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Introduction. Throughout the paper E denotes a finite-dimensional Euclidean
space. Attention is restricted to subsets of E though some of the results have
infinite-dimensional analogues. Separation theorems for convex sets are basic in
the theory of convexity and in the applications of convexity to other parts of
mathematics. The standard separation theorem asserts that any two nonempty
disjoint convex subsets of E are separated by a hyperplane; this involves a very
weak type of separation. Other well-known separation theorems deal with compact
or open convex sets and with rather strong types of separation. Several additional
separation theorems have appeared in the literature [2], [4], [6], most of them
directed at classes of closed convex sets (intersections of closed halfspaces). Such
theorems are of interest in connection with systems of weak (S) linear inequalities.
The main separation theorems of this paper are directed at classes of evenly convex
sets (intersections of open halfspaces [1]) and are thus of interest in connection with
systems of strong ( < ) linear inequalities or mixed systems of inequalities. Rocka-
fellar's separation theorem [10] for partially polyhedral sets is extended to a wider
class of sets. The attempt to obtain separation theorems under minimal hypotheses
leads to the notion of a maximal separation theorem. Eighteen maximal theorems
are presented here, involving four different types of separation.

Definitions and preliminaries. Let us begin by defining the various types of
separation to be considered. A set X is said to be separated from a set F by a
hyperplane 77 provided that X lies in one of the closed halfspaces bounded by 77
and Y lies in the other. In contrast to the other types of separation, this does not
require disjointness of X and Y; however, we shall be concerned only with disjoint
sets. The set X is nicely separated from F by 77 (X | Y by 77) provided that the
separating hyperplane 77 is disjoint from X or from Y (without specifying which),
openly separated from F by 77 (X- \ Y by 77) provided that 77 is disjoint from X, and
closedly separated from Y by 77 (X\ ■ Y by 77) provided that 77 is disjoint from Y.
Thus X is openly or closedly separated from F by 77 according as X lies in an open
or a closed halfspace disjoint from Y and bounded by 77. The set X is strictly
separated from F by 77 (X- \ ■ Y by 77) provided that the separating hyperplane 77 is
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disjoint from both X and Y, and strongly separated from Y by H (X- [| • Y by //)
provided that H is at positive distance from both X and 7. The same terms will be
applied to any linear form / whose level sets are hyperplanes parallel to H. If the
sets X and Y are separated by the linear form/ or if X and Y are convex, then the
various stronger types of separation are equivalent to the following conditions on
the subsets fX and fY of the real line R :

X\Y by/ (fX)n(fY)= 0,
X\Y by/ (fX) n (ci fY) = 0,
X\-Y by/ (cl/A-)n(/7)= 0,
AT-1 • Y by/ (/A") n (cl/7) u (cl/JT) n ÍJT) = 0,
Jf-|-y by/ (cl/Jf) n (cl/7) = 0.

Henceforth, a will denote any of the separation relations just defined and o will
denote the inverse of a, so that o and o are the same except when one represents • |
and the other | •. The statement Xa Y will mean that there exists a hyperplane H
such that Xo Y by H. Note that

X\Yo X-\Y or X\-Y
and

X-\- YoX\YandX\-Y.

(If X-1 Y there is a linear form/such that/(x) < inf/7 for all x e X. If X\ ■ Y there
is a linear form g such that sup gX<f(y) for all y e Y. With p = sup gA"+ inf/T, we
have

(f+g)(x) < p < (f+g)(y)   for all x e X, y e Y

and consequently X-1 ■ Y byf+g.)
By the standard separation theorem, X is separated from Y whenever X and Y

are disjoint nonempty convex subsets of E. However, when dimF^2 it is not
necessary that X\ Y. For example, let H be a hyperplane in E, A and B the two
open halfspaces bounded by H, and a and b distinct points of H. With X=A u {a}
and Y= B u {¿?}, the convex sets X and Y meet every hyperplane which separates
them. If two disjoint nonempty convex subsets A" and Y of Fare closed, then X\ Y
when dim E=2 but not necessarily when dim F^3. For example, let

