at stage ff receives attention at stage ff. Also, c£'(ff, v)
cannot be defined if v has not received attention at any stage 8 < o, for <b (0, v)
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is unaefined and for all 8 < a, either <p'(o, v) is undefined, or <p'(8, v) =
\imT_§<p'(r, v) which, by induction, is undefined. By the construction, y cannot
receive attention before stage y. Hence y requires attention at stage y through
(5.5). Thus y e Ulß^: ft<ß\ and £ < y < a, proving the lemma.

Lemma 5.12. The range of g is cofinal with ol.

Proof. Let 8 < a be given. By Lemma 5.11, there are y < ß and A such that
8 < A < a, and y requires attention at stage A. By (5.9), some p < y receives
attention at stage A. Fix such a p and A. Let v be such that p < v < ß and g(v)
is defined. Such a v exists by Lemma 5.10. Fix such a v. Then g'(A, v) is
undefined. Let a be the least stage such that A <a < a and g\o, v) is defined.
a must exist since limT _ag'(rt v) = g(v) is defined. Since limT_0.g'(/, f) is
undefined, g '(tr> v) can only be defined by g '(a, v) = tr. By (5.10), if r > a and
g V, v) is defined, then g'(/, v) > g '(a, v) = a. Hence g(v) = limr _ag '(r, v) > a.
Since S < A < tr < a, g(v) > S, completing the proof of the lemma.

Lemma 5.13. x e M     x is in the range of g.

Proof. Assume first that x e M. Then for all a > x, x is in the range of
*yg V, y). Let C = {y: (3 a > x)(g'(cr, y) = x)!. By (5.11), if y, z e C, y ^ 2,
x.< a < r, and g '(tr, y) = x = g '(r, z), then z < y. Hence C must be finite, else we
could construct an infinite decreasing sequence of ordinals.   Let y be the least
element of C, and let a > x be such that g '(a, y) = x. Then g '(r, y) = x for all
r > tr, hence g(y) = x. Thus x is in the range of g.

Conversely, assume that x e M. Then there is a tr > x such that x is not in
the range of A yg '(tr, y). We show that for all r > a, x is not in the range of
Ayg'(r, y). Hence x cannot be in the range of g.

Assume, for the sake of contradiction, that for some 8 such that a < 8 < a, x
is in the range of Ayg'(S, y). Fix the least such 8. Let z be such that
g \8, z)= x- Then for all r such that a < r < 8, x is not in the range of
X yg (r. y), so g '(8, z) cannot be defined by g '(8, z) = limr _ 8 g '(r, y) for any
y < ß. Thus g '(8, z) must be defined by Case 4 of the construction as

g (8, z) = 8. Since g (8, z) = x and x < tr < 8, we have the contradiction needed
to prove the lemma.

Lemma 5.14. M is not aB-finite.

Proof. By Lemma 5.13, M is the range of g, and by Lemma 5.12, the range of
g is a-unbounded. Hence M is a-unbounded, so AI cannot be aß.finite.

Our final basic lemma, Lemma 5.18, says that for all a-r.e. sets C, either
AI n C or AI O C is /3A-finite. Lemmas 5.15 through 5.17 are aimed at proving
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this lemma. The main idea is to show that for each e < to, <f>~ ([e]) is not cofinal

with ß. It will then follow that h' is a sufficiently good approximation to h to
allow the proof to proceed along the standard lines of proofs of the existence of
maximal sets.

Lemma 5.15. // y < v < ß and g(y) and g(v) are both defined, then g(y) < g(v).

Proof. It is easy to see by induction that for all a, if g'(a, y) and g'(cr, v)
ate both defined and y < v, then g'(p, y) < g'(tr, v). But there is a tr < a such
that for all r > tr, g '(r, y) = g '(tr, y) and g '(r, v) = g '(tr, I/). Fix such a tr. Then

g(y)= limr_ag'0, y) = g'(ff, y)<g'0, v) = limf_ag'(r, »>) = gf».

