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Abstract

This paper is concerned with the motion of an incompressible fluid in a rigid
porous medium of infinite extent. The fluid is bounded below by a fixed,
impermeable layer and above by a free surface moving under the influence
of gravity. The laminar flow is governed by Darcy’s law.

We prove existence of a unique maximal classical solution, using methods
from the theory of maximal regularity, analytic semigroups, and Fourier
multipliers. Moreover, we describe a state space which can be considered
as domain of parabolicity for the problem under consideration.

1 Introduction and main result

In this paper we investigate a class of free boundary problems, which can be
described as follows. Let

A:={f € BC*(R); inf f(z) > 0}.

Given f € 5[, define

Qp :=={(z,y) e Rx (0,00); 0 <y < f(z)}.
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The boundaries of {1; are given by

o :=R x {0},
I'y := graph(f) := {(z,y) € Rx (0,00); y = f(z)}.

For fixed T > 0, let J :=[0,T) and J = J\ {0}. Then we address the following
problem: Given fo € 2 and ¢ > 0, find a pair of functions (u, f) possessing the
regularity

feC(L,A)NCLJ, BCYR)),

— (1.1)
u(t,") € BC?*(Qg,R), t € J,
and satisfying pointwise the following set of equations
Au(t,z) =0 teJd, z € Qpuy,
Oyu(t,z) = 0 ted, z€ly,
u(t,z) = f(t,z) teJ, z€Tlqy, (P).
limy,| o0 u(t, 2) = ¢ ted 7
O f(t,z) + 1+ 0.2t x) Qpult,z) = 0 teld, z €T,
f0,2) = folz) zeR

Here we use the following notation: z = (z,y) represents a gencric point in Q.
Moreover, A denotes the Laplace operator with respect to the Euclidean metric
and J, stands for the derivative in direction of the outer unit normal n at T'sq),
i.e., Opu := (Vuln), where Vu and (-|-) denotes the gradient of w and the inner
product in R2, respectively (again in FEuclidean coordinates of course). Observe
that at each point (z, f(t,z)) of I'¢;) the outer unit normal n is given by

(_ai"f(t> .73), 1)
V1+0,f2(t,2)
A pair (u, f) satisfying (1.1) and (P)y, . is called a classical solution of (P)¢, . on
J. Problem (P)y, . is a standard model for the flow of an incompressible Newtonian

n(t,z) =

ted zeR.
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fluid in a homogeneous and isotropic porous medium, see [7, pp. 297, 321]. It is
used in hydrology of groundwater |7, 10, 17, 21] and for Hele-Shaw flows [10, p.
160).

An inherent difficulty in treating problem (P)y, . stems from the fact that the
function f, determining the interface I'y, is a priori unknown. Bear and Bachmat
[7, p- 316] describe this circumstance as follows : “We find ourselves in a kind
of vicious circle: in order to solve the problem, we have to know the location of
the boundary, but in order to determine the shape of the boundary, we have first
to solve the problem”. We will break this vicious circle by solving the nonlinear
equations which are behind the inherent difficulties described above.

In order to formulate our result, let A®, s > 0, denote the little Holder spaces, see
section 3, and put hZ := {c+ g; g € h*}. Moreover, let a € (0,1) be fixed. Given
fean h2te(R), let us denote the unique solution of

Au=0 in £y, Oyu=0 on Iy, u=f on TYy.
Moreover, set

f2
I+ 2+ 200+ 1)

Hlf =
and define
Vo= {f e ANAIT*(R); dyus(z, f(z)) < kp(x), z € R},

Observe that f = ¢ belongs to AN h2*te(R) and that u. = c. Hence c lies in V.
More precisely, it can be shown that V. is a open neighborhood of ¢ in A2T%(R)
and that diamg.(Ve) := sup, pev, |9 — All2ra = o0, see Lemma 5.10. Suppose
now that (u, f) is a classical solution of (P)s, . on J for some fy € V.. We call
(u, f) a classical Hélder solution on J if it possesses the additional regularity

f e C(J,Ve) N CHI ht*(R)),
u(t, ) S hg_'—a(ﬁf(t),R), te J

Finally, a solution (u, f) of (P), . on J is said to be mazimal if there does not
exist an interval J and a pair of functions (%, f) such that J is a proper subinterval
of J, (@, f) D (u, f), and such that (%, f) is a classical solution of (P), . on J.
Theorem 1. Given fy € V., there exist t* :=t7(fy) > 0 and a unique mazimal
classical Hélder solution (u, f) of problem (P)y, . on [0,¢7). Additionally, the
mapping [(t, fo) — f] defines a local C*®-semiflow on V.. If tT < oo and f :
[0,t%) — V. is uniformly continuous then either

S 1 e =00 or lm int [If() ~hlaa =0 (12
Let us briefly sketch the main steps in the proof of Theorem 1. In the very first
stage we transform problem (P), . into a problem on a fixed domain and we then
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reduce this to a nonlinear evolution equation

Bf +3(f) =0,  f0) = fo. (1.3)

involving only the unknown function f, which determines the free boundary T'f.
This will be done in sections 2-4 and in Appendix C, where we in particular
investigate second order elliptic boundary value problems in little Holder spaces
on the strip & = R x (0,1} and under general boundary conditions. The operator
if— 5( /)] appearing in (1.3) is a nonlinear, nonlocal pseudo-differential operator.
In addition, ® carries a quasilinear structure. More precisely, given g € h>T%, let
D(g) := P(g+ ¢). Then it turns out that ®(g) = A(g)g, where A(g), for fixed g, is
a linear operator, the so-called generalized Dirichlet-Neumann operator, cf. [12].

The next step is devoted to the proof that the linearization d®(g) of @ is the
negative generator of a strongly continuous analytic semigroup on the little Holder
space h'*® ie., 8®(g) € H(h'*?), provided g + ¢ € V.. In this sense the phase
space V. should be considered as the “domain of parabolicity” of problem (P)¢, ..
The main ingredients here are to associate to 0®(g) a Fourier operator A, ie., a
pseudo-differential operator with constant coefficients and to use Mihlin-Hérman-
der’s multiplier theorem, parameter dependent norms, and the structural condition
contained in V, to verify that A € H(h'"®). This step will be realized in section 5
and Appendix B, where we particularly provide explicit representations of so-called
Poisson and singular Green operators, respectively.

Finally, in section 6, we use subtle perturbation arguments and the continuity
method to carry over the generation property of —A to —9®(g). This result enables
us to apply the theory of maximal regularity due to Da Prato and Grisvard [9]
and Lunardi {18, 19, 20|, and to solve the evolution equation (1.3) in the space
Bite(R).

Problem (P)y, . has also been investigated by H. Kawarada and H. Koshigoe [21]
using the implicit function theorem of Nash-Moser. More precisely, Kawarada and
Koshigoe prove, for a sufficiently smooth initial condition fy, the existence of a local
solution (u, f) of (P)y, . in the sense that there is a positive constant 7 with f €
C((0, 7], HBP(R))NCL((0, 7], HL(R)) and u(t,-) € HI® (5, R), t € (0, 7). Indeed,
it is assumed in [21] that fo € H®(R) and that sup |fo(z) — ¢| < ¢/2. Here, H® :=
H3 denote the Sobolev spaces of order s > 0 and again HS = {c+g; g € H*}.
Observe that Kawarada and Koshigoe’s result contains a (serious) loss of regularity
of the solution, which makes it impossible to extend a given local solution to a
maximal solution. In this sense the results in [21] are not appropriate to investigate
the long time behavior of (P)y, .. Moreover, it should be noted that there are no
assertions in [21] concerning uniqueness of solutions. In contrast, our approach
guarantees the existence of a unique maximal solution of (P) s, . possessing optimal
regularity, provided the initial condition belongs to V.. Additionally, we get the
dynamic behavior (1.2) and the semifiow property.
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2 Transformations

In this section we transform the original problem into a problem on a fixed domain.
We give a representation of the transformed operators in the corresponding new
coordinates. As a consequence, it turns out that the transformed operators will
depend nonlinearly on the unknown function f.

In the following, ¢ > 0 is fixed. Define

A=A = {g € BC*(R); inf(c+g(x)) > 0}.

Given g € U, 1etf::c+g€2~[and

/

_Yy
c+g(z')

It is easily verified that ¢, € Diff 2(Qy, ), ie., ¢, is a diffeomorphism of class C?
which maps Q¢ onto the strip Q := R x (0, 1). Moreover,

(@' ) ==y ,y) == (2,1 - ) for (z,y) € Qs

e Ha,y) = @ y) = (@, (L-y) e+ g(z) for (z,y) € Q.
Let
p.u=plu=uop,l for ueC(fy),
v = pu = v 0 g for veC(Q),
denote the push forward and pull back operators, respectively, induced by . Given
g € U and v € C?(12), we define the following transformed operators:
Alg)v := —plA(g}v)
Bi(g)v = ¢i(v:V(gyv)ni), i=0, 1,

where o and ~y; stands for the trace operator and ng = (—gz,1) and ny = (0, —1)
denote the outer normal according to I'y and T'g, respectively.
Let go € 2 be given and consider the following transformed problem

Alglv=0 in JxQ,
v=yg¢9 on JxTIy,
Bi{glv=0 on JxTIy,
lim ;Lo v(t,2) =0 on J,
g+ Bo(glu=0 on J xTo,
9(0,-) = go on R,

(@ao

where I'; := R x {4}, i =0, 1. A pair (v,g) is called a classical solution of (Q)
on J iff

g0

g € C(J, %) N CY(J, BCY(R)),

o(t,") € BC2(Q), t € J, (Ro)
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and (v, g) satisfies (Q)4, pointwise. It is obvious that problems (P)y, . and (Q)
are equivalent in the following sense:

g0

Lemma 2.1. Let go € A and ¢ > 0 be given.

a) If (u, f) is a classical solution of (P)ctgq,c then (pl™Cu—c, f—c) is a classical
solution of (Q)g,

b) If (v, g) is classical solution of (Q)g, then (p v+c, g+c) is a classical solution
of (P)etgoe- [

The next Lemma gives a representation of the transformed operators A(g) and
B(g) in local coordinates. Let w(z,y) = 1 —y for (z,y) € Q, h, = Oh for
h € C1(R), and assume that g € 2. We set

TGz 1 2 2
=1 = = = 1
a11(g) =1, ai2(g9) = axlg) et g’ a22(g) (C+g)2( + g%,
29'_c+gc+g gzw71 )
b = —gy, b = ———(1+g2), b =0, ba,1(g) = .
1,0(9) = —gz, b2,0(9) C+g( 9z)> b1,1(9) 2,1(9) Py
Lemma 2.2. Given g € A, we have
2 2
(9) = > —a;k(9)0;0k + as(g)d, Bi(g) = biilg)vid;, i=0,1,
jk=1 j=1
and
2
Y (@) > alg)le? for &R
7,k=1
where

1
+(ctg)P+rigy

alg) =4

Proof. Let g, = gx(g) == (05, 1Ok *), 1< j,k <2, denote the components
of the metric tensor. Then it is easily verified that § := det[g;r] = (¢ + g)* and
that

1 —Wi‘”
C
G =G = | g, T
(1 +72g2)
ctg (c+g)?

Now the first assertion follows from the well-known formulas

1
Alg)v = —pfA(pjv) = (VG G7*0Rv),

7-\/7 ]k 1

Bi(g)v = QD‘Z(’YZ‘V(QD;;’U)"I’I,Z-) = Qﬂg(’h’[zkzl 8jgﬁ];6k71]1§j52]ni)., i1 =0, 1.
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To prove the second assertion, we fix (z,y) € Q and suppress it in our notation.
Observe that the smallest eigenvalue of [§7%] is given by

A_(g) = m& +(c+ 9 +7%g2 — VL + (c+9)? + 72622 — 4c + )%}
a=alg) =1+ (c+g)?+7%2] ", p:=B(g):=2(c+g),
and note that

1 ;
— == (c+9® g +4r'g; > 0.