X={(0,ß, l):ßeR}
and

Y = {(a, ß, y):ccß ^y2,a^0,ß^0,y^ 0},

disjoint nonempty closed convex subsets of F3 not nicely separated by any hyper-
plane. (The example is due to T. A. Botts [3, p. 459]. The same idea will be used
below in a general construction.) Distinctions among the other types of separation
are easily illustrated by closed convex subsets of F2.
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For classes 9C and <& of convex sets, SCoQI will mean that Xo Y whenever X and Y
are disjoint nonempty members of 9C and <& respectively. An ordered pair (SC, W)
will be called a a-pair provided that the assertion 2Co%/ is true and a maximal a-pair
provided that, in addition, the assertion SCoW becomes false if either SC or <% is
replaced by a class of convex sets (in the ambient space E) properly containing it;
in the second instance, the assertion SCa^l will be called a maximal separation
theorem or a maximal theorem for o. In a systematic study of separation properties
it seems natural to seek maximal theorems, for each one is in a sense a best possible
result. Further, a maximal theorem 2Co<3/ yields some insight into the structure of
the individual members of SC and <&, for the membership of a set in SC is character-
ized by its (T-separability from all disjoint members of <& and membership in %/ is
characterized by ^-separability from all disjoint members of SC.

Since any two disjoint nonempty convex subsets of E are separated, it is plain
there is only one maximal theorem for ordinary separation.

It follows from the maximality principle that for any two classes SC and <3f of
convex sets such that SCa<& there is at least one maximal a-pair (SC1, <&') for which
SC' => SC and <&'^><3/. However, the maximal theorem %'</&' is of no interest unless the
classes SC' and &' are of some intrinsic interest. For any class SC of convex subsets of
E let SC" denote the class of all convex subsets F of £ such that Xo Y whenever
X e SC and X n F= 0. The following result, an immediate consequence of the
relevant definitions, exhibits a maximal theorem for a which is associated with 3C
in a natural way.

Theorem 1. For any class SC of convex subsets of E, the pair ((SC")", SC") is a
maximal o-pair; it is the only maximal a-pair (SC1', 9') for which SC'^> SC and W ^> SC'.

For any a-pair (SC, <¥), the maximal a-pairs ((SC13)", SC') and (<&", (<&")") will be
called the maximal a-pairs naturally associated with (3C, <¥). They are not necessarily
distinct.

Maximal theorems for strong separation and strict separation.    For any two
subsets X and F of E, 8(X, Y) will denote the distance between X and Y; that is,
8(X, F) = inf {||x-j||:x€ X, ye Y}. The set X is called an asymptote of F pro-
vided that X is a flat in 7f~ F with 8(X, F)=0; a/'-dimensional asymptote is
called aj-asymptote. (Thus the term asymptote is used as in [6], [7] but not quite as
in [2].) Plainly F admits ay-asymptote if and only if F's orthogonal projection on
some (dim E—y')-dimensional flat in E fails to be closed. The sets which admit no
O-asymptote are exactly the closed sets, and the sets admitting no asymptote
whatever are those whose projections (or, equivalently, whose affine images) are all
closed. A convex set F is called continuous [2] provided that F is closed and its
support function (defined on the unit sphere {u e E: ¡|u|| = 1}, permitted to assume
the values ± 00) is continuous ; this is equivalent [2] to saying F admits no boundary
ray and no 1-asymptote, as well as [6] to saying F admits no boundary ray and no
asymptote of any dimension.
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Theorem 2. For disjoint nonempty convex subsets X and Y of E, each of the
following conditions implies X is strongly separated from Y. Each represents a
maximal theorem for • [| •.

(a) X is continuous and Y is closed.
(b) Neither X nor Y admits an asymptote.

Theorem 3. For disjoint nonempty convex subsets X and Y of E, each of the
following conditions implies X is strictly separated from Y. Each represents a maximal
theorem for ■ | •.

(a) X is continuous and Y is closed.
(b) Neither X nor Y admits an asymptote.
(c) X and Y are both closed and neither has a boundary ray.
(d) X and Y are both open.

