1. Maximal Sum-Free Sets of Elements of Finite Groups

By Palahenedi Hewage Diananda and Hian Poh Yap
Department of Mathematics, University of Singapore, Singapore

(Comm. by Zyoiti Suetuna, m. J. A., Jan. 13, 1969)

1. Introduction. Let G be an additive group. If S and T are non-empty subsets of G, we write $S \pm T$ for $\{s \pm t ; s \in S, t \in T\}$ respectively, $|S|$ for the cardinal of S and \bar{S} for the complement of S in G. We abbreviate $\{f\}$, where $f \in G$ to f. We say that S is sum-free in G if S and $S+S$ have no common element and that S is maximal sumfree in G if S is sum-free in G and $|S| \geqq|T|$ for every T sum-free in G. We denote by $\lambda(G)$ the cardinal of a maximal sum-free set in G. We say that S is in arithmetic progression with the difference d if $S=\{s, s+d, s+2 d, \cdots, s+n d\}$ for some s and $d \in G$ and some integer $n \geqq 0$.

In [3] Yap obtained certain results concerning $\lambda(G)$ for abelian G. The main purpose of this paper is to generalize and to improve, where possible, his results.
2. Abelian groups. Throughout this section G is an abelian group. We use the following theorem [2;p.6] due to M. Kneser :

Theorem 1. Let A and B be finite non-empty subsets of G. Then a subgroup H of G exists such that $A+B+H=A+B$ and $|A+B| \geqq|A+H|+|B+H|-|H|$.

Suppose that S is a maximal sum-free set in G. Then a subgroup H of G exists such that

$$
\begin{equation*}
S+S+H=S+S \quad \text { and } \quad|S+S| \geqq 2|S+H|-|H| \tag{1}
\end{equation*}
$$

Lemma 1. $S+H$ is also a sum-free set in G.
Proof. Otherwise, $S+H$ and $(S+H)+(S+H)=S+S$ have a common element. Thus $s+h=s_{1}+s_{2}$ for some s, s_{1} and $s_{2} \in S$ and some $h \in H$. Hence $s=s_{1}+s_{2}-h \in S+S+H=S+S$. This is not possible since S is sum-free in G.

It now follows that $S+H=S$ since S is maximal sum-free in G. Thus we have

Lemma 2. S is a union of cosets of H in G.
Hence $|H|$ is a divisor of $|S|$. Now $|G| \geqq|S|+|S+S| \geqq 3|S|$ $-|H|$, from (1). Hence

$$
|S| \leqq|H|\left[\frac{1}{3}\left(\frac{|G|}{|H|}+1\right)\right],
$$

where $[x]$ denotes the integer part of x. Thus

$$
\begin{equation*}
\lambda(G) \leqq \max _{d| | G \mid} \frac{|G|}{d}\left[\frac{1}{3}(d+1)\right], \tag{3}
\end{equation*}
$$

if G is finite. Clearly

$$
\frac{1}{d}\left[\frac{1}{3}(d+1)\right]= \begin{cases}\frac{1}{3}\left(1+\frac{1}{d}\right) & \text { if } d \equiv 2(\bmod 3) \tag{4}\\ \frac{1}{3} & \text { if } d \equiv 0(\bmod 3) \\ \frac{1}{3}\left(1-\frac{1}{d}\right) & \text { if } d \equiv 1 \quad(\bmod 3)\end{cases}
$$

We consider the following cases:
Case 1. $|G|$ has at least one prime factor $\equiv 2(\bmod 3)$.
Case 2. $|G|$ has no prime factor $\equiv 2(\bmod 3)$ but has 3 as a factor.
Case 3. $|G|$ has every prime factor and thus every factor $\equiv 1$ $(\bmod 3)$.