Hence we find that o?$% < 1. This implies that

232
0<1-a?f <(1- O‘zﬂ 3

Consequently,

A(9) = —5 (1= VI—a2F) 2 o,

= aF

which completes the proof of Lemma 2.2. U

3 Elliptic boundary value problems in
Holder spaces

In this section we study linear elliptic boundary value problems on so-called little
Holder spaces h*(£2). We will derive a priori estimates as well as isomorphism prop-
erties for such problems. In the following let S(R™), n > 1, denote the Schwartz
space, i.e., the Fréchet space of all rapidly decreasing smooth functions on R™.
Moreover, assume that & € N and that U is an open subset of R™. Let

BUCH(U) = ({u € C*(U); |fullkv = max SgBI3QU(I)[ < ook [+ lle)

|

denote the Banach space of all functions on U having bounded and uniformly
continuous derivatives of order k. The a-Hélder seminorm, o € (0,1), is defined
as

= sup ME)
[Uou = %y;pU P—E (3.1)

Then we define the Banach space

BUCk+a(U) — ({u c BUCk(U), fai)i[aﬁu]a’(] < OO}; ” . ||k+o¢,U);
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where
lullkso,u = llullku + féﬁi[aﬁu]w’ keN, ae€(0,1). (3.2)

Suppose that p,q € [1,00] and that s € R and let B; (R") denote the Besov
spaces over R™, cf. [29, Definition 1.5.1]. The following result characterizes the

spaces BUC®(R™) as Besov spaces, provided s is not an integer.
Theorem 3.1. Assume that s € RT \N. Then

BUC*(R™) = B . (R").
Proof. This follows from Theorem 1.5.1 (ii) and Theorem 1.2.2 (ii) in [29]. O
In order to have a consistent notation, we set
BUC*(R™) := BS,__(R™), s<0. (3.3)

After these preparations we now define the little Holder spaces of order s, to be

h*(R") := closure of S(R™) in BUC*(R"™), s&R. (3.4)

Finally, suppose that U is an open subset of R™ and let ri; denote the restriction
operator with respect to U, i.e., ry := u|U for u € BUC(R™). Given s > 0, we
define

R*(U) := closure of ry(S(R™)) in BUC®(U). (3.5)

Lemma 3.2. Suppose that M is an open subset of R™ which is uniformly reqular
of class C*° in the sense of [8, Definition 1, p. 28]. Then

@) B(M) <SR (M), 0<s<t.

b) There exists an extension operator € € L(h*(M),h*(R™)), s > 0, such that
’I“Mg = idhs(M).

Proof. a) is obvious.

b) Fix s > 0. Using Theorem 3.1, Theorem 4.5.2 (ii) in [29], Lemma 11.2 in
[2], and the fact that M is uniformly regular of class C'*°, it follows, by means of
local coordinates, that there exist s; € N with s; > s and an extension opcrator
& such that

£ e [,(BUCT(M%BUCT(R'H')) with rp& = idBUC’T(M)a re [0, Sl}. (36)
In particular we have

£ e ﬁ(hS(M>,BUCS(Rn)> with 7y € = ldhs(M)
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Thus it suffices to show that
Eu e h*(R™) for wueh’®(M). (3.7)

There exists a sequence uy € S(R™) such that rarup — v in BUC®*(M) as k — occ.
Thus (3.6) implies that Eryu, € BUC® (R™). Since s1 € N, it is known that

R(R™) = {u € CH(R"™); 0% € Co(R™), |o| <51},

where Cy(R™) denotes the space of all continuous functions on R™ vanishing at
infinity. Now the construction of £ and the fact that u;y € S(R™) yield that
Erpug, € A (R™). But Erppup, — Eu in BUC*(R™) as k — oc. Therefore we
see that Eu € h*(R™). O

Remarks 3.3. a) Given 0 < s < ¢, it is known that BUC*(R™) is not dense in
BUC?*(R™). For that reason we prefer to work in little Hélder spaces, rather then
in the classical Holder spaces BUC'®.

b) Suppose that a € (0,1) and that k € N. Then the following characterization of
the little Holder spaces holds: u € h*T%(R") iff u € C¥(R™) and

|0%u(z) — 07uly)]

lim sup =0, geN* |8]=k.
t—0 T,y ER™ I.CU - y|a
0< |z—y|<t
A proof in the case n=1 is given in [26]. For the general case see [4]. O

We need some further function spaces. Let U be an open subset of R™ and assume
that s > 0. We set

buc®(U) := closure of BUC™(U) in BUC®(U).
Moreover, we use the following notations:
h’ == h°(R), h == h° N, buc® ;= buc®*(R), s>0.

Given s > 0, it is easily verified that

7

[(a,v) — av] : buc® x h*(Q) — h*(Q)

3.8
[(a,g) — ag] : buc® X h® — h* (3.8)

are bilinear and continuous, and that the mapping
[gH(H—g] : h;(—>bucs (39)

is of class C°°.
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Lemma 3.4. Let o € (0,1) be given. Then
(A(), Bo(-)) € O (k@ LIB*+*(2), h*(Q) x h'T%))

and

0A(g)[h,v] = («’—g{(giq hs)0109v + ((c+g)2( + Wgazc) ﬁng:L )32'0

_((cgfél) - g“f&?ﬁif = tae)dyu,

880(9)[ ] =—h 817) + o C+g (h:_ﬁjz - 2g$hx)82’0,

for h € R*T v € R2T2(Q).
Proof. This follows from (3.8), (3.9), Lemma 2.2, and elementary calculations. O

In the following we let o € (0,1) be fixed. The next lemma collects some funda-
mental a priori estimates and isomorphism properties of elliptic boundary value
problems on little Holder spaces. A proof is given in Appendix C. It uses the clas-
sical results of Agmon, Douglis, and Nirenberg, the maximum principle, and the
continuity method.

Theorem 3.5. a) Let g € h5™®, A >0, and > 0 be given. Then

(A =+ Alg), 70, (¢ + g)Bu(g)) € Isom(h*+4 (), h* () x A*** x h1Te)
(A + Alg), o + Bolg), Bi(g)) € Isom(h***(2), h*(Q) x h'T% x h!T2)

b) Given Ay >0 and g € hgfo‘, there exists a positive constant C, depending on
”9Hh2+aa Ao, @, and ¢, such that

[ullora0 < OO+ A@)ullag + Ioull2ra + (e + 9)Bi(9ulli+a)

for all w € R?T2(Q) and X € [0, Ag].
Proof. See Appendix C. ]

Given g € hg™*, we now define

R(g) == (A(9), 70, (c + 9)Bi(9)) ",
= R(g)|h*(2) x {0} x {0}, (3.10)
= R(g)|{0} x h*T* x {0}.

Assume that g € h%ﬁ‘ﬂ h € h?T and put u := T(g)h. Then u is the unique
solution in A2+*(Q) of the following elliptic boundary value problem

Alglu =0 in £, yu=~h on Tq, Bi(g)lu=0 on T4y.
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Lemma 3.6, We have
T () € C(hg"™, L(A*T>, h*T* (1))

and
T (g)lh, "] = ~S(9)0A(9)h, T (g)]
for g € h3T* and h € h¥+e,

Proof. To shorten our notation, let U := h3t®, Fy := h*(Q), Fy := h*T*(Q),
Ey == k1T, and Ey := AT,
a) Observe that U is an open subset of Ey. Moreover, letting

A(g) = (Alg),v0: (¢ + 9)B1(9)), g€,
it follows from Lemma 3.4 and Theorem 3.5 that
A e C®(U, Isom(Fy, Fy x Fa x Ey))
with (note that (¢ + ¢g)B1(g) is independent of g)
0A(g)h = (0A(g)[h,],0,0) for h € Es.

b) Given A € Isom(Fy, Fy x Ey x Ey), define j(A) :== A~1. Then Isom(Fy, Fy x
Fy x Ey) is open in L(Fa, Fy x Ea X Ey), and it is known that

jE COO(ISOm(FZ,FO X Fo X El),ﬁ(FQ X Fy x El,FQ))

with _ _
0j(A)A = ~ATAATT

for A € Isom(Fy, Fy x Ey x E1) and A € L(Fa, Fy x Eo x E1)).
c) Let R € L(Fy x By x Eq, Fy)) be given, and define p(R) € L(FEs, F3) by

p(R)zg := R(0,2,,0) for o € Fs.
Then p € L(L(Fy x By x Eq, Fy), L(Es, F5)) and consequently
8p(R)S :p(S) for R, S e E(FO X Eoy X El,Fg).

Now the assertion follows from the identity 7 = pojo A and the chain rule. a

4 The nonlinear operator

In this section we introduce the basic nonlinear operator and we derive some
first properties of it. Moreover, we show that the corresponding evolution problem
involving this operator is equivalent to the original problem (P)y, .. Given g €
hat®, we define

(g) = Bo(9)7 (9)g-
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Observe that Lemma 3.4 and Lemma 3.6 yield that
P € C°(hgt™, hlTe). (4.1)
Suppose that go € ho™*, T' > 0, and let J := [0,T). A function g : J — h1T¢ is
said to be a classical solution of
g+®(@) =0, g(0) =g, (E)gq
iff g € C(J,h5™*) N CH(J,h'+) and g satisfies (E)y, pointwise.
Lemma 4.1. Let go € hg™ be given.

a) Suppose that g is a classical solution of problem (E)g, on J. Let v(t,-) :=
T(g(t)g(t). Then the pair (v,g) is a classical solution of (Q)g, on J,
having the additional regularity

g € C(J,hi ) n CHJ A Te), ()
u(t,) € K2Te(Q), te J. “

b)  Suppose that (v,g) is a classical solution of (Q)g, on J, having the regu-
larity (R)o. Then g is a classical solution of (E),, on J.

Proof. Just use the definitions. ]

Remarks 4.2. a) Observe that for fixed g € h;ﬁ“o‘, we have the linear operator
Alg) = [h > Bo(g)T (g)h] € L(H>H*, h}¥2). (4.2)

Thus problem (E),, is in fact a quasilinear evolution equation. The linear operator
A(g) is sometimes called generalized Dirichlet-Neumann operator, see [12].

b) However, it is important to note that A only maps an open subsct W of h2te
into £(h%T%, R}*%) but not an open subset W of some (true) intermediate space
between h*tT® and h1T¢ into L(A2T, RIT). If the latter were the case we could
treat (E)g4, by using the general theory for abstract quasilinear parabolic equations
developed by Amann in (3, 4], or the results in [6, 24]. In fact, it would then suffice
to prove that A(g) € H(R?t* hlT®) for g € W, see also Remark 4.4 below.