Proofs. That X- \ ■ Y was proved in [2, Theorem 1.3] for (a) and in [6, Theorem
5] for (b). Plainly the same conditions imply X- \ ■ Y. That X- \ ■ Y follows from
[4, Theorem 4] for (c) and is well known for (d). To show the separation theorems
corresponding to (a) and (b) are maximal for • | • (and hence, a fortiori, for • || •), we
must show that if C is a proper convex subset of F and C is not continuous, or C is
not closed, or C admits an asymptote, then F~ C contains a nonempty convex set
K which is not strictly separated from C even though (respectively) K is closed or K
is continuous or K admits no asymptote. This is easily accomplished by the con-
structions described below in connection with open separation. The treatment of
(c) and (d) is similarly straightforward.

The strict separation theorems (a), (b) and (c) are all extensions of the assertion
that disjoint compact convex sets are strictly separated. The maximal a-pairs
indicated in (a) and (b) (for ct= • || • or o= ■ \ ■) are naturally associated with various
well-known a-pairs, including the following: (a) (A" onepointed, Y closed) or
(A" compact, Y closed) ; (b) (A a fiat, Y a flat) or (X a polyhedron, Y a polyhedron).

Maximal theorems for open separation and nice separation. A subset A of F is
called evenly convex [1] provided that X is the intersection of a family of open
halfspaces or, equivalently, that X is openly separated from every onepointed
subset of E~ X. As was remarked by Fenchel [1], this is equivalent to requiring
that X is connected and each point of F~ X lies in a hyperplane disjoint from X.
Note that all projections (or, equivalently, all affine images) of X are evenly convex
if and only if X is connected and every flat in E~ X lies in a hyperplane disjoint
from X.

A subset of F is called a strip provided that it is convex, is different from F, and is
a union of translates of a hyperplane. Equivalently, a strip is a hyperplane, an open
or closed halfspace, or a set of the form S or Hx u S or Hx u S u H2, where Hx
and H2 are parallel hyperplanes and 5 is the set of all points of E lying between Hx
and H2. All strips are evenly convex.
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A hyperplane H is said to support a set A" in F provided that §(//, A") = 0 and X
lies in one of the closed halfspaces bounded by H. The set A'is said to be continuous
relative to H provided that the intersection X n H is closed and convex but
admits neither boundary ray nor asymptote relative to H. In neither of these
definitions is X required to intersect H.

A subset of E is called a polytope provided that it is the convex hull of a finite set
of points and a polyhedron provided that it is the intersection of a finite family of
closed halfspaces. The polytopes are exactly the bounded polyhedra. A subset X of
E is said to be boundedly polyhedral provided that its intersection with any polytope
is a polytope and to be polyhedral at a point p of X provided that X contains a
polytope which is a neighborhood of/? relative to X. A set is boundedly polyhedral
if and only if it is closed, convex, and polyhedral at each of its points [5, 2.17].

Theorem 4. For disjoint nonempty convex subsets X and Y of E, each of the
following conditions implies X is openly separated from Y. Each represents a maximal
theorem for ■ | except that (j) does not when E is two-dimensional.

(e) X is open; Y is arbitrary.
(f) X is evenly convex and its intersection with any supporting hyperplane is

compact; Y is closed.
(g) X admits no asymptote in any supporting hyperplane intersecting X; Y admits

no asymptote.
(h) X is evenly convex and its intersection with any supporting hyperplane is

closed; Y is evenly convex, Y intersects and is continuous relative to any supporting
hyperplane.

(i) X's projections are all evenly convex; Y admits no asymptote and is boundedly
polyhedral.

(j) X is evenly convex; Y is onepointed or a closed strip.

Theorem 5. For disjoint nonempty convex subsets X and Y of E, each of the
following conditions implies X is nicely separated from Y. Each represents a maximal
theorem for \ except that (q) does not when Eis two-dimensional.

(k) X is open or a strip; Y is arbitrary.
(1) X is evenly convex and is continuous relative to any supporting hyperplane;

Y is evenly convex and its intersection with any supporting hyperplane is closed.
(m) X admits no asymptote in any supporting hyperplane intersecting X; Y admits

no asymptote in any supporting hyperplane intersecting Y.
(n) X is evenly convex and its intersection with any supporting hyperplane is

closed; Y is evenly convex and is continuous relative to any supporting hyperplane.
(o) A"í projections are all evenly convex and X is polyhedral at each of its points;

Y 's projections are all evenly convex and Y is polyhedral at each of its points.
(p) X's projections are all evenly convex ; Y admits no asymptote in any supporting

hyperplane intersecting Y and Y is polyhedral at each of its points.
(q) X is evenly convex; Y is onepointed or open or a strip.
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Corollary. If X and Y are as described in any of the above conditions then the
sets X+ Y and X— Y are evenly convex.

