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Maximal rectification ratios for 
idealized bi-segment thermal 
rectifiers
Tien-Mo Shih1,2, Zhaojing Gao1, Ziquan Guo3, Holger Merlitz1,4, Patrick J. Pagni5 & 

Zhong Chen3

Thermal rectifiers whose forward heat fluxes are greater than reverse counterparts have been 
extensively studied. Here we have discovered, idealized, and derived the ultimate limit of such 
rectification ratios, which are partially validated by numerical simulations, experiments, and micro-
scale Hamiltonian-oscillator analyses. For rectifiers whose thermal conductivities (κ) are linear with 
the temperature, this limit is simply a numerical value of 3. For those whose conductivities are 
nonlinear with temperatures, the maxima equal κmax/κmin, where two extremes denote values of the 
solid segment materials that can be possibly found or fabricated within a reasonable temperature 
range. Recommendations for manufacturing high-ratio rectifiers are also given with examples. 
Under idealized assumptions, these proposed rectification limits cannot be defied by any bi-segment 
thermal rectifiers.

Since the concept of thermal recti�ers (TR) emerged several decades ago1, a great number of studies have 
been conducted, placing the emphasis on, respectively, interfacial contact resistances2–4, non-uniform 
mass distributions5, reduced graphene oxide6, nanotubes7, nanowires, and nanocones8,9, quantum sys-
tems10,11, 1D nonlinear lattices12–14, variable thermal conductivities in bi-segment systems15,16, surface/
boundary roughness17, liquid and solid interfaces18, photon-based recti�cation in vacuum19, Y-shaped 
junctions20, two-dimensional systems21, and �nally a comprehensive review22. All these investigations 
mentioned above share one common interest, which is to maximize recti�cation e�ects eventually. If a 
theoretical limit exists and is known, it may serve as a conducive guidance for future TR designs. Based 
on the power-law temperature dependence of thermal conductivities, Dames reported a new normalized 
thermal recti�cation to better facilitate comparisons of various recti�cation mechanisms across di�erent 
temperature ranges23. Here our proposed study focuses on. Here the proposed study focuses on the quest 
of seeking maxima of recti�cation ratios, de�ned as
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for bi-segment diodes with variable thermal conductivities (Fig.  1(a–d), f: forward; r: reverse). Other 
similar types of de�nitions can be readily derived in terms of R. For example, 

( )− / + = ( − )/ +J J J J R R1 1f r f r
2 2 2 . Figure 1(a) shows the system schematic of a TR consisting 

of A and B segments, with the upper con�guration indicating the forward-�ux phase. In Fig. 1(b), we 
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plot κA and κB versus T in the quadratic approximation taken from Ref. [24], whereas Fig. 1(c,d) depict 
typical linear and nonlinear pro�les, respectively.

To seek an ultimate limit for TRs, we propose some idealized conditions: (1) At the segment junction, 
there exists a single uniquely-de�ned temperature, and the Kapitza interface resistance25,26 is neglected. 
If this resistance is considered, the TR equivalently consists of three segments, lying beyond the scope of 
the present analysis. (2) Steady states prevail all the time. (3) Both segments are perfectly circumferen-
tially insulated such that all variables are functions of x only (one-dimensional).

Linear Thermal Rectifiers
By “linear” TR we mean that both κA and κB are linear functions of T. Let us start with designat-
ing p and q as junction temperatures in forward-�ux and reverse-�ux phases for brevity (“forward”=  
“eastbound”). A critical intermediate step is to prove that p and q must equal for a given linear TR to 
reach its Rmax. We �rst introduce a “temperature potential function” de�ned as ψA =  d1T +  d2T

2 in seg-
ment A and ψB =  d3T +  d4T

2 in segment B, where d1, d2, d3 and d4 are constants used in κA =  d1 +  2d2TA 
and κB =  d3 +  2d4TB. �e introduction of this function enables us to eliminate the nonlinearity in the 
energy-conservation equations, such that the relationship, ψi =  0.5(ψi−1 +  ψi+1), holds at an arbitrary 
interior node (Supplementary S-1). At the junction, we obtain slightly more complicated equations as