Lemma 5.16. Let e < to be given. Then there is a y<ß such that for all
V, if y<v<ß then tb(y) > e.

Proof. By Lemma 5.9, <j>(v) is defined for all v such that y < v < ß. The proof
is by induction on \e: e < to\. Assume as an induction hypothesis, that y < ß is
such that for all v such that y < v < ß, tb(y) > e - 1, if e £ 0. If c = 0, the lemma
is immediate.

By the definition of h', there is a a < a such that for all i < e and all a such
that A < o< a, \ua.T_tah'(a, r, i) = h(i). Fix such a A. Since /: ß —»a is a co-
finality function, there is a v such that y<v<ß and f(v) > A. Fix such a v. We

show that for all p such that v < p < ß, rp(p) > e.
Assume, for the sake of contradiction, that <f>(p) < e for some p such that

v< p < ß. Fix the least such p. Since / is strictly increasing, /(p) > A. Let 8Q
be the least 8 such that sup(B</J < 8 and if p requires attention at stage a through
(5.4), then a<8. 8Q exists by Lemma 5.8. By (5.12), (5.13), and (5.14), for all
o > Sq, f'(a, p) = /(p);-and for all ct> 8q and cf < p, to'(a, 0 = rp'(S0, f) and
h'(f(b, °, 0 = £'(/(£), S0' l) for a11 ' ^ ^'(So« We note that <p'(t' V) is ""de-
fined for a set of stages r < S0 cofinal with Sn, so limr_8 <p'(r, p) is undefined.

Let Sj be the least stage 8 such that h'(f (p), S, i) = A'(/(p), r, i) for all i < e and
r > 8. Sj exists by the definition of h . Let S = max(!o0, Sji). We note that if
80 > 8j, p requires attention at stage 8 through (5.5), and if 8Q < 5 , then either p
requires attention at stage 8 through (5.5), or p requires attention at stage 8
through (5.6), or limr_^s<p'(r, p) is defined and limr_g'(r, p) < e - 1.

Assume first that p requires attention at stage 8 through (5.5). Then p receives
attention at stage 8, and the construction proceeds through Case 2 at stage 8.

Since 8 > 8Q, for all r > 8, lim^ _^'(r, f) = limf ^ß<f>'(8, cf) > e - 1 if this
limit exists, as a result of the induction hypothesis. Hence e,(r) >e-l + l= e
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whenever p requires attention at stage r through (5.5) or (5.6) and r > 8. Also, by
choice of p, for all r > 8 and i < e, by (5.14) and the induction hypothesis,

b'(f\T, p), r, i) = b'ifip), r, i) = b'ifip), 8, i) = lim lim *'(/(«*), r, i)
r-a

= lim 6'(/(cf), 5, 0 = lim h'(f'(r,     r, i).

Hence if r > 8 and it requires attention at stage r through (5.5) or (5.6), then
et(r) > c. Hence for all r > 8, either rp '(r, p) = c(tr) > e, or 0 '(r, p) =

lim^.,,rtA'(ff, ft), so in any case, if r >8 and <p'(r,fi) is defined, then cp'(r, ft) > e.
Hence <£(p) > c, yielding the desired contradiction.

Assume next that ft requires attention at stage 8 through (5.6), but not
through (5.5). Then ft receives attention at stage 8, and the construction proceeds
through Case 3 at stage 8. We obtain a contradiction exactly as in the preceding
paragraph.

Finally, assume that limr_g<p'(r, fi) = / < e — 1, and b'(f'(8, ft), 8, 0 =
limr _ j h'(/'(S, p), r, i) for all z < /. If the latter does not hold, then ft would
require attention at stage 8 through (5.6), and we would be done by the preceding
paragraph. Since for all a>8 and i < j, h'(j'(o, ft), a, z).= b'(f'(a, ft), 8, z), for
all a> 8 (p'(a, ft) = limr_a<p'(T, p) = tp'(8, ft). Hence tp(p) = cp'(8, ft) =
lino,. _ 5<p'fr, ft) < c - 1, contradicting the induction hypothesis. This final con-
tradiction concludes the proof of the lemma.