Theorems 4 and 5 are proved in the next section. The present section contains a
proof of the Corollary and some comments on the theorems.

Proof of the Corollary. Since X+ Y= X—(— Y), and since the various conditions
on X and F are all preserved under nonsingular affine transformations, it suffices to
consider X— Y in proving the Corollary. Suppose that X and F are proper convex
subsets of E, not necessarily disjoint, and that one of the conditions (a)-(q) is
satisfied. We want to show that each point z of E~(X— Y) lies in a hyperplane
disjoint from X— Y. Note that the sets A'and Y+z are disjoint, for otherwise there
exist xe X and ye Y such that x=y+z and z=x-y e X- Y. With X and Y+z
disjoint, the above theorems imply they are nicely separated. That is, E admits a
linear form/such that/(x)</(j+2) for all x e X and y e Y, whence

{peE :/(/?)= /(*)}

is a hyperplane which includes z and misses X—Y. The proof of the Corollary is
complete.

A subset of Fis called partially polyhedral [10] provided that it is the intersection
of a finite family of strips or, equivalently, that it is the intersection of a finite
family of open or closed halfspaces (both sorts of halfspaces being allowed in the
family). In his Separation Lemma [10], Rockafellar has proved that if A" is a
partially polyhedral set in E then every flat in £~ X lies in a hyperplane in E~ X.
Thus A"s projections are all evenly convex. Plainly X is polyhedral at each of its
points, and hence the separation theorem represented by condition (o) above
extends Rockafellar's theorem [10] asserting that disjoint nonempty partially
polyhedral sets are nicely separated.

When E is two-dimensional, conditions (i), (j), (p) and (q) are all equivalent so
far as X is concerned, for all one-dimensional convex sets are evenly convex.
However, (i) is weaker than (j) and (p) is weaker than (q) so far as Y is concerned,
whence it is evident that the • |-pair indicated by (j) and the |-pair indicated by (q)
are not maximal. As we shall see, this anomaly appears only when E is two-
dimensional.

The separation theorem represented by (n) is the same as that represented by (I).
Theorem 5 is stated in this redundant way to facilitate a comparison with Theorem
4. Note that the various conditions on X and Y are related as shown in Figure 1.
Most of the listed implications are obvious, but it may be desirable to show that all
projections of a set W are evenly convex if W admits no asymptote in any support-
ing hyperplane intersecting W. Suppose that tt is the transformation projecting E
orthogonally onto a flat Fin £ and that ttW is not evenly convex. Then there is a
point z e F~ttW such that z does not lie in any (relative) hyperplane in F~ttW.
From this it is clear, since ttW is convex, that S(z, ttW)=0 and consequently
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-(o)-

Conditions on X

( •)--( f)--(g)=*=^- -(h)

lili
(kfcrr-(I)--(«)*=-(n)

-(e)-
Conditions on Y

Figure 1

8(n~1{z}, W) = 0. Clearly z lies in some supporting hyperplane // of -n W relative to
F, and then -n~xH is a supporting hyperplane of W in F containing the asymptote
77" ̂ z} of W.

The maximal • |-pairs indicated by (e), (f), (g), (h), (i) and (j) are contained term-
wise in the maximal |-pairs indicated by (k), (1), (m), (n), (p) and (q) respectively.
In fact (as follows from the construction in the next section) the latter pair is in
each case the unique maximal |-pair naturally associated with the former. Thus
((#•')', 3"') = (3", W) for each of the pairs (3C, <&) indicated in Theorem 4. This
equality does not hold for all |-pairs (&, <W). Indeed, let SC be the class of all
compact convex subsets of Fand 9 the class of all polyhedra in E. Then ((#"')', 3CX)
and (ßf[, C^1)') are the maximal |-pairs indicated by (1) and (p) respectively. The
maximal |-pair indicated by (m) contains the pair (ST, W) but is not naturally
associated with (2(, <¥).