βψ βψ ψ ψ− = − , ( )− + 2j pA pB j1 1

for the forward-�ux phase, and

βψ βψ ψ ψ− = − , ( )− + 3j qA qB j1 1

for the reverse-�ux phase, where β =  ∆ xB/∆ xA, (or β =  LB/LA if the same number of uniform grid 
intervals in segment A and segment B are taken). �e subscript “pA” denotes “at the junction loca-
tion for segment A in the forward-�ux phase”; the subscript “j −  1” denotes the node west to the junc-
tion. Other subscripts follow similar conventions. Equations (2) and (3) express di�erences of ψ within 
a small grid interval ∆ x. However, since ψ is linear in x, we can safely rewrite Eqs  (2) and (3) as 

Figure 1. System schematic and various thermal recti�ers considered. (a) During the forward-�ux phase, 
values of both κA and κB become high, resulting in high heat �uxes. (b) �ermal conductivities of segment 
materials used in Ref. [24]. (c,d) Typical thermal conductivities of linear and nonlinear thermal recti�ers. 
�e steeper the κ(T) pro�les become near T =  TH for segment A and near T =  TL for segment B, the higher 
the recti�cation ratios can attain.
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βψHA −  βψpA =  ψpB −  ψLB and βψLA −  βψqA =  ψqB −  ψHB, allowing us to express junction temperatures,  
p and q, directly in terms of boundary conditions as

β β βψ ψ( + ) + ( + ) − ( + ) = ( )d d p d d p 0 4HA LB2 4

2

1 3

and

β β βψ ψ( + ) + ( + ) − ( + ) = , ( )d d q d d q 0 5LA HB2 4

2

1 3

which can be solved analytically for p and q using quadratic formulas when coe�cients of quadratic 
terms are unequal to zero. �e subscript “HA” denotes “the location at the high-temperature reservoir 
for segment A”. For subtle clarity, let us write de�nitions of all four di�erent boundary ψ′ s as

ψ ψ

ψ ψ
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d T d T d T d T
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Once p and q are obtained, we can �nd R with straightforward algebra (Supplementary S-2) as
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where κ1 =  d1 +  d2(TH +  p) and κ2 =  d1 +  d2(q +  TL) and �nally maximize R by employing the Method of 
Lagrange Multipliers. �ere exist two constraints, namely,

βκ κ( − ) = ( − ) ( )T p p T 7H L1 3

for the forward-�ux phase, and

βκ κ( − ) = ( − ) ( )T q q T 8L H2 4

for the reverse-�ux phase, where κ3 =  d3 +  d4(p +  TL) and κ4 =  d3 +  d4(q +  TH).
Incidentally, associating segment A with d1,d2,κ1 and κ2, and B with d3,d4,κ3 and κ4 will help us to 

avoid being bewildered by numerous subscripts. Equations (7) and (8) can be combined to eliminate β, 
and the result constitutes the �nal single constraint as

κ κ κ κ= ( − )( − ) − ( − )( − ) = . ( )C T p q T p T T q 0 9H H L L1 4 2 3

We are now in the position to introduce the Lagrange function, de�ned as

λΛ = + . ( )R C 10

With prescribed values of TH, κAL, κAH, κBL, and κBH, there remain 3 degrees of freedom le�, i.e., p, 
q and λ. Taking partial di�erentiation of Eq.(10) with respect to them yields ∂Λ /∂λ =  0, ∂Λ /∂p =  0, and 
∂Λ /∂q =  0. �e �rst equation leads to the recovery of the constraint, Eq.  (9), itself. Elimination of λ 
between the second equation and the third eventually yields