Lemma 5.17. For all e < co, there is a y<ß such that g(y) is defined and
for all v such that y<v<ß, g(v) £ VIfc(e) if and only if g(y) £ Wi(<j).

Proof. By Lemma 5.16 and the definition of A*, there is a y < ß such that
for all v, if y < v < ß, then <p(v) > e and llm(r_ab'(f(v), a,i)= h(i) for all i < e.
Fix e < co and fix the least y as in the preceding sentence for e. By induction,
for all i < e, there is a v such that y < v < ß and whenever ft and £ are such that
v< H< ß, v<£<ß, and g(ft) and g(f) are both defined, then g(ft) £ W b(i) "*
g(£) £ F** sucn a

We assume, for the sake of contradiction, that we have a p and £ such that
v < p < tf < ß, g(p) and g(f) are both defined, g(p) * Wfc((f) and g(f) £ Wi(e). Let
8 be a stage such that f < 8 < a, sup(B^) < 8 and for all i < e, g(p) £ W^,) **
g(p) £ W^.j and g(cf) £        «=» g(f) £ W|(;). 8 exists by Lemma 5.8 and since
W^.j is an a-recursive approximation to W^yy By (5.16), g'(8, f) = g(cf) and

g '(8, p) = g(p). By (5.12), /'(8, ^) = f(0 and /'(8, p) = /(p). By (5.13) and (5.14),
and since v < p < cj, <p'(8, df) = <p(f) > e, <p'(8, p) = <p(p) > e, and 6'(/'(8, f), 8, i)=

= b'(j'(8, p), 8, z) for all z < c. Hence by choice of 8, E(p, e, g(p), 8) <
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E(n, e, g(f), 8). By (5.1), E(p, <p(p), g(p), 8) < E(p, <p(p), g(cf) , S), which contra-
dicts (5.16). This completes the proof of the lemma.

Lemma 5.18. // C is any a-r.e. set, then either C n M or C Ci M is ßA-finite.

Proof. Let C be an a-r.e. set. Then C = Wfc(e) for some e < to since h is a
projection. By Lemma 5.15 and Lemma 5.17, either C n M or C D M is a-bounded.
Let S < a be the least bound for either C n M or C n M. By Lemma 5.12, there
is a v < ß such that g(v) > 8. By Lemma 5.15, g(p) > 8 tot all p such that
v < p < j8. Hence by Lemma 5.13, Al1g has order type <v<ß. Let y be the order
type of Allj. Note that y < /3. By Lemma 2.12, jS < a* so y < /3 < a*. Hence
Allj is a-finite by Lemma 2.6.

If sup(C n Al) = 5, then C n M = C O A4TS, so C O M is an a*.e. set. Since
CO MC M\, COM has order type y < ß < a*. By Lemma 2.5, CnSisa-
finite, so C n Al is /3A-finite.

If sup(C n Al) = 8, then C O AI = C U AI, and C U Al is an a-r.e. set. Since
C n X11s = C n M, S < a, and y < /3 < a* Lemma 2.6 tells us that C n Ä1 is a-
finite, so C O Al is /SA-finite. This completes the proof of the lemma.

Since M is an a-r.e. set, Theorem 5.1 follows immediately from Lemma 5.14
and Lemma 5.18.

We are now ready to give the necessary and sufficient condition for the
existence of maximal a-r.e. sets.

Theorem 5.19. Let k e K and X e \A, B, R\. Then there exists a kXkX-
maximal a-r.e. set if and only if s3p(a) = to and s2cf(a) < k.

Proof. If there exists a /cY/cX-maximal a-r.e. set, then by Theorem 4.11,
s3p(a) = to and s2cf(a) < k.