Proofs of the theorems on open separation and nice separation. The proofs of the
theorems are based on a remark and two lemmas.

Remark. // X is evenly convex, pe X, and w e cl X, then [/?, w[ <= X.
Proof. When X is evenly convex each point q of F~ X lies in a closed halfspace Q

disjoint from X. \fq e [/?, w[ then/? e Q or w e int Q, a contradiction in either case.
A familiar two-dimensional example (Figure 2) shows that, in general, the even

convexity of X is not implied by the property expressed in the Remark. However,
the two properties are equivalent when the closure of X is boundedly polyhedral.
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When the closure of X is actually a polyhedron, the two properties are equivalent
to the partial polyhedrality of X.

Lemma 1. If X and Y are disjoint nonempty convex subsets of E then X is openly
separated from Y unless there is a point p of X which lies in every hyperplane separating
X from Y. Any such point p satisfies at least one of the following conditions:

ilp)peclY;
(2p) p is an endpoint of a segment [p, w] such that w eel Y and [p, w] e (cl X) n 77

for every hyperplane 77 separating X from Y;
(3p) there are sequences pa in E, xa in X, and ya in Y such that pa -> p, yte [/?,, x¡]

for all i, and the sequence of segments [pa, xa] converges to a ray which lies in
(cl X) n H for every hyperplane 77 separating X from Y.

If X and Y are evenly convex then condition (3p) is satisfied for each point p as
described and each separating hyperplane 77 such that the intersections X n 77 and
F n 77 are both closed and nonempty.

Proof. Let F denote the set of all linear forms/on E such that/(x)^/(j) for all
x g X and y e Y. Since F is nonempty, convex, and finite-dimensional, there is an
element g in the relative interior of F. Suppose there is no point /? as described,
whence for each point x of X there exists/* g F such that fxix) < inf/* F. Note that g
lies in an open segment joining/* to another element A* of F— say

g = V* + (1-A)A*,   with 0 < A < 1.
For each x e X we have /*(x) < inf/* F and A*(x) ¿ inf A* F, whence g(x) < inf g Y.
But then X-1 F by g and the first assertion of Lemma 1 is proved.

Now suppose the point p of X lies in every hyperplane separating X from F, and
for each positive integer i let Nt denote the (1 ¡i )-neighborhood of p. The convex hull
con iX u N) is not separated from F and thus intersects F, whence there are
points Pi e N¡, x{ g X and y¡e Y such that yt g [/?¡, x4[. By choosing a subsequence if
necessary, we may assume the sequence of segments [pa, ya] is convergent to {/?},
to a segment issuing from /?, or to a ray issuing from p. These possibilities corre-
spond to those listed in (lp), (2p) or (3p) respectively. To see that the segment or ray
lies in every hyperplane 77 separating X from F, note that the x¡'s and >>t's are in
opposite closed halfspaces bounded by 77, while S({/?a}, 77) -*■ 0.

Suppose, finally, that X and F are evenly convex and 77 is a separating hyper-
plane such that X n 77 and F n 77 are both closed and nonempty. Choose
qe Y n 77. If (lp) holds then [q, />[<= Fby the Remark and consequently/? e X n Y.
If (2p) holds then [/?, w[<= X and [q, w[<= Y by the Remark, whence w e X n Y.
These are contradictions completing the proof, for X and F were assumed to be
disjoint.

Lemma 2. Suppose that U and V are disjoint nonempty evenly convex subsets of
the Euclidean plane P, both intersecting a line L which separates them. Suppose that
the intersections U n L and V n L are separated in L by a point w.
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(1) If 8(w,(Uu V)nL)>0 then U and V are strongly separated by a line
through w. The same conclusion holds if 8(w, U u V) > 0, even when U and V are not
evenly convex.

(2) Ifw$Uu V then U and V are strictly separated by a line through w.
(3) If we V and V is polyhedral at w then U is openly separated from V by a line

through w.