= , ( )L R 111 1

where
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where e1 =  dκ1/dp, e3 =  dκ3/dp, f2 =  dκ2/dq and f4 =  dκ4/dq. Equations (9) and (11), lengthy and nonlinear 
in p and q, can be solved by using the Newton-Raphson method or its modi�ed version (Supplementary 
S-3). �e Lagrange multiplier value, which may sometimes bear physical meanings, can be found by



www.nature.com/scientificreports/

4Scientific RepoRts | 5:12677 | DOi: 10.1038/srep12677

λ κ φ κ φ= − + ( − ) / ( − ) , ( )T e A T[ ] [ ] 16H L1 1 2

if its value is needed. �e segment-length ratio, βmax =  LB/LA, and the maximum recti�cation ratio, Rmax, 
can also be derived as

κ φ

κ φ
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T 17
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corresponding to

β ψ ψ ψ ψ= ( − )/( − ), ( )18max BH BL AH AL

and

φ = = . ( )p q 19

Note that the in�uence of d3 and d4 on Rmax is implicitly imbedded in the value of φ.
For illustration, let us examine AL1/BL1a (the le�most TR on the abscissa) (Figs 2 and 3), sandwiched 

between thermal reservoirs at 120 K and 300 K with segments A and B made of stainless steel and alu-
minum oxide, respectively. Choosing β =  1 arbitrarily, we use Eqs (4) and (5) to obtain p =  1.3899 and 
q =  1.9214. �en, from Eq.  (6), we obtain R =  1.3260. To optimize this TR, let us modify it into AL1/
BL1b with β determined by the method of Lagrange Multipliers, or Eq. (18), to be 2.1618. According to 
Eq. (17), we succeed in increasing R to 1.3801.

Ultimate Limit for Rectification Ratios of Linear TRS
At this juncture, a question naturally arises: does there exist a recti�cation-ratio maximum for all linear 
TRs operating within the same temperature limits? Following this curiosity, we seek the possibility of 
further increasing the value of Rmax if κAL, κAH, κBL, κBH and TH are varied. �e trapezoidal rule dictates 
(Fig. 3, the top right sub-�gure) that

κ κ κ φ= + ( − ) + + ( − )m T T m T2 [ ] [ ]Am H L Am L1

and

Figure 2. Characteristics of twelve thermal recti�ers (TRs). Here A and B denote “segment A” and 
“segment B”, and L, Q, and N, respectively, denote “linear”, “quadratic”, and “nonlinear”. �e 5th linear TR 
(counted from the le� on the abscissa) (AL4/BL2) is presented to show that recti�cation e�ects can take 
place even if one segment possesses uniform κ. �e right most nonlinear TR (AN3/BN3) boasts the highest 
Rmax, which will become impressive only if materials for AN3 and BN3 can be possibly fabricated on earth, 
and if the thermal contact resistance can be neglected. �e values of TH/TL is 2.5 for all TRs except for AL3/
BL3 for which we intend to show the fact that =R * 3

max
 does not depend on temperature ranges of thermal 

reservoirs (TH/TL =  6).
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κ κ κ φ= + + ( − ) ,m T2 [ ]Am Am L2

where m is the slope of the line for κA(T). Consequently,
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First, it is seen from Eq. (17) that Rmax increases as κ1/κ2 increases since (TH −  φ)/(φ −  TL) is always 
positive because 1 <  φ <  TH. Next, assume that (a) x, a1 and a2 are all positive real numbers and (b) 
a1 <  a2. �en an elementary manipulation yields

+

+
< .