This lack of a “regularizing effect” forces us to really consider (E),, as a fully

nonlinear evolution equation. At this point we will use maximal regularity results
due to Da Prato and Grisvard. []

Lemma 4.3. ® € C®(hZ™ h'*®) and

OB (9)h = Bu(9)T (g)h + 0Bo(g)[h. T (9)g] — Bo(9)S(9)0A(9)[h, T (g)g]

for g € h3' and h € h*T*,
Proof. This follows from Lemmas 3.4 and 3.6. O
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Remark 4.4. Let g € h%{*‘”‘ be fixed. As already mentioned in the introduction,
our main effort will be concentrated on the proof that 8®(g) € H(h?T hlte). It
is known that the Dirichlet-Neumann operator A(g) generates strongly continuous
analytic semigroups on various function spaces, including Besov spaces, Lebesgue
spaces, and the space of continuous functions, see [5, 11, 12, 16]. We shall extend
these results in Section 6 by proving that A(g) € H(h*** hlT®) for g € hy™™.
Hence Lemma 4.3 shows that 0®(g) can be considered as a perturbation of the
generator —A(g) by the linear operators

O(g) = [h — 0Bo(9)[h, T (9)9g]],

(4.3)
3(g) := [h > —Bo(9)S(9)0A(9) [, T (g)g]]-

Observe that ©(g), %(g) € L(h?>T,h1**) and that Lemmas 2.2, 3.4 and Theorem

3.5b) imply that there is a positive constant C, independent of g, such that

19(g) +2(g)llz(h2+e pitey < Cllgllota

for all g € hg"™ with ||g]l2+a < o, where o € (0,¢) is fixed. Hence, using well-
known perturbation results for the class H(h?T%, h1+), see Theorem 1.1.3.1 in [4],
we find that 0®(g) € H(h2"*, A1), provided g is small enough, say ||g|lo1a < €
for some £ € (0,0]. However, this result is a purely local statement in the sense
that one has no information about the size of . In contrast, we propose a different
approach to prove that —9®(g), g € W, generates a strongly continuous analytic
semigroup on A+ for a large class W. This result enables us to construct maximal
solutions of the original problem (P),, . on a phase space W possessing an explicit
description. In particular, it turns out that W is large in the sense that its diameter
(in h%T®) is unbounded.

5 Fourier operators of the linearization

In this section we associate to each part A, ©, and ¥ (see (4.2) and (4.3)) of
the linearization 0% a Fourier operator, i.e., a pseudo differential operator with
constant coeflicients.

Throughout this section, let g € hgﬁ"‘, zg € R, and pg > 0 be fixed. Define

a1z = a12(g, o) = a12(9)(20,0), a2z = a22(g,zo) := az(g)(x0,0),

(5.1)
b1 = b1(g, o) := b1,0(g)(z0), b2 1= ba(g, o) := b2,0(g)(z0)-

We use the notation of Appendix B. Observe that due to Lemma 2.2, assumption

.3) 1s satislied with ag := Zg,0) and that o, = 2 > (), see Remar 1.
B.3)i isfied with g 0 d th aj; 0 R k B
Moreover, recall that

Ayu = fafu — 2a19010qu — aggagu (5.2)
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and let
B,Tu = b131u -+ bgag"u, (53)

for u € BUC?(H?).
I. The principal part of A(g). Define
Aw,l = Bﬂ'Zr and al(ﬂvli) = Zb177 - b2)‘(777 M), (777M) €Rx (07 00)7

where T, := T.,,, see (B.5). For the definition of A(n, ) see Remark B.1b).
Note that the operator A, = B,7; can be considered as the principal part of
A(g) = Bo(g9)7T (g) with constant coeflicients fixed in (zg,0). Let us start with the
following

Lemma 5.1. a1 € &S (a.) and A1 is the Fourier operator with symbol
ar (-, o), i-e.,
Ap1=F a1, uo)F.

Proof. We know from Remark B.1¢) that A € ElS7°(a, ). Moreover, observe that
ba < 0, ¢f. Lemma 2.2. Hence a1 € ElIS5° (), and Theorem A.2 yields that

Fray(, uo)F € L(RFT o), (5.4)

Given f € S, it is easily verified that

T flx,y) = F ([0 ine e8] Ff)(2),
827;rf($1y) = _‘7:_1 ()‘('7M0)6_A(.’M0)yff) (:B)?

for (z,y) € HZ2, and consequently
Aﬂ-,lf = fﬁlal(-,uo)ff for f €S.

Since S is dense in h*7%, the assertions follow from (5.4) and the fact that A, ; €
L{h%te h1T) see Lemma B.2. 0

II. The principal part of O(g). Let

v =, = T(g)g € K* (), (5.5)
29 (o)
= — - =29 ,0),
Cr O1vg(20,0) — — T o(0) 2Ug (%0, 0),

and define
Apohi=c 0h, heh', ax(n):=icm, neR.

Then A, 2=F"asF can be considered as the principal part of ©(g) =0Bo(g)!-,v]
with constant coefficients fixed in (xo, 0).
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ITI. The principal part of ¥(g). Let v, as in (5.5) and set

7(z,y)
¢+ g(z)

w(z,y) = we(z,y) = — Oovg(z,y), (z,y) € Q, (5.6)

and
Wy = w(xg, 0).
Furthermore, given h € h?T2, define
(Prh)(2,y) = (Pr(g: z0)h)(2,y) = w0?h(z)e ¥, (z,y) € H.
For later purposes we need the following technical
Lemma 5.2. a) P, € L(h?T% h*(H?)).
b) There exists a positive constant C := C(g) such that
prh - wazhllo,HQrTr]B(xo,O) + ra[Pﬂh - wa2h]a,H2ﬂr]B(wo,O) < CTHh“Q—}—a
for all h € KT and all r € (0,1].

Proof. a) Given h € h?T®, there is a sequence (h,) C S such that h, — h in
BUC*"™® as n — 0. Let

Wn (2,Y) 1= wre0?hy, (z)e™V W*+3) for (z,y) € R*, n € N.

Then w, € S(R?) and rg2w,, — Prhin BUC*(H?) as n — oo, i.e., Prh € h*(H?).
Since obviously P, € L(BUC?™™, BUC*(H?)), the proof of a) is complete.

b) Recall that w, = w(z¢,0) and that w € BUC'(H?). Hence letting U := H2 N
rB(z9,0), the mean value theorem implies the existence of a positive constant
C := C{g) such that

|Prh— w82h||o7U = |[(wre ¥ — w)@zhHo’U < Cr|hllota, 7€ (0,1
and such that

[Prb — wB?h]o v = [(wee™¥ — w)0?hlaur
< lwre™ = wllo,u[0*h]a,u + [wre ™ — wla,ul|8?hllo,u

Clwllyellbllz+a(r +r17%), 7€ (0,1].

IA

This proves assertion b). O

In the following let

W(y) = wee ¥ for yeR,

and observe that

- 2wy
Fw(f) = \/;m, 0 R, (5.7)
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cf. (B.32). Morcover, due to (B.3), we have that

1o +p(1.0) = 15 + ao(n’ + 0%) = 2y/a0 (uj + aon®) 0. (5.8)
Hence, putting

4107 ) = iby OF w(0)
P o T e e 6)

Lebesgue’s Theorem implies that as (-, o) € CHR) with

dg for (n,u)€R x(0,00),

Let us also introduce the following symbol
Jiln)=+v1+n? for nelk.
It is known that
F Yo F ¢ Isom (R0, h%) with [§{]7! =4;° for s,0 € R. (5.10)

Assume that 3 € (0, ). Then, using (5.7)-(5.9), elementary calculations show that

i aga (o) € M. (5.11)

Let
Az gy = —byy025; 1Pr,

where S;1 1= S .1, see (B.27). From Lemma 5.2a) and Lemma B.9 we know
that Ar31 € L(h?te pl*te) The following Lemma shows that this result can be
improved.

Lemma 5.3. Assume that 8 € (0,a). Then A;31 has an extension, again
denoted by Ar 31, such that

Arsl € [f(h2+ﬂ’ hite)
and
Apaqr=F taz (-, po)F.
Proof. Given h € §, we have

[FoEPxR) (1,0) = —*Fh(n) - Fiw(6), (n,0) € R?,
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where £ is given in (B.23). Consequently, it follows that

—byy02 Sy 1 Prh = —b2782TH2f2_1(/~03 +p) T FREPR

= —bﬂ?"wfz n,6) > i6( uo +p(n,0)) | FobPrh

= [z ““7/ — _T2EP.h(n,0)do d
/ I +p(n, 2 (1,6) df )

= Flazi(,po)Fh

for h € §. Moreover, we conclude from (5.10), (5.11), and Theorem A.1 that
Flag (o) F = F U0 ag 1 (4 po) FF P F € £(h¥8 p1te).

Now the density of S in A%t jmplies the assertions. O

We introduce a further operator
Ay 39 := —byy0aSy o Pr,
where Sy 2 = S 10,2, see (B.27), and a further symbol

b2wwn2)\(77a,u) d(n,p) +1
age  d(n,p) (X, p) + 1|2

Lemma 5.4. A, 32 € L(h?T* A1) and
Anso=TF ‘aza(- po)F.

0'3,2(777 /1') = (777 lu') €eRx (07 OO)

Proof. The first assertion follows again from Lemma 5.2a) and Lemma B.8. Given
h €S, we have

FPh(n,y) = —wn’e " VFh(n) for (n,y)€H?

see the definition preceding Remark B.6. Hence, it follows that

1 e
Fpano (M) = = | e k0¥ cos(a(n)y) F Pxhl(n,y) dy
(o0
~ PR [ e cos(atny)e Y dy
= Zw’f 772.7-"h(77)/ e—d(n,uo)y[eia(n)y + e—ia(n)y] e Ydy
a2

Wy 2 d?nalJ'O) +1
= Um 2Ry N HO T
a2 T D N, ) £ 1P

Consequently, the definition of Sy 2 implies
1 e_A('aMO)y

Angz=—bpy®F
3,2 27702 d(,,uo)

kphopio (1) = Fag o (- o) F-

This proves the Lemma. O
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Let Ay 5 := —BzS5:Pr, where Sy := S5,y = Sx,1 + Sz 2. Then we have

Corollary 5.5. A, 3 € L(h?T* h1T%) and A, 5 is represented by the Fourier
operator with symbol az 1(-, t0) + as 2(-, to)-

Proof. Observe that y0u = Ovu for v € h?T*(H?) and that vS, = 0. Hence
¥918-Pr = 0 and therefore

ATr,S = —B:5:Pr = 451731‘5}7% - beYaQS’]TPTr
= Ars1tArza=F Y as1( m0) +aso(-, po)) F.- L

It follows from the definition of P, and the representation of 0A, see Lemma
3.4, that the operator A, 3 can be considered as the principal part of X(g) =
—Bo(g)S(g)0A(g)[-,vy) with coefficients fixed in (z¢,0). Hence, summarizing the
above results, the Fourler operator

ATI' = Aﬂ,l + A7r,2 + A’/T,3

may be viewed as the principal part of the linearization 9®(g) with coeffi-
cients fixed in (zg,0). Our next goal is to prove that A, belongs to the class
H(R*T* h'Te). In order to do this, set

2
. Wr pd(n, 1) + popt
At (0, 1) = (b1 + tex)in — bpA(n, w){1 — t—n
o) = (b A1) aze " d(n, p)|poA(n, ) + 1

|2} (5.14)

for t € [0,1] and (1, ) € R x (0,00). Observe that ar o(-, o) and ax 1(:, po) are
the symbols of B, 7 and Az 1+ Ax 2+ Ar 3,0, respectively. Our main result of this
section reads as follows:

Theorem 5.6. Suppose that
Wy < —. (5.15)

Then there exists an o, > 0 such that

art € EUST(ay)  forall te]0,1].

Before proving Theorem 5.6, let us write down

Corollary 5.7. If condition (5.15) holds then A, € H(h*Te, hlTe).