Proof. The set P~L is the union of two open halfplanes Pv and Pv whose clos-
ures contain i/and V respectively. The setL~{K>} is the union of two open rays Lv
andLv whose closures contain Uc\L and Vc\L respectively; in fact, LV=>UOF
because (under any of the three conditions) w $ U. Since w $U and U is evenly
convex (or perhaps, under (1), u is not evenly convex but 8(w, U)>0), the set

Figure 3

P~U contains a line through w. Let us assume for notational simplicity that w=0,
whence the line has the form Rx for some x e Pv. Plainly U is disjoint from every
line of the form Rx for x e ] — u, x[. (See Figure 3.)

Under (1) or (2), w $ V and F~ V contains a line through w. Plainly V is disjoint
from every line of the form Ry for y e ]u, y[. But for y in ]u,y[ and sufficiently
close to u, the line Ry also has the form Rx for x e ] - u, x[, and consequently U
and Kare strictly separated by Ry. It is also clear that the sets U~ Wand V~ Ware
strongly separated by Ry for each neighborhood W of w, whence U and V are
strongly separated by Ry unless weciU or weciV. The conditions weciU and
weclV are explicitly excluded by the assumption, under (1), that 8(w, Ifo V) > 0 ;
when U and V are evenly convex they are also excluded by the Remark in con-
junction with the assumption that 8(w, (U u V) n L) > 0.
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Under (3) there is a point y e V n Fv such that Ry supports V for all y e [u, y]
and V n Ry={0} for all y e ]u,y[. By choosing y sufficiently close to u we obtain
a line Ry which openly separates t/ from V and which meets V only at w.

Proofs of Theorems 4 and 5. We show first that the various conditions (e)-(q)
imply X-1 Y or A"| 7, and then that the indicated • |-pairs and |-pairs are maximal.

(e) and (k). By the standard separation theorem there is a hyperplane H sep-
arating X from Y. If X is open, X misses H and X- \ Y. If A" is a strip, // may be
chosen as a supporting hyperplane of A", and X misses // (whence X-1 7) or A"=> H
(whence A"|- 7).

(f), (h), (1) and (n). Supposing that X is not openly separated from 7, let p be as
in Lemma 1 and let H be a hyperplane separating X and 7 Then of course
peX r\ Hand 8(H, 7)=0. If 7 misses // then X \ Y and under (1) or (n) there is
nothing to prove. If 7 misses H under (f) then (lp) and (2p) are excluded by the
fact that 7 is closed and thus (3p) is satisfied. If 7meets //under (f), (h), (1) or (n) it
follows from the last assertion of Lemma 1 that (3p) is satisfied. Note that 7 must
meet H under (h). Let the ray mentioned in (3p) be

[p,p + u( = {p+Xu : X ̂  0}

and note that, by the Remark, this ray is actually contained in A". Under (f) an
immediate contradiction ensues. Under any of the remaining conditions (h), (1)
and (n), (3p) is satisfied and the sets X n H and 7 n H are closed and nonempty.
For each point q of 7 n H it follows from (3p) and the choice of u that [q, q+u(
<=cl 7 and then from the Remark that [q, q+u(<^ Y r\H. Thus both X n H and
Y n H are unions of translates of the ray [0, u(. Choose q0e Y n H and consider
the two-dimensional flat F determined by

[/?,/? + k(u [q0,q0 + u(.

Since X and 7 are disjoint it is plain that P contains boundary rays or asymptotes
of both X n H and 7 n H [2, 1.2], and in each case the hypothesis of relative
continuity is contradicted.

(g), (i), (m), (o), and (p). For each positive integer d let Ad denote one of the
following assertions:

(g) implies X-1 7
(i)   implies A"-1 7
(m) implies X\ Y
(o) implies X\ Y
(p) implies X\ Y
The interpretation of Ad is to be the same for all values of d, and the condition