( )
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2

1

2
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In Eq. (20), let us regard 2κAm as x, m(φ −  1) as a1, and m(φ −  TL) +  m(TH −  TL) as a2. Note that m is 
always positive in segment A. �us, according to the inequality (21), we are able to conclude
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In other words, if we wish to attain the maximum value of κ1/κ2, let us manufacture the segment A 
such that its thermal conductivity is as low as possible at the low temperature. Similarly, omitting the 
algebra, we can derive

Figure 3. �ermal conductivities of ��een segment materials. �e chemical formula for cobalt oxide A 
and cobalt oxide B take the form of La0.7Sr0.3CoO3 and LaCoO3. For linear segments, κ(T) =  d1 +  2d2T; for 
quadratic segments, κ(T) =  d1 +  d2T +  d3T

2; for nonlinear segments AN1 and BN1, T d d T
d

1 2
3κ( ) = + ; for 

nonlinear segments AN2, AN3, BN2, and BN3, T d d e
d T

1 2
3κ( ) = + . Note that, in all simulations, the grid 

node for κ staggers half grid interval toward right. Hence, for example, for AN3, κ(TH) =  6067.6 =  κmax, but 
κf(1) =  6064.6, which exhibits a slightly di�erent value. �e subscript “M” of κAM shown in the trapezoid 
stands for “Maximum” (thus “m”= minimum). �e variable κAM is shown in the �gure merely for the sake of 
completeness. It is actually not needed in the derivation of Eq. (20).
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�e constraint, Eq. (9), can now be rewritten as

φ φ φ φ( + − )( − ) = ( − − )( − ) ,T T T T T T2 2H L H H L L

3 3

whose only meaningful solution is found to be

φ = . ( + ). ( )T T0 5 24H L

Equation  (24) dictates that, when the recti�cation ratio of a TR reaches its ultimate limit, not only 
the junction temperatures in the forward-�ux phase and the reverse-�ux phase must be equal, but also 
this value must be the average of the temperatures of two thermal reservoirs. Finally, utilizing Eq. (24), 
we can rewrite Eq. (6) as

κ

κ

κ φ

κ φ

φ

φ

φ

φ

=
( − )

( − )
<

( − )

( − )
=

<
( + − )

( − )

( − )

( − )
= = ,

( )

R
T p

q T

T

T
R

T T

T

T

T
R

2
3 *

25

H

L

H

L
max

H L

L

H

L
max

1

2

1

2

which none of recti�cation ratios of bi-segment linear TRs can possibly exceed. Equation  (25) also 
instructs us that this limit is independent of the temperatures of two thermal reservoirs. In principle, as 
long as κAm and κBm approach zero, the recti�cation ratio can approach the value 3 even if the di�erence 
between the two reservoir temperatures is very minute. For example, if we are capable of manufacturing 
a TR, identi�ed as AL2/BL2, by lowering κA from [14.5, 19.5] to [0, 5] and κB from [18.5, 55] to [0, 36.5] 
without changing slopes, we can attain this limit. Another example is AL3/BL3 (Fig. 2) whose κA(T) and 
κB(T) lines are �ctitiously steep.

Nonlinear Thermal Rectifiers
In the derivation of Rmax for nonlinear TRs, the �rst critical step remains to be the proof that p and q 
must be equal when Rmax is reached, or equivalently that two locations, namely, the junction of two seg-
ments and the intersection of two temperature pro�les, should coincide. For logical clarity, let us arrange 
reasoning statements step-by-step: (a) κf  >  κr is desired everywhere throughout the TR in order for the 
recti�cation e�ect to be pronounced. (b) Equivalently, Tf  >  Tr in segment A and Tf <  Tr in segment B 
are desired. (c) If p >  q at x =  x1(Fig. 4a), the intersection of two T pro�les will lie to the right of x1. (d) 
A small shaded area within which Tf  >  Tr will be formed. (e) �is area, however, lies in segment B. (f) 
Statement (e) contradicts statement (b). (g) Hence, the TR shown here cannot be optimal. (h) If p <  q 
at x =  x1, the rationale is similar and can be omitted. (i) �e proof is established. Extensive simulation 
results also support this equality condition. Next, let us examine the di�erential equation governing the 
temperature distribution in 1D steady-state heat conduction,