It is seen that these three cases are exhaustive and mutually exclusive. We thus have, from (3) and (4),

Lemma 3.

$$
\lambda(G) \leqq \begin{cases}\frac{1}{3}|G|\left(1+\frac{1}{p}\right) & \text { in Case 1, } \tag{5}\\ \frac{1}{3}|G| & \text { in Case 2, } \\ \frac{1}{3}(|G|-1) & \text { in Case 3, }\end{cases}
$$

where, in Case $1, p$ is the least prime factor $\equiv 2(\bmod 3)$ of $|G|$.
We note that this lemma implies Theorems 2, 7, 10 and 11 of [3].
Theorem 2. In Case 1, $\lambda(G)=(1 / 3)|G|(1+(1 / p))$ and, if S is a maximal sum-free set in G, then S is a union of cosets of some subgroup H of order $|G| / p$ of $G, S / H$ is in arithmetic progression and $S \cup(S+S)=G$.

Proof. Clearly G has a subgroup K of order $|G| / p$ and an element g of order p such that $G=K \cup(K+g) \cup(K+2 g) \cup \ldots$ $\cdots \cup(K+(p-1) g)$. It is easy to see that $T=(K+g) \cup(K+4 g) \cup(K+7 g)$ $\cup \cdots \cup(K+(p-1) g)$ is sum-free in G and $|T|=(1 / 3)|G|(1+(1 / p))$. Hence, from (5), T is maximal sum-free in G and $\lambda(G)=(1 / 3)|G|$ $(1+(1 / p))$.

Now let S be maximal sum-free in G. Then

$$
\begin{equation*}
|S|=\frac{1}{3}|G|\left(1+\frac{1}{p}\right) \tag{8}
\end{equation*}
$$

Let H be a subgroup of G, satisfying (1). Then (2) is also satisfied and we have $|H|=|G| / p$. By Lemma 2, S is a union of cosets of H in G. From (1) and (8), $|S|+|S+S| \geqq|G|$. Since S is sum-free in G, we have equality in the above and $S \cup(S+S)=G$. Further, $|S+S|$
$=2|S|-|H|$ and so $|(S / H)+(S / H)|=2|S / H|-1$, where S / H is a subset of the factor group G / H of order p. That S / H is in arithmetic progression follows from the following theorem [2; pp.3-4] due to A. G. Vosper :

Theorem 3. Let $C=A+B$, where A and B are non-empty subsets of G of prime order p. Then either $|C| \geqq|A|+|B|$ or one of the following holds: (i) $C=G$, (ii) $|C|=p-1$ and $\bar{B}=f-A$, where $\bar{C}=f$, (iii) A and B are in arithmetic progression with the same difference, (iv) $|A|=1$ or $|B|=1$.

We note that Theorem 2 generalizes Theorems 3, 4 and 5 of [3].
Theorem 4. In Case 2, $\lambda(G)=|G| / 3$ and, if S is a maximal sumfree set in G, then S is a union of cosets of some subgroup H of order $|G| / 3 m$, where m is an integer such that $3 m||G|$, and one of the following holds: (i) $|S+S|=2|S|-|H|$, (ii) $|S+S|=2|S|$ and $S \cup(S+S)=G$.

Proof. Clearly G has a subgroup K of order $|G| / 3$ and an element g of order 3 such that $G=K \cup(K+g) \cup(K+2 g)$. It is easy to see that $T=K+g$ is sum-free in G and $|T|=|G| / 3$. Hence, from (6), T is maximal sum-free in G and $\lambda(G)=|G| / 3$.

Now let S be maximal sum-free in G. Then $|S|=|G| / 3$. Let H be a subgroup of G satisfying (1). Then, by Lemma $2, S$ is a union of cosets of H and $|H|=|G| / 3 m$, where m is an integer and $3 m||G|$. From (1), $|S+S| \geqq 2|S|-|H|$. Thus $|S+S|=2|S|-|H|$ or $2|S|$ since, S being sum-free, $|S|+|S+S| \leqq|G|$. Clearly $S \cup(S+S)=G$ if $|S+S|=2|S|$.

We note that Theorem 4 generalizes Theorems 8 and 9 of [3].
Theorem 5. In Case 3, $(1 / 3)|G|(1-(1 / m)) \leqq \lambda(G) \leqq(1 / 3)(|G|-1)$, where m is the maximal order of an element of G.