((g)> (0> (m)> (°) or (P)) involved in this interpretation will be denoted by (y).
Plainly Ax is true and thus Ad can be established for all values of d by deriving Ad
from Ad-x. Suppose that dim E=d^2. Let X and 7 be disjoint nonempty convex

when dim F= d and X and 7 are disjoint
nonempty convex subsets of F.
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subsets of £ satisfying (y) and let 77 be a hyperplane separating X from F. If X
misses 77 then X-\Y, a desired conclusion. If F misses 77 then X\ ■ Y, a desired
conclusion when (y) is (m), (o) or (p). Further, if F misses 77 and (y) is (g) or (i)
then 8(77, F)>0 (for Y admits no asymptote) and a translate of 77 strongly
separates X from Y. There remains only the case in which the intersections X n 77
and F n 77 are both nonempty. A routine verification shows that (y) is satisfied by
the sets X n 77 and Y n 77, whence the inductive hypothesis Ad.x guarantees the
existence of a hyperplane M in H which (relative to 77) separates X n 77 from
Y n 77 in the appropriate manner. Under (g) it is clear that 8(M, X) > 0, whence
X n 77 and F n 77 are strongly separated in 77 by a translate of M. A similar
situation prevails under (m), and also under (i) and (p) unless M meets F. Thus we
may assume, replacing M by a suitable translate, that the situation is as follows:

(g) or (m) M misses X u F
(i) or (p) M meets F or misses X u F.

Now choose we M, let F be the (two-dimensional) orthogonal supplement of M
at w, and let tt denote the orthogonal projection of £ onto P. Let U=TrXand V=rrY.
Then ttA/= {w}, ttH is a line L through w, the sets £/ and V are separated in P by L,
and the intersections U n L and V n L are separated in L by w>. Further, the sets
£/ and V are disjoint, evenly convex, and under certain conditions ((o) for X, (i), (o)
and (p) for Y) are polyhedral at all of their points (use [5, 4.1]). Lemma 2 implies
that U and V are separated in the appropriate manner by a line F through w in P,
and then 7r_1F is a hyperplane which separates X from F in the appropriate
manner in £.

(j) and (q). Use the standard separation theorem and the relevant definitions.
We still must show that the • |-pairs of Theorem 4 and the |-pairs of Theorem 5

are maximal. This follows from the observations below, showing first that the
indicated pairs (SC, <¥) cannot be enlarged by adding to SC and then that they cannot
be enlarged by adding to <&. Some of the details are left to the reader.

Let us suppose that X is a proper convex subset of £.
(j) and (q). If (j) fails for X then (by the definition of even convexity) £~ X

contains a onepointed set F which is not closedly separated from X. Indeed, it is
plain that X is not nicely separated from F.

(i) and (p). If (i) fails for X then E~ X contains a flat F which is not closedly
(and hence, also, not openly) separated from X.

(o). See the discussion of (o) for F below.
(h) and (n). If (h) fails for Xthere are a supporting hyperplane Hof Xand a point

p of 77 such that
p e cl (A- n 77) ~ (X n 77).

Then £~ X contains a compact Euclidean ball F which is tangent to 77 at/?, and X
is not nicely separated from F.

(g) and (m). If (g) fails for X there is a supporting hyperplane H of X which
intersects X and contains an asymptote A of X. The set £~ X contains a compact
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Euclidean ball B which is tangent to Hat a point of A. Let 7 denote the "spherical
cylinder" cl con (A u B). Then 7 admits no asymptote and X is not nicely sep-
arated from 7

(f). If (g) holds for X but (f) fails for X there is a supporting hyperplane H of X
such that the intersection X n H is unbounded and hence contains a ray [/?, p + u(.
There is a compact Euclidean ball F which is separated from X by H and is tangent
to H at /?. For notational simplicity we assume without loss of generality that B is
centered at the origin O. Let

a closed convex subset of E~X. Then A" is not openly separated from 7.
(1). If (m) holds for X but (1) fails for X there is a supporting hyperplane H of X

such that the intersection X n H admits a boundary ray [/?,/? + u( relative to H.
Let [q, q + u( be a parallel ray in H~ X. Let F be a compact Euclidean ball which is
separated from X by H and is tangent to H at the point 2p-q. Assume without loss
of generality that B is centered at O and let

Y=c\con([q,q + u(V \J (xu + ̂ \b\-

Then 7 is a closed convex subset of F~ X and X is not nicely separated from 7.
(Compare this with the example of Botts mentioned above.)

(e) and (k). If (e) fails for A" then A" intersects one of its supporting hyperplanes //.
If 7 is an open halfspace which misses X and is bounded by H, then X is not openly
separated from 7. If (k) fails for X then H can be chosen so that there exists
q e H~ X; Y u {q} is a convex subset of F~ X and X is not nicely separated from
Yu{q).