Figure 4. Temperature distributions taken to explain derivations of R
max

⁎  (a) When a TR is not optimized, 
junction temperatures in forward-�ux and reverse-�ux phases di�er. �e intersection of two temperature 
pro�les will lie in either segment A or segment B. (b) When a TR is optimized, we observe that p =  q =  φ 
and that two pro�les intersect nearly like a cross.
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where G =  (dκ/dT)(dT/dx)2. For uniform κ(or G =  0), the solution of T is simply a straight line as 
expected. Since dκ/dT is positive in segment A, the term, G, behaves like a heat source, inducing the 
temperature pro�le inside segment A to bulge (Fig. 4b). Conversely, in segment B the slope is negative. 
�us G behaves like a heat sink, causing the temperature pro�le to concave. �e larger the value of G 
becomes, the higher the temperature pro�le tends to convex in segment A, but can never exceed TH, in 
order to obey the second law of thermodynamics that energy �ow cannot travel from a cold body to 
a hot body by itself. Since p =  q =  φ at the junction, κ bears the same value for both the forward and 
reverse cases, i. e., κf =  κr. According to Eq. (1), (dT/dx)f must be greater than (dT/dx)r in order for R to 
be greater than unity. By contrast, near x =  0, since both T pro�les swell upward, resulting in diminishing 
Tf gradients and steep Tr gradients, thus it must follow that (dT/dx)f <  (dT/dx)r. Consequently, between 
x =  0 and the junction location, there exists a location where (dT/dx)f =  (dT/dx)r. For example, for the 
TR identi�ed as AN3/BN3 whose temperature distribution looks very similar to Fig.  4b, this location 
is computed to be x =  0.051m, with temperature gradients equal to 1.98. Hence at that very location, 
Rmax equals κf/κr, in which the in�uence of temperature gradients on Rmax entirely vanishes. However, 
since κf <  κmax and κr >  κmin, it follows that Rmax =  κmax/κmin in segment A. Likewise, Rmax equals κr/κf 
in segment B. In summary,

κ

κ

κ

κ

κ

κ
=






,




< = ,
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R Rmax *

29
max

Af

Ar

Br

Bf

max

min

max

where κmax and κmin are two extremes that can be possibly found or fabricated on earth within rea-
sonable temperature ranges on earth today. As an example, for AN1/BN1b, Rmax =  108.8, whereas κ 
ranges from approximately 0.01 W/mK for low-temperature air up to 5000 W/mK for typical graphene. 
Hypothetically, if we are able to fabricate two solid materials whose κA increases from 0.01 to 5000 and κB 
decreases from 5000 to 0.01 as T increases within [120 K, 300 K], the R value cannot exceed a half million.

Two ways of designing high-ratio TRs are recommended: (1) Select materials whose κA(T) varies 
steeply near TH and κB(T) varies steeply near TL (for example, see Fig.  1d). In this study, since the 
cross-sectional area of the segments remains uniform, the magnitude of the heat �ux (W/m2) depends 
solely on the product of κ and dT/dx. Exactly at the junction where p =  q =  φ, it is mandatory that 
κf =  κr, implying that R =  (dTf/dx)/(dTr/dx) and that the two pro�les of Tf(x) and Tr(x) must intersect 
and resemble a cross at the junction (Fig.  4b), without other alternatives. Subsequently, in order for 
Tf(x) to vary from ϕ at the junction to TH at x =  0, it must undergo a sharp bend, then gradually level 
o� near x =  0, again without other alternatives. In order to keep �nite the magnitude of G, i. e., (dκ/dT)
(dT/dx)2, we must keep the slope, dκ/dT, large to compensate for diminishing values of (dT/dx)x=0. A 
similar rationale prevails near TL for segment B. Two examples are given in the next section, along with 
some numerical values of T and κ near the junction. (2) Conduct analyses on each single segment prior 
to joining the two together, thus permitting time-saving and focusing on characteristics of each segment 
independently of the other. Accordingly, during the forward-�ux phase the 1D stead-state heat conduc-
tion phenomenon dictates