Assume that s3p(a) = to and s2cf(a) = ß < k. By Theorem 5.1, there exists
an aß/3A-maximal a-r.e. set M. Since k < a, by (3.1), M is a KB/3A-maximal a-
r.e. set. Since k > ß, by (3.2), Al is a KB/cA-maximal a-r.e. set. By (3.4), Al is a
KR/cA-maximal a-r.e. set, so by (3.3), Al is a /cAfcA-maximal a-r.e. set. By (3.5),
Al is a /xR/cß-maximal a-r.e. set. By (3.5), M is a KßKR-maximal a-r.e. set so by
(3.6), Al is a /cß/cß-maximal a-r.e. set. This completes the proof of the theorem.

6. Concluding remarks and open questions. We have studied maximal a-r.e.
sets from a lattice theoretic point of view, and have obtained a necessary and
sufficient condition for their existence, for various definitions of maximal set.

A. Nerode once asked us if maximal oj-r.e. sets could be constructed using
some method radically different from the usual e-state construction. As we view
it, an e-state construction differs from the usual finite injury priority method con-
struction in that one approximates to requirements and tries to satisfy these
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approximations instead of trying to satisfy the natural requirements. Sacks and
Simpson [17] have shown that finite injury priority arguments can be done for all
admissible ordinals. But the failure of maximal sets to exist for all admissible
ordinals is directly a failure of the method of e-states. Our necessary and suffi-
cient condition for maximal a-r.e. sets to exist shows that any other method for
constructing maximal eo-r.e. sets must have the same drawback as the e-state
method.

The failure of maximal a-r.e. sets to exist for all admissible ordinals a
should not be construed as a failure of the priority argument technique to general-
ize. For when it can be used to obtain maximal a-r.e. sets, the priority argument
is virtually the same as that discussed in [17] to solve Post's problem. This
failure should rather be attributed to the impossibility of obtaining requirements
to which a priority argument can be applied. When maximal sets can be constructed,
the requirements are obtained by using e-states, and it is these e-states which
cannot always be generalized.

The failure of the e-state method in generalizations, is already evident for
e = co. In trying to maximize the ta-state of the xth element of M (M is a maximal
a-r.e. set), one may try co successive elements with successively increasing tu-
states as candidates for the xth element of M, and then have no candidate whose
tu-state is greater than the co-states of all the preceding candidates. We like to
think of this as a failure of compactness. In particular, the principle that every
finite set of integers has a greatest element is what is lacking when one replaces
"finite" with "a-finite" and "integers" with "ordinals".

Along with further comments, we list some open questions below. These
questions are primarily meant to reflect our interest in the relationship of maximal
a-r.e. sets to 6(a). There are also many questions about 6(a) not related to
maximal sets. Ultimately, we hope that the structure of 6(a) and the decidability
of Th(6(a)) will be determined. The first two questions, however, consider maxi-
mal sets from a different point of view.

Maximal o>r.e. sets were used by Martin and Pour-El to construct a maximal
tu-r.e. elementary theory.

(Ql) Can the results of [ll] be extended to arbitrary admissible ordinals? If
so, is there any preferred definition of maximal a-r.e. set which can be used to
obtain this result?

There are many generalizations of ordinary recursion theory, of which a-
recursion theory is just one. For each such generalization questions of a similar
nature to those dealt with in this paper should be considered.

(Q2) For every generalized recursion theory, what is a necessary and suffi-
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cient condition for the existence of maximal sets? In particular, we would like to
single out Kreisel's replacement of "a-r.e." with "s.i.i.d." for consideration.