Proof. Suppose that G has an element g of order m. Then G clearly has a subgroup K of order $|G| / m$ such that $G=K \cup(K+g)$ $\cup(K+2 g) \cup \cdots \cup(K+(m-1) g)$. It is easy to see that $T=(K+2 g)$ $\cup(K+5 g) \cup(K+8 g) \cup \cdots \cup(K+(m-2) g)$ is sum-free in G and $|T|$ $=\frac{m-1}{3} \frac{|G|}{m}$. The theorem now follows since (7) also is true.

We note that if G is cyclic then $|G|=m$ and the above theorem yields Theorem 6 of [3]. We make the following conjecture :

In Case $3, \lambda(G)=\frac{1}{3}|G|\left(1-\frac{1}{m}\right)$, where m is as in Theorem 5 .
This is true if G is cyclic. We can prove this conjecture for $G=C_{7} \times C_{7}$ also, where each C_{7} is a cyclic group of order 7. An outline of the proof follows:

We use the following theorem [2; p. 3] due to A. Cauchy and H. Davenport:

Theorem 6. If A and B are non-empty subsets of a group G of prime order then $A+B=G$ or $|A+B| \geqq|A|+|B|-1$.
$G=C_{7} \times C_{7}$ has eight subgroups $K_{1}, K_{2}, \cdots, K_{8}$ of order 7. Their union is G and $K_{i} \cap K_{j}=0(i \neq j)$. Let S be a maximal sum-free set in G. Then $0 \notin S$; by Theorem 5, $|S| \geqq 14$ and, by Theorem $6,\left|S \cap K_{i}\right|$ $\leqq 2$ for every i. Thus the $S \cap K_{i}$ are disjoint and $\left|S \cap K_{j}\right|=2$ for some j. Let the cosets of K_{j} be $H_{i}=i a+K_{j}(i=0,1, \cdots, 6)$. Clearly H_{7+i} $=(7+i) a+K_{j}=H_{i}$. Let $S_{i}=S \cap H_{i}$. Then $|S|=\left|S_{0}\right|+\left(\left|S_{1}\right|+\left|S_{2}\right|+\left|S_{4}\right|\right)$ $+\left(\left|S_{3}\right|+\left|S_{6}\right|+\left|S_{5}\right|\right) \leqq 14$ and thus $|S|=14$ if

$$
\begin{equation*}
\left|S_{i}\right|+\left|S_{2 i}\right|+\left|S_{4 i}\right| \leqq 6 \quad(i=1,2, \cdots, 6) \tag{9}
\end{equation*}
$$

Clearly, for all i and j,

$$
\begin{equation*}
\left(S_{i}+S_{j}\right) \cap S_{i+j}=\varnothing \quad \text { and } \quad\left(S_{i}+S_{j}\right) \cup S_{i+j} \subset H_{i+j} \tag{10}
\end{equation*}
$$

Since $\left|S_{0}\right|=2$, from (10) and Theorem 6, $\left|S_{i}\right| \leqq 3$ for every i. If $\left|S_{i}\right|$ $\leqq 2$ for every i then (9) is satisfied. If $\left|S_{i}\right|=3$ for some $i(1 \leqq i \leqq 6)$ then, since $\left|S_{0}\right|=2$, from (10) and Theorems 6 and 3, we have that S_{i} is in arithmetic progression. Thus $S_{i}=i a+b+\{-d, 0, d\}$ for some $d(\neq 0)$ and $b \in K_{j}$. Hence, from (10), $S_{2 i} \subset 2 i a+2 b+\{-3 d, 3 d\}$. Since $S_{8 i}=S_{i}$ and $\left|S_{i}\right|=3$ it follows that $\left|S_{4 i}\right| \leqq 2$. Since also $\left|S_{2 i}\right| \leqq 2$, (9) follows if we prove that $\left|S_{i}\right|=3$ and $\left|S_{2 i}\right|=2$ imply that $\left|S_{4 i}\right| \leqq 1$. If $\left|S_{2 i}\right|=2$ then $S_{2 i}=2 i a+2 b+\{-3 d, 3 d\}$. Thus, from (10), $S_{4 i} \subset 4 i a+4 b$ $+\{-3 d,-2 d, 2 d, 3 d\}$. Since $S_{8 i}=S_{i}$, it follows from (10) that $S_{4 i}$ can have at most one element, namely $4 i a+4 b \pm 2 d$. Thus (9) follows. Hence $\lambda(G)=|S|=14$.
3. Non-abelian groups. Hitherto we have considered abelian groups only. In this section we prove some results for groups G which are not necessarily abelian.