Proof. Combining Theorem 5.6 (in the case t = 1, p = o) and Theorem A.2, it
follows that

Ap 14 Apo+ Apso € H(BZT RIT).
Fix 3 € (0,a). Then h*™? = (pi*e p2te)). ., where ()8 00> 0 € (0,1),
denotes the continuous interpolation method of Da Prato and Grisvard, see [9, 6,
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20, 24]. Together with Lemma 5.3 we find for each € > 0 positive constants C' and
C1(e) such that

[Az 3.1l 1o < Cllall2rs < elhll2ta + Cr(e)lIAll11a

for all h € h*T®. Hence Theorem 1.1.3.1 in [4], a perturbation result for the class
H{R?te p1te) implies that

A‘/r = ATr,l + ATr,Z + A7r,3,2 + A‘fr,?),l S H<h2+a7 h1+a)~ O
Let us also add the following

Remark 5.8. Condition (5.15) depends on g € hg'® and on zy € R, but is
independent of ug. More precisely, (5.15) reads as

o(9)(z0,0) _ a0
a22(g)(z0,0)  ase’ -

Proof of Theorem 5.6. Fix t € [0,1]. Obviously, a, ; € C*°(R x (0,00),C) and
ar ¢ is positively homogeneous of degree 1. It remains to show that there exists an
o, such that

Rear () = avV/m?+ 2 for (n,u) € R x(0,00). (5.16)
Pick (n, 1) € R x (0,00) and observe that

Wr = wy(x0,0) <

pgd(n, 1) + pop L

Reaﬂ: 7, ——bdn/l 1—t WT]Q
(1) = —bad(n, 1) d(n, oA, ) + 2

Further, Remark B.1c) shows that

(&7 /&
A, 1) 2 /0P i 2 2 (5.17)

i} Suppose that w, < O Then it follows from (5.17) and by < 0 that (5.16) is
satisfied with o, := —b2

az2 ’
ii) Suppose now that w, € (0, 2 20) and put & := 0 —wy > 0. It is not difficult
to see that

pod, ) fpop 1 a
d(n, )lpo A, 1) + pl? = [din, w]? ~ aen?’

where we used (5.17) to obtain the second inequality. Since —by and w, are both
positive, we conclude that

a a
Re (), 1) > —bod(n, ) {1 — twwf} > —bzaiozéd(n,u)-
0

Using once again (5.17), we find that (5.16) is satisfied with «, = ‘5& This
completes the proof. O
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Remark 5.9. The proof of Theorem 5.6 shows the following sharper result: Let
t € [0,1] be given and assume that

f, < 2. (5.18)
@22
Then there is an o, ¢ > 0 such that a,; € EUSP(a, +) > 0.
In particular, we see that condition (5.18) is always satisfled in case t = 0. O

As already observed in Remark 5.8, condition (5.15) depends on g € h;ﬁ“ and on
z € R. We now specify a subset Wy of hgﬁ”‘ such that for fixed g € W1 condition
(5.15) is satisfied for all z € R. Recall that

(6) = 1
A = et g2 +n2g2
and !
GQQ(Q) = (C+g)2 (1+7293:)
for g € ho™®. Moreover, define
2
() 2O (c+ 9(x)) .

az(9)(@,0) (14 (c+ g(@))? + g2(2)) (1 + g2(2))

Note that inf,eg #,(z) > 0 for g € hy™*. We now introduce

Wy = Wy, = {g € h3"*; inf (

inf m@gvg(az, 0) + rg(z)) >0}, tel0,1],

where v, = To(g)g, cf. (5.5). Obviously, W, C W, for 0 < s < ¢ < 1 and Wy =
hg . Finally, given a subset X C h®*®, let

diamo.o(X) := sup |lg — hll2+a
g,heX

denote the diameter of X in h?T®. Then we have the following

Lemma 5.10. Let t € [0,1] be given. Then W, is an open neighborhood of O in
hat® and diamato(W;) = oo.

Proof. Fix t € [0,1]. Obviously, 0 € hy™*. Moreover, ro = T% and vy = 0. Hence

0 belongs to W;. Given g € h3"®, put (see also (5.6))

wgi(x) == —twy(z,0) = Dovg(x,0), = €R.

T 9(@)
Then it follows from the a priori estimates in Theorem 3.5 that

[g = wys) € C(hoT*, BUC).
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Moreover, observe that
g Kg] € C(hy"™, BUC).
Thus, letting
Bi{g) = 22£(w97t(z) + ﬁg($)) for ge hgfo‘,
it follows that
B, € C(hy*,R).

Consequently, W; = B, '((0,00)) is open in h%ﬁ"‘.
It remains to prove that diams,(W;) = oco. For this fix § € (0, ) and o € (0, ¢).
From Theorem 3.5b) we know that there is a constant M > 0 such that

N7 (D cinz+e p2tsyy < M
for all g € h;% satisfying ||g/|2+s < 0. Now define

K= (6—6)3 No
CO2M(+ (c+0)? +02)(1+02)

and choose a sequence (g, Jnen C h?T% such that

sup[|gnlla+s <K,  supligallzra = oo (5.19)
nEN nEN
Observe that ||gnllcc < o < ¢ particularly implies that (g, )nen C hgﬁ"a. Moreover
it follows from (5.19) that
[(9n)a(@))? < llgnll5is < 0% mneN, zeR,

and therefore
(c—0o)?

(I+(c+0o)2+o?)(1+02)

Kg, (T) > . neN, zeR (5.20)

But we also have

1 1 1
-0 0) < - _— |7 "
C+gn(l') 27}9” (x’ ) — Cio_HUgnHQ-f‘ﬁ,Q C~0‘|| (gn)g ”2_'_5’9
< lgnllors < (c—0)?
=g gn 248 > 2 (1 + <C+ 0-)2 + 0-2)(1 + 0.2)

forn € N, z € R. Combining (5.20) and that last inequality, we find that (g,,)nen C
W1 C Wi Since sup,,c [lgnll24o = o0 we conclude that diama o (W;) is co. O

Remark 5.11. Suppose that g € W;. Then

wp = wy(@,0) < o) = AL _ 0

as2(g)(z,0) a2
for all z € R, see also (5.15). O
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6 A priori estimates for the linearization

In this section we use the Fourier operator A, of the preceding section to derive
Holder a priori estimates for the linearization 9. Essentially, this will be obtained
by estimating #0® — A, 6, where 8§ is a smooth function with small support.
Throughout this section po > 0 is fixed. Moreover, we put W := Wi. Let ar;
denote the symbol of (5.14) and define

A'rr,t = _1[a7r,t('7 /’LO) + taﬂ,f’),l('ap’o)]f for t € [O/ 1]

Given g € h3™® and ¢ € [0, 1], set

0P (g) == Bo(9)T (9) +t0Bo(g)[-, 7 (9)g] — tBo(9)S(9)0A(9)[- T (9)g]

and observe that 8®¢(g) = By(g)T (g) = A(g) and 9P1(g) = 0P(g). Hence the
parameter + deforms the Dirichlet-Neumann operator A(g) into the linearization
0%(g).

Let p > 0 be given and let {(U;,0;}; j € N} denote a p-localization sequence for
S:=8,:=Rx (~p/2,p/2), ie., each U; is open in S, | J;cy U; = S, the covering
{U;; j € N} has finite multiplicity, diam U; < p, and (Uj, 932) is a partition of unity
on S. Moreover, we fix z; € R such that (z;,0) € U;, j € N. Our main technical
tool is the following

Lemma 6.1. Assume that K C W is compact, B € (0,a), and that & > 0. Then
there exist p € (0,1], a p-localization sequence {(U;,0;); j € N}, and a positive
constant C .= C(K, &, p) such that

116,02+(9) — Ax (g, 2)0i1hll1 4o < K108l 24a + CllAl21s

for allh ¢ B®t* jEN, t€10,1], and g € K.

Before proving that Lemma, let us give the following application of it:

Theorem 6.2. Assume that K C W is compact. Then there exist positive con-
stants . and C = C(K) such that

[llo4a + lllAllea < Cl(p + 09:(9)) Pl
forallh c h?te, ge K, t €[0,1], and pu € [Rez > ..

Proof. Let K C W be compact, g € K, and j € N. From Remark 5.11, Theorem
5.6, a perturbation argument for tA, 5 1 similar as in the proof of Corollary 5.7,
and Theorem A.2 we infer that therc exist positive constants C' and i, such that

hllosa + llBllise < Cli(p+ Ari(g,25)) Bllita (6.1)
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forall h € h27™ ge K, j €N, t €[0,1], and p € [Rez > [i.]. Fix 8 € (0, ).
Due to Lemma 6.1 there exists a p-localization sequence {(U;,6;); j € N} and a
positive constant C' such that

1
[I[0;08:(g) — Ar +(g,25)05]h]14+a < %Hf)jh”%ra + Clhll21p

for all h € KT j €N, t € [0,1], and g € K. Therefore, replacing k by 6;h in
(6.1), we find that

1058112 o + |1l165hll14a < 2C{110; (1 + 001(9))hll1 40 + Cllhll21s}
for all b € B2t g€ K, t € [0,1], and p € [Rez > 2[,]. Since {(U;,0;); j € N}

is a localization sequence for S, it can be shown that

[h = sup [|0;h]k1a]
jEN

defines an equivalent norm on h*+t%, k = 1,2. Hence there is a positive constant
C such that

[All24a + lelllAllira < %H(u +0%4(9)) hll1+o + Cllhll24s (6.3)

for all h € h?t®, g€ K, t € [0,1], and p € [Rez > 2[i.]. Finally, we have the
interpolation result

2 1+a 3,2 0
28 — (h Tah +a)1—a+,@,oo7 (6.4)

where (-, -)g’oo, s € (0,1), denotes the continuous interpolation functor of Da Prato

and Grisvard, see [9]. Hence there is a constant Cy > 0 such that

Flzs < g llaloa+ Cillblle,  h€ B2
Now put p. := 2, V 2C1C to complete the proof. (]
It is now easy to establish the following generation result for the linearization 0®.
Corollary 6.3. Let g € W and t € [0,1] be given. Then
d®,(g) € H(h?Te, hlTe),
Proof. Pick g € W. We first prove that

e + A(g) € Isom (R*F pLTe), (6.5)

where . has the same meaning as in Theorem 6.2. Also recall that A(g) =
Bo(9)T (9) = 0%g. In view of Theorem 6.2 it suffices to verify that p. +A(g) is sur-
jective. Hence, let h € AT be given. Due to Theorem 3.5a), we find u € h2T(Q)
such that

(A(g)aﬂ*% + BU(Q)) (C + g)Bl(g))u = (07 h, 0)
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This implies that

T(g)ou = (A(g), %0, (¢ +9)B1(9)) " (0,701, 0)

= (A(9),70, (¢ + 9)B1(9)) ™ (A(9), 0. (¢ + 9)Ba(9))u = u.
Putting z := you € h?+*, it follows that

(p1 + Bo(9)T (9)) 2 =(p27v0 + Bo(g))u = h.