In §2, we indicated why the \"S.n'. n < tu! hierarchy was not suitable for de-

fining the necessary and sufficient condition for the existence of maximal a-r.e.
sets. We introduced definitions for functions to be S2 and Sy We say that / is
an Sj function if / is a 2^ function, and for 3 < n < tu, we say that /: ß —* a is
an Sn function if there is a function g: a x ß —»y such that g is uniformly an
Sn j function in its first coordinate, and such that for all x < ß, /(x) =
lim„_„g(a, x). Thus we have a new hierarchy \S : n < tui. We are interested in

Cr —* Ct It

the relationship between this hierarchy and the {5^: n < tul hierarchy. It is easy
to see that if / e Sn, then / e \J (12^: n < tu!).

(Q3) If / e 2n, is / e U(lS„: » <tu!)? More particularly, is \ = Sn for any n> 2?

6(a) was defined in the introduction. A good introduction to 6(tu) can be
found in Rogers [14]. Let ?I C 6(a). We say that 21 is lattice theoretic over 6(a)

if there is a formula F(x), in the language of lattice theory, with one free variable
x, such that if C e 6(a), then C e El if and only if F(C).

In §3, we showed that 5 = \X: X is a*A-finite! is lattice theoretic over 6(a).

(Q4) Is there any other definition of finiteness in §3 which gives rise to a
class § / ? such that § is lattice theoretic over 6(a)?

In §3, we showed that 3H = \M: M is an a*Aa*A-maximal a-r.e. set! is lattice
theoretic over 6(a).

(Q5) Is there any other definition of maximality in §3 which gives rise to a
class § ^ )R such that § is lattice theoretic over 6(a)?

Towards answering (Q4) and (Q5), we propose the following questions. Con-
sider all the definitions of maximal a-r.e. sets in §3. For each such definition:

(Q6) What are the possible order types of maximal a-r.e. sets Al with M a-
unbounded?

(Q7) What are the possible order types of maximal a-r.e. sets Al with Al a-
bounded?

(Q8) When do two different definitions give rise to the same class of maximal
a-r.e. sets?

(Q9) What is a necessary and sufficient condition for the existence of a maxi-

mal a-r.e. set Al with Al a-bounded?(7)

(7) (Q6), (Q7), (Q8), and (Q9) have recently been answered by A. Legge« in her
doctoral dissertation written at Yale University.
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If C and B are any two a-r.e. non-a-finite sets, and /: a —» C and g: a —»B
are one-one a-recursive functions enumerating C and B respectively, then the map
/(x) «-»g(x) is a lattice isomorphism of (X: X C C and X e 6(a)! and lX: X C B
and X Hence, setting B = [a] there exists an a Aa A-maximal a-r.e. sub-
set of C if and only if there exists an a*Aa*A-maximal a-r.e. set. Hence if the
necessary and sufficient condition answering (Q9) is not the same as the

condition in Theorem 5.19, one could define the a-finite sets for such a
where the conditions give different answers for existence, by F is a-
finite if F is a*A-finite or F has no a*Aa*A-maximal a-r.e. subset. Hence
(Q9) may well be relevant to finding an answer to (Q4).

Call M a maximal subset of S under any given definition of maximality, by
replacing every occurrence of Al in the definition with S - Al. Thus AI is maxi-
mal in S if S — AI is not /cX-finite and cannot be split into two non-KX-finite pieces by any
a-r.e. set. A maximal set Al is of type 1 if given any a-r.e. set S maximal in Al,
there is an a-r.e. set C such that S = AI O C. Otherwise, Al is of type 2. Lachlan
[6] showed that every maximal co-r.e. set is of type 1. Owings [l3] showed that
there are maximal sets of both types in Metarecursion Theory, but his proof is
valid for all a such that a > cj and a = tu.

(Q10) Given any a such that maximal a-r.e. sets exist, what types of maximal
sets can exist?

In §3, we indicated that for various definitions of finiteness, the quotient
6(a)/finite(a) is a lattice. For a = co, Lachlan [6] has shown that 6(co) and
6(t<>)/finite(ct)) have the same degree of decidability.

(Qll) For which definitions of finiteness can the above mentioned theorem of
[6] be proved?