Now let us suppose that 7 is a proper convex subset of F.
(e) and (k). These place no restriction on 7.
(f). If (f) fails for 7 there is a onepointed set A"<=(cl Y)~ 7 The set X is not

openly separated from 7
(1). If (1) fails for 7, refer to the above discussion of (h) for X.
(g). If (g) fails for 7 then F~ 7 contains an asymptote A'of 7; A'is not openly

separated from 7
(m). If (m) fails for 7, refer to the above discussion of (g) for A".
(h) and (n). If (g) holds for 7 but (h) fails for 7, or if (m) holds for 7 but (n)

fails for 7, then there is a supporting hyperplane H of Y such that the intersection
7 n H admits a boundary ray relative to H. Refer to the above discussion of (1)
for A".

(i) and (o). If (g) holds for 7 but (i) fails for 7 there is a point q of 7 at which 7
is not polyhedral. If (o) fails for 7 then 7 admits a projection which is not evenly
convex (refer to the above discussion of (i) for A") or there is a point q as described.
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With C denoting the union of all rays which issue from q and pass through the
various points of F, we conclude from [5, 3.3] that C is not polyhedral and then
from [5,4.11] that there is a two-dimensional plane P through q such that the
orthogonal projection ttC of C onto P is not closed. Let F be an open ray issuing
from q such that

F <= cl ttC ~ ttC

and let X=tt~1C, an "openhalf-hyperplane" in£. Then A'is a partially polyhedral
set in E~ Y but X is not nicely separated from C and hence also not from Y.

(p). If (o) holds for F but (p) fails for Y then F admits an asymptote in a sup-
porting hyperplane intersecting F. Refer to the discussion of (g) for A".

0) and (q). If (i) holds for F but Q) fails for F then (p) holds for F but (q) fails for
F. Thus it suffices to show that in the latter instance E~Y contains an evenly
convex set X which is not nicely separated from Y. As maximality is not claimed
in the two-dimensional case, we may assume dimE=d^3. Since F is not open
there are supporting hyperplanes 77 intersecting Y, and we want to produce one
for which

(*) 1 = dim(YnH) = d-2.

Note that for each supporting hyperplane 77 intersecting F, the intersection F n 77
is closed (for F admits no asymptote in 77) and thus boundedly polyhedral (for F
and hence F n 77 is polyhedral at each of its points) ; further, F ' n 77# 77 because
F is not a strip. Let 770 be a supporting hyperplane for which the dimension k of
the intersection Y n H0 is as large as possible. We claim fcg;l. Indeed, if A = 0
then Y n H0 consists of a single point q but F#{^} because F is not onepointed.
Since F is polyhedral at q the relative boundary of F contains a segment issuing
from q and of course Fis supported by a hyperplane containing this segment. Then
the definition of 770 is contradicted and we conclude that k=l. lfk^d—2 then 770
has the desired property. If k = d- 1 then (since Fn77^77)Fn77 has a face F of
dimension d— 2 and it is easy (recalling that F is polyhedral at each of its points)
to produce a supporting hyperplane 7Y for which F n 77= F. Henceforth 77 will
denote a supporting hyperplane for which (*) holds and F will denote the inter-
section F n 77. We assume without loss of generality that O is in the relative interior
of F and denote by M the linear hull of F, by L a Une through O in M, and by P a
two-dimensional linear subspace of the orthogonal supplement of M. Let S denote
the three-dimensional space L@P and let Z denote the intersection Y r\ S.

There are a line F through O in P and an open half-plane Q bounded by F such
that 77 n S=F © L and Z<= (Q u {0}) © L. Let the set D of Figure 2 be situated in
P with ¿?=0 and with the relationship shown to Fand Q. Let D' be obtained from
D by rotating D about the axis [a, a'] in S. Let J be an open halfspace in S such that
[b, b'] lies in the boundary ofJ, half of L is interior to /, and / contains all points
of D to the left of [¿?, b']. Finally, let X= D' n J. Then X is evenly convex and is
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disjoint from Z, but X is not nicely separated from L in S. From this it follows that
X is not nicely separated from 7 in F and thus the proof is complete.
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