We first note that if $S=s+H=H+s$, where $s \in G$ and H is a subgroup of G then $|S+S|=|S|$. A converse of this is contained in the following generalization of Theorem 1 of [3].

Theorem 7. If S is a finite subset of G and $|S+S|=|S|$ then there is a finite subgroup H of G such that $S+H=S=H+S$ and $S-S$ $=H=-S+S$.

Proof. Let s_{1} and $s_{2} \in S, H_{1}=-s_{1}+S$ and $H_{2}=S-s_{2}$. Then $\left|H_{1}+H_{2}\right|=|S+S|=|S|=\left|H_{1}\right|=\left|H_{2}\right|<\infty$. But $0 \in H_{1} \cap H_{2}$ and thus $H_{1}+H_{2} \supset H_{1} \cup H_{2}$. Hence $H_{1}+H_{2}=H_{1}=H_{2}$. Thus there is a finite subgroup $H=H_{1}$ of G such that S is both a left and a right coset of H. Thus $H=-s+S=S-s$ for every $s \in S$, and the theorem clearly follows.

Corollary. Let $|G|=2 m$. Then $\lambda(G)=m$ if and only if G has a subgroup of order m.

It follows that if G is abelian and $|G|=2 m$ then $\lambda(G)=m$. This is a consequence of Theorem 2 also.

We now prove, for non-abelian G, the following theorem, which, by Theorem 4, is true for abelian G :

Theorem 8. Let $|G|=3 p$, where p is a prime $\equiv 1(\bmod 3)$. Then $\lambda(G)=p$.

Proof. If G is non-abelian then G has generators a and b such that $3 a=0=p b$ and $b+a=a+r b$, where $r^{2}+r+1 \equiv 0(\bmod p)[1 ; p .51]$. Let $H_{0}=\{0, b, 2 b, \cdots,(p-1) b\}, H_{1}=a+H_{0}, H_{2}=2 a+H_{0}$. Then H_{1} is sum-free in G and so $\lambda(G) \geqq p$. Let S be a sum-free set in G and S_{i} $=S \cap H_{i}$. By Theorem 5, $\left|S_{0}\right| \leqq k$, where $p=3 k+1$. Thus $\left|S_{1}\right|+\left|S_{2}\right|$ $\geqq 2 k+1$ and we assume, as we may, that $\left|S_{1}\right| \geqq k+1$. Let $S_{1}=a$ $+\left\{t_{1} b, t_{2} b, \cdots, t_{n} b\right\}$. Then $S_{1}+S_{2}=2 a+\left\{r t_{1} b, r t_{2} b, \cdots, r t_{n} b\right\}+\left\{t_{1} b, t_{2} b\right.$, $\left.\cdots, t_{n} b\right\}$. Thus, by Theorem $6,\left|S_{1}+S_{1}\right| \geqq 2\left|S_{1}\right|-1$. Now ($S_{1}+S_{1}$) \cap $S_{2}=\varnothing$ and $\left(S_{1}+S_{1}\right) \cup S_{2} \subset H_{2}$. Hence $p \geqq 2\left|S_{1}\right|-1+\left|S_{2}\right| \geqq k+\left|S_{1}\right|+\left|S_{2}\right|$ $\geqq\left|S_{0}\right|+\left|S_{1}\right|+\left|S_{2}\right|=|S|$. Thus $\lambda(G)=p$.

References

[1] Marshall Hall, Jr.: The Theory of Groups. Macmillan Co., New York (1959).
[2] H. B. Mann: Addition Theorems. Interscience Publ., New York etc. (1965).
[3] H. P. Yap: Maximal sum-free sets of group elements. J. London Math. Soc., 44, 131-136 (1969).