κ κ− = − = ,
( )

dT

dx

dT

dx
J

30
A

A

A
B

B

B
f

which yields

∫ ∫β κ κ= / = / .
( )φ

φ

L L dT dT
31

f B A

T

B B
T

A A
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H

Likewise, during the reverse-�ux phase,
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∫ ∫β κ κ= / = / .
( )φ

φ

L L dT dT
32

r B A

T

B B
T
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We can iteratively tune the value of φ such that βf =  βr. A�erwards, based on Eq. (1), we can derive
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dT 33
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T A

T A

T

B

T

B

H

L

L

H

without having to obtain the solution of T(x). Although it does not provide us with Tf(x) and Tr(x), 
this uni-segment approach yields parametric values of φ and βmax, which enable us to entirely separate 
A and B segments, and to predict all characteristics of the bi-segment TR. In other words, with LA, TH, 
and TL given and ϕ iteratively found from Eqs (31) and (32), we can compute Jf and Jr, and thus Rmax for 
segment A from Eq. (33). �ese values should be equal to those computed in segment B. Characteristics 
of AN2/BN2a, b and AN3/BN3 have been obtained using both of this uni-segment procedure and the 
regular bi-segment simulations.

Comparisons with other Results
Five approaches are adopted to compare their results with those obtained by proposed theoretical and 
numerical analyses: (a) the experimental in24, (b) in-house micro-scale Hamiltonian-oscillators, (c) 
assurance that residuals of approximately 4000 nonlinear equations diminish to less than 10−10 upon con-
vergence, (d) assurance that, as the grid-interval number increases from 20 to 2000, the solution grad-
ually reaches an asymptote, and (e) identicalness between φ and β values obtained by the uni-segment 
approach and the bi-segment counterpart. In (a), Kobayashi24 et al. reported β =  1.0328 (LA =  0.0061m 
and LB =  0.0063m) and R =  1.43. Our simulation solution showed R =  1.4452 in fair agreement. In addi-
tion, we found that the recti�cation ratio could increase slightly to Rmax =  1.4623 if the segment-length 
ratio is modi�ed to βmax =  1.4524. Under this condition, the junction temperature becomes φ =  1.7188(or 
68.752K) (Fig. 2 and Fig. 5). Incidentally, when R is plotted versus β in an appropriate range, in general a 
peak emerges for a given TR as shown by two dashed curves in Fig. 5. In (b), we consider Hamiltonian 
anharmonic oscillators27,28, which are governed by:

∑ ∑
γ

=








+







+ ( − ) ,

( )=

−

+H
p

m
x

k
x x

2 4 2 34i

n
i

i
i

i

n

i i
1

2

4

1

1

2

where n is the total number of particles; mi the mass of particles; pi the momentum of the ith particle; xi 
the displacement from the equilibrium position; k the strength of the inter-particle harmonic potential; 
and γ the strength of the on-site potential. In Fig. 6, temperature pro�les obtained by using Eq. (34) is 
plotted versus the oscillator number or x. In 1D-chain-oscillator analyses, usually κ is deduced from the 
temperature gradient and the heat �ux, instead of being given in bulk-system heat conduction analyses. 
�us, post-processing with curve-�tting yields κ(T) =  0.049(0.331 +  T)−1.369, which in turn serves as an 

Figure 5. Comparison of the present simulation result with experimental data24 in good agreement. Two 
additional curves for di�erent TRs suggest that generally a given TR can be optimized to achieve its highest 
R by varying the segment-length ratio β. �e inset exhibits the peak more conspicuously.
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input into the macro-scale uni-segment simulation code. �e solutions, representing temperature pro�les 
in B segment, are seen to agree fairly. In (c), for clarity of illustration, let us select the TR, identi�ed 
as AN2/BN2b, and consider the energy balance over the control volume containing the junction node 
where troubles of solution divergence, if any, usually originate. Nodal temperatures at two adjacent nodes 
and thermal conductivities at two adjacent mid-points are listed:

φ

κ κ

= . = = . = . ,

( ) = . , ( ) = . ,

∆ = . ∗ , ∆ = . ∗ .− −

T T T

T T

x x

1 85210 1 75562 1 66028

0 61574 0 54976

1 0625 10 9 3749 10

A w B e

a b

1000 1001 1002

4 5

To derive the governing equation for the junction temperature, T1001, we write, for the forward-�ux 
case,

κ κ( )
−

∆
= ( )

−

∆
.

( )
T

T T

x
T

T T

x 35
A w

A

B e

B

1000 1001 1001 1002

�e fact that the le�-hand side is equal to the right-hand side (Jf =  559.1107) partly suggests that the 
code is bug-free. Similarly, Jr =  0.52516. �erefore, we obtain Rmax =  Jf/Jr =  1064.66 (Fig.  2). In (d), for 
AN3/BN3, which exhibits the steepest temperature slope near the junction among all TRs, we repeat runs 
for nA =  nB =  20, 40, 100, 200, 500, 1000, and 2000, and obtain an asymptotic value of 3121 for Rmax as 
nA approaches 2000. Results for AN2/BN2b are obtained using both the uni-segment procedure and the 
regular bi-segment simulation, and are found to be the same.

�e TR system is discretized into nA +  nB grid intervals, where nA =  nB =  1000 was taken for non-
linear TRs. A modi�ed Newton-Raphson method29, in which nonlinear terms were not linearized if 
unnecessary, was used to solve the set of these nonlinear equations. To ensure the solution convergence, 
we monitored maximum residuals of nodal �ux di�erences (west value minus east value for node i) 
and thermal conductivity di�erences (computed value minus analytical value). �ese values diminish to 
O(10−10) except those for forward �uxes in AN2/BN2 and AN3/BN3, of which values vanish to O(10−8). 
�e 1D chain of anharmonic oscillators is connected to two thermal reservoirs at TH =  2.5 and TL =  0.5. 
Langevin30 thermal baths are used, leading to boundary conditions for oscillators (i =  1) and (i =  64) as

γ η λ″ = ( − ) − + ( ) − ′ ( )mx k x x x t x2 36w w1 2 1 1

3

1

and

γ η λ″ = ( − ) − + ( ) − ′ , ( )mx k x x x t x2 37e e64 63 64 64

3

64

Figure 6. Comparison of temperature distributions obtained by running micro-scale Hamiltonian-

oscillator simulations and macro-scale uni-segment numerical simulations. In the former κ is computed, 
whereas in the latter κ is given. Both pro�les concave as they should in segment B, which behaves as if a 
heat sink prevails.
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where

η λ π η λ π( ) = − ( ) ( ) ( ) = − ( ) ( ).t k T ln a a t k T ln a a4 cos 2 and 4 cos 2
w B H w e B L e1 2 3 4

Symbols a1, a2, a3, and a4 are randomly-generated numbers between 0 and 1; values of λw, λe (damp-
ing factors), k, κB, and γ are all taken to be unity. �e set of 64 nonlinear equations of motion are inte-
grated by using the fourth-order stochastic Runge-Kutta algorithm31.

In practice, very few TRs can strictly remain in steady state all the time. Immediately a�er the thermal 
reservoirs are switched, the TR will experience a change to adjust itself thermally to a new state. During 
this transient period, Eq. (27) should be modi�ed to

κ
κ

ρ
∂

∂
+





∂

∂





=

∂

∂
.

( )

T

x

d

dT

T

x
c

T

t 38
v

2

2

2

Even though the problem has now become slightly more complicated, there exists a possibility that 
the transient term on the right hand side of Eq. (38) can be manipulated to increase recti�cation ratios. 
Such an exploration will be le� as the future work.
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