This shows (6.5). Now, due to Theorem 6.2, we can apply Theorem 5.2 in [14] to
0P;(g) and we find that

s 4 0P, (g) € Isom (K>t A1Te), (6.6)

for all ¢ € [0,1]. It remains to combine (6.6), Theorem 6.2, and Remark 1.1.2.1a)
in [4] to complete the proof of Corollary 6.3. O

Remark 6.4. A precise inspection of the proofs of Theorem 6.2 and Corollary 6.3
gives the following result:

0®,(g) € H(h*T* h't®) for t€[0,1] and g<c W,
Particularly, in case { = 0 we have for the Dirichlet-Neumann operator:
Alg) € H(R*T®, ') forall gehy™ =W, O

For the proof of Lemma 6.1 we need some preparation. Let {(U;,6); j € N} be
a p-localization sequence for S. Given j € N, we choose x; € D(U;) such that
x;lsupp8; = 1. We call {(U;,6;,x;): j € N} an extended p-localization sequence
for S. Observe that the cut-off functions x; can be chosen such that there is a
positive constant C, independent of p, with

lixillou;, +0%xjlaw, £C, jeEN (6.7)

Moreover, there is a Z := Z, > 0 such that

Ixsllova,u; + 105ll24au, <Z, jEN (6.8)

Extending and restricting a test function x € D(U;), we obtain pointwise multi-
pliers on the spaces h*T*(Q) and h*+<, respectively. We use for all these multi-
plication operators the same symbol x. Analogously, the commutators [A, x| :=
Ax — xA, where A € L(R(Q),hFT) or A € L(RH®, RF+(Q)), | > k, have to
be understood in this way. Given g € hgﬁa, let us introduce the following linear
operator

P 1= Plg) = DA(g)]- v,] € LW, h(Q)),



Vol. 2, 1995 Maximal regularity for a free boundary problem 487

where v, = T(g)g, see (5.5). In order to further economize our notation, we fix
g€ h%ﬁa, t € [0,1], 7 € N and suppress them whenever no confusion seems likely.
For example,

00D = 0;00:(g), Arx = Ari(9,%5)x5, or

B:S:Pr — BSP = B.(g, xj)‘sw,p-o (g;xj)Pﬂ (g, xj) — Bo(9)S(9)P(9),

where z; € R with (z;,0) € U;, j € N, is fixed.
Moreover, recall that (see (3.10) and Corollary B.12)

(AJ 7)8 = (idho‘(ﬂ)’ 0)7 (/’L(Q) + A7l'7 ’Y)Sﬂ' = (idhc‘ (H?)> 0)7

(6.9)
(Aa fY)T = (07 Z.dhz*"" )7 (,LL% + A’IH ’Y)’Z;r = (07 idh2+°‘ )

We now return to estimate 60® — A.60. Observe that x8 = 1. Hence we have
0P — A0 = x[0,09] + [x0P — A x]0. (6.10)

We first focus our considerations on the commutator {#,0®]. In order to do this,
consider the following situation: Suppose that Fy, E,, and I are Banach spaces
such that F; < E,. Define

LS (Ea, Eo) :={A € L(E1,Ep); d¢ >0 : [|Az||g, < cl|z]la, =€ E1}.

If in addition F; is dense in E,, then, given A € L% (Eq, Fo), it is well-known
that there is a unique extension A® € L(E,, Fy) of A. Furthermore, we use the
notation L% (Eo) := LE, (Fo, Fo)-

The following Lemma collects estimates for some commutators which we need for
later purposes. In the sequel, let Bz := {0 € C®(R?); ||0]l24+ar: < Z}. Given

6 € C>*(R?), we put 8(z,y) := 6(z,0) for (z,y) € R2. Finally, we assume that
K C h%" is compact.

Lemma 6.5. a) Given 0 € Bz, we have

16, (A, Ba)] € L ey (W), h%(H2) x h1+2)
[07 Pﬂ'] € £22+ﬂ (h1+a7 h‘a (Hz))
and there is a positive constant C := Cyz such that
116, (A, B )%l £enr+a g2y ha 2y ey + 10, Pal®llcpiea poquzy < C

for all6 € Bz.
b) Assume that 0 € Bz, g € K, and that 8 € (0,a). Then

[0,BT], [0,BSP], [0,0B[,v]] € Lisa(h*F hIT*)
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and there is a positive constant C := C(Z, K, 3) such that
110, BT || ggnote, prvey + 1[0, BSPI| £(n2ro pitey + 1[0, 0B, v} | cin2+e prtay < C
for all® € Bz and g € K.

Proof. The assertions in a) follow easily from Leibniz’ rule.
b) From the definition of R, see (3.10), it follows that

(A0, (e +9)B1) [0, R] = ([A,0],0, (c + g)[B1, 8] R. (6.11)
Moreover, using again Leibniz’ rule, it is easily seen that
[A,6] € L(R7T0(Q),h(Q)),  (c+g)[Br, 0] € LAZ(Q), A1)
and that there is a positive constant C := C(Z, K) such that
LA, 011l cinava @) ne oy + e + 9)[B1, Ol cinzvs @), prvey < C (6.12)
for all # € Bz and g € K. We now infer from (6.11) and Theorem 3.5b) that there
isa C:=C(K,Z) > 0 such that

“ [97 R](fv h7 0)”2+o¢,§l

(6.14)
< C{IA GRS, B, O)las + [l (e + 9) (B, OIR(f, 2, 0) 140 }

forall § € Bz, g € K, f € h*(Q), and h € R?T. Combining (6.12), (6.14), and
the fact that

R e C(K, LR () x W28 x W18 R2T6(Q))), B¢ (0,a)

3

see Theorem 3.5, we find a positive constant C := C(Z, K, 3) such that

116, RI(f, . 0)lo4a < CIIfllg.0 + [Bll21s} (6.15)

forall @ € Bz, g€ K, 3€(0,0), f € h*(Q), and h € h*T*_ In particular, (6.15)
says that

10,5] € EZQ(Q)WB(Q): h*Te(Q)), 0,7] € L5210 (R0, 2772 (Q))
and that there is a constant C' > 0 such that
118, S1°l 2(ns () h2e ) + 10 T8 2epzro p2vaqy < C (6.17)

forall @ € Bz, g € K, and 8 € (0,a). Now the assertions follow from (6.17), the
identities
[6,BT] = [6,BIT + B[6, 7],

[0, BSP) = [6, B|SP + B[4, S|P + BS[6, P,

and again Leibniz’ rule. 3
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Lemma 6.6. Given 6 € D(R?), we have

a) 0T —T.0 =S {[Ar, 01T +0(ug + Ar — AT}
b) OSP — S, Prb = Si{[Ax, 0lSP + 0(ud + A, — A)SP
+O[P — P+ 6, Px]}.

Proof. Given h € h?*®, define u; := (07 — T,0)h and uy := (0SP — S, P.0)h.
Then uy,us € h2*(H?) and (6.9) implies that iy = yuy = 0, as well as
(Ng + Aﬂ)ul = (,u% + AF)GTh
= (A 0 Th+ 0(pd + A )Th —0ATh
= [An 0 Th+60(ud + A, — ATh,

and

(U3 + Ar)us = (g + Az)0SPh — Pr0h
= [Ax,0SPh + 0(u3 + Ar — ASPh + 0Ph — Pr0h
= [Ar, 0|SPh + 0(pé + A — A)SPh + 0(P — Pr)h + [0, Px]h.

Now the assertions follow from Corollary B.11. |

Lemma 6.7. Suppose that K C ha® is compact and that p € (0,1]. Then there
are positive constants C .= C(K,Z) and C, := C(p, K, Z) such that

a) x(ug + Ax ~ Aulla,e + Ix(B — Br)ulli1q
< Cp'%ullzran + Cpllulli+an
b) Ix(P = Pr)bllaa + [Ix(OB[,v] — Ax 2)hll14a
< Cp' % hlla+a + Collhll14a
for allw € K?t*(Q), h € h?T g€ K, and | € N, and where {(U,0;,x:); | € N}
stands for an extended p—localization sequence for S.

Proof. i) From Lemma 2.2 we infer that there is a C := C(K) > 0 such that

lajx(@lli+a0 + 118509 hta +llaz(g)ao <C 1T <j k<2 (6.18)

for all g € K. Since a;x(g)(x1,0) = a;x(g, ;) and b;o(g)(x;) = bj(g,21), 1 < j,k <
2, see (5.1), the mean value theorem implies that there is a positive constant
C := C(K), independent of p, such that

Hajk(g) - ajk(g7xl)||O,QﬂUl + ||bj,0(g) - bj(QJz)Ho,&mm <Cp

(6.19)
[a%(9) — ajr(9, T1)]anw, + [05,0(9) — b (9, 21)]arrv, < Cp'™®
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forallleN, ge K, and 1 < 3,k < 2. Hence, (6.7), (6.8), (6.18), and (6.19) yield
(63 + Ax — Aullan

2
< kZ lIxi(axlg) — aju(g, 21))0;0kulla,0nu,
J.k=1

+Zp(pollulla,o + llaz(g)d2ulla0)

2
kZ {(“XZHO,Q”%k(Q) - ajk(g»xl)HO,QﬂUl
k=1

IA

J
+lixillo.alask(9) — ajrg, 20)]a.0nv,
+xtla,0nt lajr(g) = ase(g, 2)llo.0nw ) 18;0kulla.a }
+Zp(pollulla,ont, + llaz(g)d2ulla,0nu,)
< C{p+p' ">+ p %} maxi<j k<2 [|0;0kulla,0 + Collull1+a.0
< Cpt ¥ ullaran + Colluliva,o

for all u € h27%(Q), g € K, and [ € N. This proves the first assertion in a).
it) Analogously, we have for the boundary operators:

IX(B = Br)ulli+a
= Ixa(Bo(g) — Brlg, z)ullo rrws, + 1900 (Bo(a) = Br (g, 20))ulllazery
< i (Bo(g) — Br(g,z1))ullo + 180x:(Bo(g) — Bx(g.z1))ull|o g,
+[0x1(Bo(g) — Br(gs 2] , g,

< S {(latbso(9) = (o, 0yl

+Ixi(b5.0(9) = b (g, 1))llo Rt [[0795ullo
+[0xi(b5.0(9) — bi(g, z1))v05u]
+Dxa(bs0lg) — b5(9,21))0v8ul 0 kv |
2
< ;{QHXZ(G;;O(Q) —bi(g, z))l1+all05ulla

+lxallollbs,0(9) — b (g, )10, rrw, 1070 ull o
+{[xt)a.rnu; [1b5,0(9) — b5 (g, 20)llo,rAw;
+lixillorrw: [05,0(9) = b5(9, 20)]arrw, ) 0705 ullo }
— 11—« i .
Clp+pp+p 7} jmax, [070;ulla +Cp pax 170;ulla

A

< Cp'ullzra.0 + Collulliran:

This completes the proof of a).
iii) Tt follows from Lemma 3.4 that

P(g)h = w(g)0’h+ N(g)h, g€ K, heh’*e,
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where w is given in (5.6) and where
N(-) € C(K, L(h'T*, h*)).

Now, Lemma 5.2b), (6.7), and (6.8) imply

IX(P = Pr)blla,a = Ixi(w(g)8?h — Prg)h + N(g)hllo
+Dxi(w(9)8*h — Pr(g)h + N(g)hla0nu,
< Opllhll2+a + Crlhllite + Co'*|hll24a
which shows the first part in b).
iv) Let
20g
Cq 1= —yO1Ug — ;;—_—gv@zvg,
cf. (5.5), and observe again that by Lemma 3.4

OBy(9)[-,vglh = cy0h + M(g)h, h € h*T

for some M € C(K, L{h'*)). Since ¢; € b1 and since ¢,(z;) = (g, z;) there
is a constant C' := C(K) > 0 such that

ey = ealgs)llooy + e — exlgsn)lan < Cp (6.20)
for all [ € N and all g € K. Now, recall that
A o(g,2)h = cp(g,21)0h for h € h*Te

Finally, using (6.20), we conclude similarly as in step ii):

[x(9B[,v] = Ar2)hl1+a < Ixa(ey — cx(g, z1))0R + xi M (g)hllo
+Hiolxleg — ex(g,21))0h + xaM (g)h]] o RN,
< Collblli+a + lIxi(eg — exlg, 2i))larrv: 107l
< Cp'Alloya + Cpllhllita;

and the proof of Lemma 6.7 is complete. O
After these technical preparations we now give the

Proof of Lemma 6.1. Let 8 € (0,a) and k > 0 be given, and suppose that
K C h3™ is compact. From (6.10) we know that

0;004(g) — Ax (9, 75)0; = x;10;,09:(g)] + (x;09:(9) — Ar 1(9,7;)x5)0;. (6.21)

Since

05, 00:(9)] = [0, Bo(9)7 (9) + t0Bo(g)[-, v] — tBo(9)S(9)P(g)],
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we infer from Lemma 6.5b) and (6.8) that there is C, := C(p, K, Z,3) > 0 such
that