(Q12) When are two quotient lattices as above isomorphic (=)?
(Q13) When are two quotient lattices as above elementarily equivalent (=)?
(Q14) When is the elementary theory of such a quotient lattice decidable?

For each admissible ordinal a, Th(6(a)) is a constructibly countable subset
of tu. Hence there can be at most N j distinct theories Th(6(a)) as a ranges over
all admissible ordinals. Since the class of a Aa A-maximal a-r.e. sets is lattice
theoretic over 6(a), Theorem 5.19 implies that there are at least two distinct
theories as above.

(Q15) How many distinct theories Th(6(a)) are there?
(Q16) If a ^ß and a and ß are admissible ordinals, what is a necessary

and sufficient condition for 6(a) K 6(ß)? Are there admissible ordinals a ^ ß
such that 6(a) S 6(ß)?
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(Q17) If a and ß are admissible ordinals such that a/j8, what is a necessary
and sufficient condition for 6(a) = 6(/9)? Note that since there are at most
distinct theories, there will be many admissible ordinals a and ß such that a ^ ß
and 6(a) = 6(/3).

The remaining questions deal with the decidability of Th(6(a)). r-maximal
a-r.e. sets are lattice theoretic over 6(a), and Lerman and Simpson [9] have shown
that none exist for some admissible ordinals a. Lachlan [6] and Robinson [14]
have shown that r-maximal tu-r.e. sets exist.

(Q18) What is a necessary and sufficient condition for the existence of r-
maximal a-r.e. sets?

Lachlan [6] has shown that the class of hyperhypersimple tu-r.e. sets is lat-
tice theoretic over 6(cu). Use this lattice theoretic definition to define hyper-
hypersimple a-r.e. sets.

(Q19) What is a necessary and sufficient condition for the existence of hyper-
hypersimple a-r.e. sets?(8)

More generally, in reference to decidability,

(Q20) What is the Turing degree of Th(6(a)) for a-admissible? In particular,
for which a, if any, is Th(6(a)) decidable?

(Q21) What is the Turing degree of ri({Th(6(a)): a-admissible|)? Is this
theory decidable?

One of the major open questions of ordinary recursion theory, is the decid-
ability of Th(6(cu)). Th(6(a)) seems to have less structure than Th(6(cu)) for
some admissible ordinals a. In particular, for a = K^, there are no maximal a-
r.e. sets and no r-maximal a-r.e. sets. It is our feeling that the question of the
decidability of Th(6( K^)) is easier than the same question for Th(6(ct))).
Answering the former question may yield some information on the latter question.

Soare [20] has recently shown that if Mj and M2 are any two maximal tu-
r.e. sets, then there is an automorphism of 6(&>) carrying     to M2. In the case

of       it is not known whether the simple xj'-r.e. sets can be divided into two
disjoint nonempty classes through a formula, lattice theoretic over 6(K^).

(Q22) For which admissible ordinals a, is there a formula F(x) lattice theo-
retic over 6(a) which divides the simple a-r.e. sets into two disjoint nonempty

(8) Recent results of S. B. Cooper, C. T. Chong, and M. Lerman have yielded both
existence and nonexistence results for hyperhypersimple a-r.e. sets for a large class of
admissible ordinals a. There are still some cases, however, where the question has not
been resolved.
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classes? In particular, is there such a formula for a = Nj ?

If no hyperhypersimple Nj"-r.e. sets exist, then the following question seems
reasonable.

(Q23) Let S, and S2 be any two distinct simple K^-r.e. sets. Is there an

automorphism of 6(N^) carrying Sj to S2?

Finally, we return to Lachlan's [5 ] theorem mentioned in the introduction,
that a certain class of sentences of Th(6(&>)) is decidable over S(tt>). This
theorem was extended by Machtey [10] for a = co.

(Q24) For which admissible ordinals a is Lachlan's class of formulas de-
cidable over 6(a)?
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