HXj[ejaa(I)t(g)]hnl-Q—oz < Cp“h“Z-f—,B (622)
forall h € BT, j €N, g K, and t € [0, 1]. Furthermore, we have

XBT = BrTox = x(B — Bx)T + X, Bz |T + B (xT — Trx)-

Hence Lemma 6.6a} gives

XBT - Bﬂ'j;'x = X(B - BW)T+ [XaBﬂ]T
+ BaSe{[Ar, XIT + x(1d + Ar — AT}

Similarly,
XBSP - BTI'SWPWX = X(B - BF)SP - [Xa BT(}SP + BT(‘(XSP - STI'PTI'X)

and Lemma 6.6b) yields

XBSP — BrS8:Prx = x(B — B;)SP + [x, B,|SP
+ B8 { [Ar, XISP + x(13 + A — ASP (6.24)
+x(P = Pr) + [x, Pxl}-
Finally,
XOB[,v] — Ar2x = x(0B[,v] — Az 2) + [x, Ax 2] (6.25)

Combining (6.23)-(6.25) (with the parameter t) one easily gets a representation
for x;0®.(g9) — Ax2(9,2;)x;. Consequently, it remains to estimate (6.23)-(6.25).
We illustrate the procedure for (6.23): From Theorem 3.5b), Remark B.14, Lemma,
2.2, and the fact that K is compact we conclude that there is a constant C =
C(K,6) > 0 such that

1T (@)l in2rs pars )y + 1Br(g, )82 (g, 25)| £ (ho 2y pr+ay < C (6.26)

forall g € K, j € Nand 6 € (0,1). Consequently, (6.23), (6.26) (applied to § = «
and § = (), Lemma 6.7, and Lemma 6.5 imply

1(x3Bo(9)T (9) — B (g,25) Tr (g, 25)x5) 05111 1o
< Ix; (Bo(g9) — Bx(g,2;))T (9)0;hl1+a
+xs, Br(g: 21T (9)0;0] 1+
+ 1B (9, 75)8r (9, 5) { Az (9, 25), x517 (9)
+x; (13 + Ax(g,25) = AT (9)805h} |10
< Cp' =05hlla4a + Collhlizs
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for all h € h?te ge K, j € N, and p € (0,1]. Since C = C(K) is independent of
p, we find p € (0,1] such that

1 (x;B0(9)T (9) — Br(g,2;) T (g, 25)x;5) 05l 114

( (6.27)
< 510;hll2+a + Collhll24p

for all h € h?T%, g € K, and j € N. Similar arguments yield for (6.24) and (6.25):

t{l|(xsBo(9)S(9)P(9) — Br(9,2;)Sx (9, 2)Pr(9:2)x;) 05 hll 1+
+Ix;(0Bo(9)[05h, vg] — Ar,2(9,25)05) [l14a
X|I[xg5 An,2(9, 251052 140 }
< 5110hll2+a + Collhll21p

(6.28)

for all h € T2, g € K, t € [0,1], and j € N. Now the assertion follows from
(6.21), (6.22), (6.27), and (6.28). [

We are now ready to prove Theorem 1. The main tool here is Corollary 6.3 which
enables us to apply the theory of maximal regularity due to Da Prato & Grisvard
[9], see also [4, 20], to guarantee the existence of a unique classical solution of
problem (E)y,. The first proof of the smooth dependence of the semiflow, based
on the implicit function theorem, was first given by Angenent in [6], see also [24,
25| for some refinements and improvements.

Proof of Theorem 1. a) Let fy € V, be given and set go := fo — ¢. Observe that
go € Wy,1 = W. It follows from Lemmas 2.1 and 4.1 that we only have to prove
that there exist t* > 0 and a unique maximal classical solution of (E),, on [0,t)
satisfying

1i Mosa = lim inf [lg(t,-) — Alloya = .
Jim flg(t, Mzt =00 or - lm inf Jlg(t,) — hllz4a =0 (6.29)

if t7 < oo and g € UC([0,tT7), W).
b) It follows from Lemma 5.10 that W is an open subset of h%“”. Hence, thanks
to Lemma 4.3 and Corollary 6.3, we know that ® € C°°(W, h'*%) and that

0®(g) € H(R* T W17, geW. (6.30)

Let now 3 € (0,0) be fixed and observe that W = W, 1 C Wg,;. Thus the very
same arguments as above also ensure that

0B(g) € H(K**P,h'*P), gew.

It is not difficult to see that the maximal h'*“-realization of 8®(g) € L(h?*1P,
R1TP), g € W, is just the linear operator in (6.30).
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Note that
(h'lJﬁg? h2+ﬁ)2{~ﬂ,oo = h1+a7

where (-, ~)g7oo, 6 € (0,1), denotes the continuous interpolation method of Da Prato

and Grisvard. Consequently, invoking Theorem 2.3 in [25], we find that
I®(g) € My (R ptte) g W, (6.31)

where M;(X1,Xo) denotes the class of all operators in £(Xy, Xy), having the
property of maximal regularity in the sense of Da Prato and Grisvard [9], see also
16, 19, 24]. The existence of a unique maximal classical solution of (E)y, and the
property of a smooth semiflow on W can now be obtained along the lines of the
proofs of Proposition 3.5 and Theorem 3.2 in [25].

¢) Finally suppose that tT < oo, g € UC([0,¢1), W), and that (6.29) is not true.
Then g1 := lim;_,4+ g(t) exists in W. Hence taking g; as initial value in (E),, onc
easily constructs a solution g of (E),, extending g. This contradicts the maximality
of g. |

Remark 6.8. In the above proof we have used the theory of maximal regularity
in the sense of Da Prato & Grisvard to find a unique solution of (F),,. A different
proof of that fact can be based on results of maximal regularity in singular Hoélder
spaces, see Lunardi [18, 20].

Appendices

A. Fourier multipliers and a class
of elliptic symbols

In this section we state various multiplier results, particularly the Mihlin-Hor-
mander theorem, and we introduce a class of Fourier operators which generate
(strongly continuous) analytic semigroups on (little) Holder spaces. Here in Ap-
pendix A, we essentially follow the books of Amann [4] and Triebel [28].

Let us first remark that in this section we exclusively deal with spaces of functions
and distributions over R. If R is replaced with R™ we only have to modify the
definition of the space M below and all results remain true.

Assume that a € &’ and that v € S. Then F'a € S’ and therefore F~'a * u is
again a well-defined element of S&’. We now define a linear operator as follows:

1
T,:8 — &, Tou:=F laFu:= —F laxu.
¢ ¢ V2
It is well-known that the convolution can be extended to various spaces of distri-
butions. Thus, given a Banach space FE with § — E <— &', we set

Mg = ({a €8'; there is a Tg € L(E) such that T[S =To}, |- |mi)s
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where ||a|pp = |T5llz(z) for @ € Mp. If no confusion seems likely, we write
T¢ =T, = F 'aF for a € Mg. We call Mg the space of Fourier multipliers for
E. To illustrate the above concept, assume that £ = Lo. Then it is well-known
that My, = L. However, for general Banach spaces E (including L, p # 2), an
explicit description of Mg is far from being known. In order to provide at least
some subspace of Mg, let

M= ({a €Wy, §1€1§V1 +£20a(6)] < oo}, |- [lam),

where [|lal[a = supgeg |a(§)] V supeer /1 4 €2[0a(§)] for a € M. It is easily
verified that M is a Banach algebra with respect to pointwise multiplication. Let
us now state the following important multiplier theorem:

Theorem A.l1. Let p € (1,0), g € [1,00), s € R, k € Z, and a € (0,1) be
giwen. Then
M — MLP ﬂMng N MBUck+a N Mpkta.

Proof. i) M < M, 1 <p < oo, follows from the Mihlin-Hérmander multiplier
theorem, see Theorem 3, Chapter IV, p. 96 in [27].

ii) Recall that BUC*T® = B¥t® for k € Z and « € (0,1), see Theorem 3.1 and
(3.3). Hence Section 2.6.1 in [28] yields that M — Mps N Mpyoria.

iti} It remains to prove that M — Mpx+a. Suppose that k € Z, o € (0,1), and
let a € M be given. Due to ii) and the definition of A**+¢ it suffices to show that
FlaFu € h*+e for u € hFT®. Given u € h*+2, there exists a sequence (uy)
in S such that u, — u in BUC*"® as n — co. We know from [28, p. 131] that
BifkEte <, BUCH®. Hence M — B implies that F~'aFu, € Bi;y* and
that

[F aF(u—un)ll pyerre < cllallmll(w—un)l gyorse,

ie., FlaFu, — FlaFuin BUC*® as n — oo. This completes the proof, since
sL Blykte O

Let Fy and E; be Banach spaces such that Fq — Fy. We define

H(E,, Fy) = {A € L(E1,Ep); 3w>0, k >1:w+ A e Isom(E1, Ey),

o 0+ Aalm '
= Nlzlle, + zllz, = € By \ {0}, ReA>uw}.

Suppose that A € H(F1, Eg). Then it is known that —A generates an analytic
semigroup {e~*4; ¢t > 0} on Ey. Observe that E; is not assumed to be dense in Ej.
Thus {e"*4; t > 0} is not strongly continuous at ¢ = 0, in general. More precisely,
the semigroup generated by —A is strongly continuous in Ey iff E; is dense in Ej.
In the general case, i.e., if F; is not dense in Fy one has that e 4z — z in Fy as
t — 0 iff = belongs to the closure of F; in Ey.
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Given o, > 0, we introduce the following class of parameter dependent, homoge-
neous symbols

EUS(ay) = {a € C*®(R x (0,00),C); a is positively homogeneous
of degree 1 and Rea(n, u) > a,\/n? + 2 for (n,p) € R x (0,00)}.

Given a € E1IS7°(a.) and p > 0, we associate with a the following linear operator
Ay = F ta(,p)F.

Let 1 > 0 be given. Since a € £llST(a,) is positively homogeneous of degree 1
it is easily verified that a(-, 1) € Oy for each u > p, ie., a(-, 1) € C®(R) and,
given k € N, there are constants m; € N and ¢x > 0 such that [8%a(n, p)| <
er(L4n]*)™, n € R, p> p. It is well-known that a(-, u) € Oy implies that

A, LS)NL(S) for p>p

However, for our purposes we need some further properties of A,,. Particularly, we
are interested in subspaces E of 8’ such that A,(E) C hF™®. The next theorem
gives a precise answer to this question. It states that for each symbol in £1I18%°(w.,)
the corresponding Fourier operator belongs to the class H(h**1+e pF+a) This
result is a special case of a general theorem due to H. Amann. For a proof we refer
to [4]. It uses Theorem A.1 and parameter dependent norms in Besov spaces.

Theorem A.2. Let o, > 0 and p > 0 be given and suppose that a € EUST(a).
Then
A, € H(BUCHFT e BUCH o) (plt1te phta),

ettt e M. and e~ tn = Flemabmty
for each p>p, k€Z, ac(0,1), and t > 0. |

B. Second order elliptic boundary value problems
in a half space

Let H2 := {(x,y) € R?; y > 0} be a half space in R2. Of concern are second order
elliptic boundary value problems with constant coeflicients in the little Holder
spaces h®(H?). In particular, we derive a representation of the solution using so-
called Poisson type and singular Green operators.

Let aq2, ass € R be given and set

p(€) =17+ 2a12m0 + a00® for £ = (n,0) € R?, (B.1)

and
Aru = —8fu — 201901001 — agd3u for u € BUC’Z(HQ).
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Throughout this section let g > 0 be fixed. Moreover, we often use the notation
Ar = p? + Ay
Given f € h®(H?) and g € h?T2, we are interested in solutions of the following

problem
(> + Au=f in H? u(,0)=¢g on R. (B.2)

In order to obtain satisfactory existence results, let us assume that the following
ellipticity condition holds: There exists an «g > 0 with

p(6) > aole]? for ¢ € R (B.3)
Moreover, we define
Qe 2) == p2 4+ 1 4 2iaianz — agz? for neR, zeC. (B.4)

Remarks B.1. a) We have
a99 — a%Q > ag.

Indeed, let 7 := —aq9, 8 :=1, and £ := (1,0). Then (B.3) implies that
p(€) = aly —2a%y +am = am —afy 2 ap(l+aly) >ap. O

b) Given 7 € R, there is exactly one root of g,(x,-) with positive real part. It is
given by
A, ) = da(n) +d(n, p),

where
a 1
a(n) =~y and  d(n,u) = —[asay” + (azz — afy)n’]"/>.
a22 a22
This follows easily from Remark a). O

¢) Let o, := ‘éf Then
A€ EUST (o).
Indeed, it is obvious that A € C°(R x (0,00),C) is positively homogeneous of

degree 1. Moreover, from Remark a) we know that ass > age — a%Q > «g. This
implies that

J |

ReX(n, ) = d(n, i)

asz
J_

\/

L lagou® + (age — aiy)n?]/?
[OZOM2+C¥077 12 > «/%[u +7 ]1/2_ 0

[e3:3:3

B.1 Representation of the Poisson operator. Given g € h?T%, define
(Tew9)(2,y) = [F e AWV Fgl(z) for (z,y) € HX. (B.5)

Operators of the form (B.5) are called Poisson operators, c¢f. [15]. In the main
result of this section, Lemma B.2 below, we show that Poisson operators are in
fact solution operators for Dirichlet problems in a half space.
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Lemma B.2. Suppose that g € h21®. Then the unique solution of
(P +A)u=0 in H? u(,0)=g on R (B.6)
in the class h*T(H?) is represented by u := T, ,g. Moreover,
T,, € L2 h2o(H2)).
For the proof we need some preparation. Let us start with the following definition.
My(y) = fle 0¥ for y>0.
Lemma B.3.

M,(y) -0 as y— o0 and M,, = sup M, (y) < co.
y=20

Proof. Observe that ReA(n, 1) > a,(n? + u2)t/? for n € R, y > 0, cf. Remark
B.1c¢). Consequently,
Ie‘)‘("’“)yi < e MY,

Moreover, since 9y A(+, ) is homogeneous of degree 0 we find that
V1+n2|8e Xmmy| < eu/ 12+ nzye~a*y\/m

for an appropriate positive constant ¢,. This proves the Lemma. ]

Lemma B.4. Let o € (0,1) be given. Then

o) N, {BUC (R, BUC*")n B! R, BUC? ™!} = BUC?"(H?)

b)  h3(Ry,h®) < k2o (H?)

with respect to the identification [y — (-, y)] — ul-,-).

Proof. a) can be found in [4].
b) is implied by

R(R.,h?) — RPME?) — p2Tem?). O
Proof of Lemma B.2. Let g € h?T® be given and put
w(z,y) = [Fle AWV Egl(z) for (z,y) € H.

a) We first prove that u € BUC*T*(H?).
i) Let A, := FIA(-, u)F. Then Theorem A.2 and Remark B.1c) imply that

A, € H(BUCKTTe puckte) ke, (B.7);,

e MY e M oand e VA = Frle AV E, (B-8)
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From (B.7); it follows that

[y = ul,y)] € CF(Ry, BUC' )
(B.9)k
with  Ofu(-y) = (—A4u)*ul(,,y), k€N, y > 0.

Hence, (B.7);, (B.8), (B.9)%, Lemma B.3, and Theorem A.2 guarantee the exis-
tence of a positive constant ¢ := ¢(p, k), independent of g, such that

105 ul, )l pyeara—r < cllul Yl pyoare = cle ¥ glipyoasa

) (B.10)g
= o|F e 2O Fygll pypara < eMu)ligllpye e
for k € N and y > 0. In particular, we have
[y — u(-,y)] € BC*(R,, BUC*™*7%) keN, (B.11);

if) Let (-,-)g.p, 8 € (0,1), 1 <p < o0, denote the real interpolation functor. Then
it follows from Theorem 2.4.2 and Remark 2.7.1.2 in [28] that

(BUCTek puctteky, 1 =B%F— BUC**, ke{0,1,2}. (B.12)
Thus we infer from (B.10);, (B.11);, (B.12);, the mean value theorem, and by in-
terpolation that

[y — u(-,y)] € BUCT(R,, BUC*™), 1€{0, 1,2}, (B.14),
and that

H[y = u(.7y)]|IBUC’l+a(ﬂ§+,BUCz’l) S CMp,Hg”2+ou le {0, la 2} (315)1

Now Lemma B.4, (B.14);, and (B.11); for [ € {0, 1, 2} imply that u belongs to
BUC***(H?). This proves a).
In addition, Lemma B.4, (B.10); and (B.15); yield the a priori estimate

||u||BUC’2+°‘(H2) = |1Zr,u9”BUCQ+a(H2) < eMy|gli2+a- (B.16)

Since g € h?1*, there is a sequence (g,) C S such that

gn — g in BUC*™™ as n — oco. (B.17)

b) Let up(z,y) = [Fle XMV Fg (z) for (z,y) € H? n e N. Then we claim
that
u, € W2YP(H?) for any S € (0,1). (B.18)

Recall that for fixed k € N and « € (0,1) we have M < Mpr+yo, cf. Theorem A.1.
Thus we find that

[y = U (- y)] € Cl(R+7 hk+a)

o l (B.19)
with  Opun(,y) = (=4 un(y), k, I, neEN, y>0.
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From this and the fact that A, € H(h*T1+e pF+e) k€ N, ¢f. Theorem A.2, we
conclude similarly as in (B.10), that there is a positive constant ¢ := ¢(k, ) such
that

10 un (s )l < eMu(W)lignllparria for k,neN, y>0. (B-20)x

Hence Lemma B.3 and h*+® — A3 yield that
[y = un('ay)] € hs(R-‘r)h?))‘

Now assertion b), i.e., (B.18), follows from Lemma B.4.
¢) We assert that

Uy —u in BUC*™™(H?) as n — oo. (B.21)

Indeed, this follows immediately from (B.16), (B.17), and (B.18).

Now let 8 € (a, 1) be fixed. Then we know from Lemma 3.2a) that A2t (H?)
is the closure of h?T4(H?) in BUC*"*(H?). Hence (B.18) and (B.20) yield that
u € h?T(H?). This shows, together with (B.16), that

T, € L(RPTo R*To(H?)). (B.22)

d) In a last step we verify that u is in fact the unique solution of (B.6). Indeed,
observe that

yu = u(-,0) = efyA“g\y:O =4,

i.e., u satisfies the boundary condition in (B.6). Furthermore we have

(1* + Ap)u(z,y) = (4% — 87 — 20128102 — az205 )u(z, y)
= F~ e {1? + 77 + 2ia12nA(n, 1) — a22X*(n, p) ye 20| Fg(a)
= F 7y (5 ACy p))e A0mY Fo(x)
for (z,y) € H2. But g,(n, A(n, 1)) = 0 for all (n, 1) € Rx(0,00). Thus (p*+ A )u =
0. Therefore, u is a solution of (B.6). Finally, we infer from the Phragmeén-Lindel6f

principle, see [23, Theorem 19, Chapter 2], that u is the only solution of (B.6) in
h?*e(H?). This completes the proof of Lemma B.2. O

Remarks B.5. a) Let us rewrite estimate (B.16) in the form
HZMMHL(hZTa,hHa(H%) < eMy,

which can be seen as an a priori estimate for (B.6).

b) Suppose that g € S. Then the proof of step b) shows that the solution u = 7, g
of (B.6) is in h*°(H?).



Vol. 2, 1995 Maximal regularity for a free boundary problem 501

¢) Assume that v € S(H?) is a solution of (B.6). Using partial Fourier transform
and Lemma B.4a) it follows that u is in fact represented by (B.5). In particular,
this gives another proof of the uniqueness assertion in Lemma B.2. |

B.2 Representation of the singular Green operator. Suppose that o € (0,1).
Given u € BUC®*(H?), let £ denote the following extension operator:

u(z,y) if (z,y) €2,

fulmy) = u(z, —y) if (z,—y) c H?.

(B.23)

Observe that € € L(BUC *(H?), BUC *(R?)). Moreover, using the fact that h” (H?)
is dense in h*(H?), 8 € (o, 1), it is easily verified that

£ € L(h®(H?), h*(R?)). (B.24)

We introduce some further notation. Let F» denote the Fourier transform in
S’(R?). Furthermore, set S(HZ) i= rz (S(R?)), of. (3.5). Then, for f € S(H?),
we define

‘1 f(”’y " / J :l y 7 }’y < ]H[ ‘
/ ) ( )
Flnauy, glVen ’ 6 S(H ) and 77 S R.‘ put

1 oo
kpu(n) = —— [ e" 4" cos(a(n)y) F £ (n,y) dy

a2 Jo
Remarks B.6. a) Suppose that f € S(H?) and that y > 0. Then it is easily
verified that
Ff(,y) €S, uniformly in y.

b) Recall that from Remark B.1c) we know that

ReA(n, )y = d(n, )y > cur/p2 +n2y for (n,9) €Rx (0,00).  (B.25)

Consequently,
kr,€8 for feSM?. O (B.26)

Suppose that f € S(H?). We define the following operators:

Srurf =rmFa(u® + p) L RES, (B.27)
e~ 2y :
Seaf (@) = [F S k()] (@), (z,y) € B2,

Remarks B.7. a) Of course, u? + p is the symbol of the elliptic operator Arp
u?+ Ay, cf. (B.1), acting on S(R2). Moreover, using Theorem A.1 it is not dliﬁcult
to see that

Ar € Isom (R*T*(R?), h*(R?))
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and that

AL =F WP+ p) M . (B.28)
Hence, Sy 1 is the restriction of A% to S(H?) in the sense of [15], Definition
1.2.5, p. 22.

b) Assume that f € S(H?). Then (B.25) and (B.26) imply that e *#¥ /d(-, 1)
belongs to Oy for y > 0 and that &y, € S. Therefore, Sy , o f is well-defined and
it is not difficult to verify that S, ,»f € C°°(H?).

c) Operators of type Sy , 2 are called singular Green operators, cf. [15]. a

Let us now state our main result of this section.

Lemma B.8. S, ,, 2 possesses a unique extension, denoted again by Sy, 2, such
that
Snp2 € LW (H?), R*(H?)).

Moreover, the following representation holds:

Sﬂ',p,2 - ‘Zr,/f)’sw,p,l- (329)

In order to prove the above result, we provide some preparing material. Let us
start with the following Lemma:

Lemma B.9.

S

Tafs

1€ £(hQ(H2),h2+a (H2>) and Amusﬂ—jﬂil = idha(Hz).

Proof. Recall that £ € £(h*(H?), h*(R?)), cf. (B.23) and that rg= € L(R*T*(R?),
h2*To(H?)). Hence the first assertion follows from Remark B.7a). Moreover, due to
the identity 0%rpe = rg2d®, 8 € N*, and (B.28), we find that

-A'rr,,uSm;,L,l = Aw,yTH2A;’L(€ = T'HZ((: = idho‘(Hz)' ]

Lemma B.10. Let y > 0 and n € R be given. Then

/R (1 + p(n,0)) " cos(yd) o = e 4P cos(a(n)y). (B.30)

&2203(??, !L)

Proof. Fix y > 0 and n € R. Moreover, let ¢ := 6 + a(n), § € R. Observing
Remark B.1a), it is not difficult to verify that

12+ p(n,0) = asz(d*(n, p) + ). (B.31)

Recall that the Fourier transform of the onedimensional Poisson kernel is given by

/ - j seVdr=me W 150, yeR, (B.32)
R T
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see, for example, [22, p. 71]. Now, substituting 7 = 8 + a(n) in the integral in
(B.32), it follows from (B.31) that

2 —1 0 gp i —Amp)y
uwe -+ pn, o eVdd = ———e .
/R( ( )) as2d(n, ()
This formula and its conjugated analogue imply the assertion. 0

Proof of Lemma B.8. a) From Lemma B.9 we know that S, ,1 € L(h*(H?),
R*>te(H?)) and Lemma B.2 gives that 7 , € L(h*T® A?>T%(H?)). Moreover, note

that v € £(h?T(H?), h2+*) and that S(H?) < e (H2), see (3.5). Hence it suffices
to prove that
STI',[,L,2f = _,];r,/fysrr,u,lf for f € 8(H2) (B33)

b) In the following let f € S(H?) be fixed. Then

1 _
1Sem2) = o [ (2 pl0,0)) " FaE 0,0 dnds, @ R

and consequently,

1 _ 9 —1

But we also have

l [

FoEf(n,0) = / eI £z, ) du dy

—wo e“’e)}"f(n y) dy (B.35)

=
/ cos(yd)F f(n,y) dy

.35), and Lemma B.10 imply that

ﬁ\“ﬁ\

for (n,6) € H2. Now, (B.34), (

&

VSupif = %F'l[/m(u2 +10(-,6’))71/0 cos(yd)F f(-,y) dy db)
1.1

:g;;f [d('aﬂ)/o e—d(-,u)ycos(a(-)y)]-"f(.,y)dy}.

Consequently, (B.5) yields

_ e_)‘('ﬁl')y
Ty ¥Sn i f(m,y) = —[F lwkﬁu} () = =Sru2f(@,y)

for all f € S(H?) and (z,y) € H2. This completes the proof of Lemma B.8. O

In order to simplify our notation, let us introduce the following definition:

Srop = Sppu1 + Srop2-



504 Joachim Escher and Gieri Simonett NoDEA

Then we prove the following

Corollary B.11. Suppose that f € h*(H?). Then the unique solution of
(WP + Au=f in HZ u(-,0)=0 on R, (B.36)
in the class h**(H?) is represented by u := S, ,f. Moreover,
Snp € LW (T?), BT (H?)).

Proof. Let f € h®(H?) be given and put u := S, f. It follows from Lemmas B.8
and B.9 that S, , € L£{(h*(H?), > *(H?)). Hence, u € A?T*(H?). Furthermore,
Lemma B.9 and Lemma B.2 imply that

./4771#87”“,1 = idha(HZ) and Amulfﬂ-vu = 0,
respectively. Consequently, by Lemma B.8,

Aﬂ',y.u = -Aﬂ';y,Sw,;L,lf - Aﬂ,gir,;},/}/‘sﬁ,u,lf = f

On the boundary we infer from the identity v7, , = idj2+a, see Lemma B.2 and
(B.29), that

YU = fySﬂ',}L,lf - ’Y,];r,/tvsw,p,lf =0.

This shows that u is a solution of (B.36). Again, uniqueness is guaranteed by the
maximum principle. O

Combining Lemma B.2 and Corollary B.11, we immediately obtain

Corollary B.12. Given f € h®(H?) and g € h**%, there exists a unique solution
of
(W +Adu=f in H? u(0)=g on R

It is given by
u=S8q ,f +Tr g O

Remark B.14. It follows from Remark B.5a), (B.28), and the representation
(B.29) that there exists a positive constant C := C(ayg, i) such that

1Sl cine @2y n2re@eyy + 11 T ull cihzte n2re ey < C.

C. Proof of Theorem 3.5

Throughout this section we assume that K is a compact subset of h%ﬁ‘*. Also
assume that Mg, po, p1 € (0,00) with pg < w1 and pick A € [0, Ao], © € [wo, p1]-
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a) Let us start with the classical estimates of Agmon-Douglis-Nirenberg for elliptic
equations. Tt follows from [1, Theorem 7.3] and Lemma 2.2 that there exists a
positive constant C := C(K, Ao, jto, f41, @, ¢) such that

Jull2a,0 < C(IA+A(9))ullag + Iroull2+a
+(e+ 9)Bu(g)ullira + llullo.o)
[ulizsan < C(IO+Alg)ullae + (70 + Bo(g))ulli+a
HIBi(g)ull1 1o + [ullo,)
for all u € h2T2(Q), g€ K, A € [0, o], and p € [uo, p1)-

b) In a next step, we improve the above results by estimating ||ullo,o in terms

of [(A + Alg))ullae, [Moull+a, (0 + Bo(9)w)lli+a, and [|Bi(g)ull1iq. More
precisely, we assert that there exists a positive constant C := C(K, Ao, o, ft1, @, ¢)
such that

lullz+a0 < C(IA+A@)ullag + [voull2+a + e+ 9)Bi(g)ull11a)
[ullora0 < CUIA+A@)ullag + 1(mv0+Bo(g))ulli+a + [1Bi(gull1+a)

for all u € K27%(Q), g€ K, X € [0, ], and pu € [uo, f1]-

In order to further economize our notation we suppress in the following the g-
dependence of the differential operators. Also let Ay := A+ A and By, := p+ Bo.
Furthermore, we only present an explicit proof of the second estimate. The first
one can be verified analogously.

Suppose that M, «, and 3 are positive constants and set w(z) := M — Sh(z),
where h(z) := e~ for z = (z,y) € . An elementary calculation shows

(Ax, Bo,u, Bi)w = (Aw + Blo’age + aaglh, pw + aBby gyoh, afby1mh)  (C.3)
Let

1
o = inf -
T gex 1+ (e +lgllo)? + 119:1I3

Then ¢ is positive, due to the compactness of K. Moreover, it follows from Lemma
2.2 that

aoe(z) > a and boa(z) >« (C.4)
for all z € Q, = € R. Hence, (C.3) implies that the constants M, «, and 3 can be
chosen in such a way that we find positive constants w, w, ¢, ®g, and x; with

w>w>w>0in Q, Aw>c>0in Q,

(C.5)
Bouw > ko >0 on I'g, Biw>#k >0 on I'.

Now let u € R***(Q) be given and set f = Ayu, ho := By u, hy = Biu, and
v:= 2. Since |v(2z)| — 0 as |z| — oo, it follows that |v| attains its maximum in Q,
say in zg.
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il) Suppose that zg € Q and that v(zp) is the nonnegative maximum. Then

2
Vu(zg) =0 and — Av(z) = Z aj,(20)0;0,v(29) < 0. (C.6)

4,k=1

Also observe that

2
i — M = Av — z Z ajkaégwagv + E.A,\w.
w w w w
1,k=1
Hence (C.6) yields
f(z0) _ v(z0) v(zo)
>
wizo) ~ wize) M) 7 Cuag)

which shows that v(zg) < ¢7 1 f(20). If v(20) is the negative minimum an analogous
argument implies that [v(z0)| < ¢ Y| f(20)|. Summarizing, we find that

llullo,0 < {vlloallwllea <

o | g

1flon = 21 Aslon < Zldrulag,  (€1)

if 2z lies in Q.

iii) Now suppose that zg = (29,0) lies on I'g and that v(zg) is the nonnegative
maximum. Then, necessarily it holds that

Bov(zo) = 0 (C.8)

Since we also have L A
0 0, W v
— ==L = B+ —Bg W,
w w w

(C.8) and (C.5) imply that
ho(zo) ho(zo) _ |lhollo

w(zo) —Bov(mo)} S o < P, - (09)

ol = o(a0) = ) |

o By ,w(zo

A similar argument shows that (C.9) remains true if v(zg) is the negative minimum.
From (C.9) we now infer that

w w
lullo.e < follonlwlon < —llhollo < —IlIBo,pulli+a- (C.10)
) 2%}
iv) If zy lies on T’y an analogous consideration as in ii) shows that
w w
fulloo < —lhillo < —lBiuflita- (C.11)
g K1

It remains to combine (C.7), (C.8), and (C.11) to complete the proof of b).
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c) Recall that 0 € hy* and observe A(0) = —82 — 582, By(0) = —18,, and

B1(0) = 18,. Since the coefficients of these operators are constant it is well-known

that the éorresponding boundary value problem on the strip Q = R x (0, 1) is well-
posed in W2(Q). Indeed, the existence of a unique weak solution, i.e., a solution
in W2 (Q), follows from a standard argument based on the Lax-Milgram Lemma.
Well-known regularity results for elliptic equations, e.g. Theorem 8.12, p. 176 in
[14] guarantee now that the solution belongs to WZ(Q2). Hence, using Theorem
13.1 in [2], we find that

(AQ), 0,51(0)) € Tsom (W(0), W3(0) x W3 x w3*H)
(A(0), B (0), B:(0)) € som(WA(2), W() x W5+ x wyh).

Our goal is to prove that these boundary value problems are well-posed in little
Hélder spaces too. Thus, let (£, hg, h1) € h*(Q) x K27 x h1 T be given and observe
that

W2(Q) x WoTE x W22 & po(Q) x 2t x pite, (C.12)

due to Sobolev’s embedding theorem, cf. Theorem 11.5 in [2]. Hence there is a
1 1
sequence (fn,hon,hin) € W2(Q) x Wa 2 x W57 such that

(fna hO,Tuhl,n) - (f7 hOa hl) in ha(Q> X h2+a 2 h1+a (014)
as n — oo. Define u, := (A(O), Yo, cB1 (0)) 71(fn, homn, k1 ) and observe that u, €
W3 (). Since also W4 (Q) — h2+(Q) it follows from the a priori estimates (C.2)
and from (C.14) that u, converges towards a solution u of

AQju=f in Q, ~u=nhe on I'y, cB1(0)u="hy; on Iy
in A2t as n — oo. This shows that

(A(0), 70, ¢B1(0)) € L(W*T*(Q),h*(Q) x h2T* x p1Te)

is surjective. But we already know from (C.2) that this operator is injective. Hence

(A(0),70,cB1(0)) € Isom (h*T*(Q), h*(Q) x hZ+e x plte),

A(0), Bo, 1 (0), B1(0)) € Isom (h2T(Q), h* () x hlTe x plte), (C.15)
( )

with obvious modifications for the second assertion.
d) Given g € hg™® and t € [0, 1], define

Ho(g,t) := (tA+ A(tg), 0, (c + tg)Bi(tg)),
Hi(g,t) = (tA+ A(tg), (1 — )po + tu + Bo(tg), Ba(tg)).-
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Observe that

Hy(g,0) = (A(0),70,¢B1(0)), Holg,1) = (Ax(9), %, (¢ + 9)Bi(9)),

(C.16)
Hl(g70) = (A(O),BO,HO(O),Bl(O)), Hl(g7 1) = (AA(g)aBO,u(g)agl(g))-

Moreover, it follows from Lemma 3.4 that
Hi(g,) € C([0, 1], L(A*T*(Q), A% () x h* 77 x h1F%), i = 0,1.

Now let g € ha ™ be given and set Ky := {tg; t € [0, 1]}. Observe that Ko C A2
and that K is compact. Hence, we infer from b) that there is a positive constant
C such that

lullzto,0 < ClHi(g, t)ullpe @)xhz-itaxni+a (C.17)
for all u € R2T*(Q), ¢t € [0,1], and i = 0,1. Now an obvious modification of
Theorem 5.2 in [14] applied to (C.15)-{C.17) yields that

(A + Alg), 0, (¢ + 9)Bi(g)) € Isom (A*2(Q), h*(Q) x h* & x h1T9),
(A Alg), o + Bolg), Bi(g)) € Isom (h2+(2), h*(Q) x h1T® x hlTe).

This completes the prove of Theorem 3.5. 0
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