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1 Introduction

We would like to specify targets for the future B-mode detectors for the ratio of the tensor

to scalar fluctuations, r = At
As

. We propose models of inflation with definite values of r

which can be validated/falsified either by the detection of primordial gravity waves, or by

the improved bounds on r. At present, the bound is considered to be r ≤ 7 × 10−2 [2–5]

at 95% confidence level. There are many inflationary models consistent with this bound,

see for example, [6–8] where the future CMB observations are described.

Here we will focus on inflationary α-attractor models [9–15], based on the hyperbolic

geometry of a Poincaré disk. Such a disk is beautifully represented by Escher’s picture

Circle Limit IV with radius squared R2
E = 3α. The hyperbolic geometry of the disk has

the following line element

ds2 =
dx2 + dy2
(

1− x2+y2

3α

)2 , (1.1)
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which describes a disk with a boundary so that x2+y2 < 3α. More details on this are given

in section 2. The original derivation of this class of models was based on superconformal

symmetry and its breaking.

At present one can view α-attractor cosmological models with a plateau potential as

providing a simple explanation, due to the hyperbolic geometry of the moduli space, of the

equation relating the tilt of the spectrum ns to the number of e-folding of inflation N :

ns ≈ 1− 2

N
. (1.2)

This equation is valid in the approximation of a large number of e-foldings N and it is in a

good agreement with the data. In addition to providing an equation for ns, the hyperbolic

geometry leads to the B-mode prediction for r = At
As

:

r ≈ 3α
4

N2
= R2

E

4

N2
, (1.3)

for reasonable choices of the potential and for α not far from 1. General expressions

for ns and r with their full dependence on N and on α are also known for a large class

of models [11]. They were derived in the slow roll approximation and they are more

complicated than expressions in (1.2), (1.3). Both CMB observables ns and r follow from

the choice of the geometry and are not very sensitive to the changes in the potential due

to attractor properties of these models.

The experimental value of the scalar tilt suggests that ns ≈ 1− p
N with p = 2 is a good

fit to the data. Here p controls the order of the pole in the kinetic term of the inflaton and

p = 2 corresponds to a second order pole, see (1.1). Various considerations leading to this

kind of relation between ns and N were suggested in the past. For example, in [16], using

the equation of state analysis, it was argued that robust inflationary predictions can be

defined by two constants of order one, p and q, so that at large N , ns = 1− p
N and r = 24 q

Np .

We explain in section 3 why in hyperbolic geometry p = 2 and 6q = R2
E. Related ideas

were developed in [17–19]. Specific examples of such models with plateau potentials and

α = 1 include the Starobinsky model [20], Higgs inflation [21, 22] and conformal inflation

models [9].

The α-attractor models in N = 1 supergravity, starting with [11], may have any value

of α and, therefore any value of r. An example of an N = 1 supergravity model with a

very low level of 3α = 1/3 is known [23–25], which is actually the very first supergravity

model of chaotic inflation.

The general class of α-attractor models [9–15], can be related to string theory in the

following sense: the effective supergravity model is based on two superfields, one is the

inflaton, the other one is often called a stabilizer. It is a nilpotent superfield which is

present on the D3 brane [26–31].

When the geometry of these models is associated with half-maximal N = 4 supergrav-

ity [32] and the maximal N = 4 superconformal theory [33–35], one finds [13] that the

lowest value of 3α in these models is 1. It corresponds to a unit size Escher disk with

R2
E = 3α = 1 . (1.4)
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Note that the relevant value of r is three times smaller than that of the Starobinsky

model, Higgs inflation model and conformal inflation models, corresponding to α = 1, and

provides a well motivated B-mode target r ∼ 10−3, as explained in [13].

In [1] it was shown that starting with gravitational theories of maximal supersymmetry,

M-theory, string theory and maximal supergravity, one finds a seven-disk manifold defined

by seven complex scalars. Two assumptions were made in [1]:

The first assumption was that there exists a dynamical mechanism which realizes some

conditions on these scalars, given in eq. (4.17) in [1]. If these conditions can be realized

dynamically, it would mean that in each case the kinetic term of a single remaining complex

scalar is defined by a hyperbolic geometry with

R2
E = 3α = 1, 2, 3, 4, 5, 6, 7 . (1.5)

The second assumption in [1] was that these models can be developed further to pro-

duce the inflationary potential of the α-attractor models with a plateau potential in a way

consistent with the constraints. This would make the models proposed in [1] legitimate

cosmological models, with specific predictions for ns in (1.2) and r in (1.3), (1.5).

The purpose of this paper is to show how to construct such dynamical models, thereby

validating the assumptions made in [1]. This will explain how starting from from the seven-

disk manifolds of maximal N = 8 supersymmetry models to derive the minimal N = 1

supersymmetric cosmological models with B-mode targets scanning the region of r between

10−2 and 10−3.

2 Capturing infinity in a finite space: plateau potentials

Escher was inspired by islamic tilings in Alhambra and he produced beautiful art using a

tessellation of the flat surface. The line element of it is

ds2 = dXdX̄ = dx2 + dy2 , X = x+ iy . (2.1)

A tessellation is the tiling of a plane using one or more geometric shapes, called tiles, with

no overlaps and no gaps. Consider a simple example when in the plane the whole surface

is covered with equilateral triangles, as in figure 1.

The symmetry elements of the tessellation there include translations, rotations and

reflections, for example

X → X + a, X̄ → X̄ + ā , X → Xeiβ , X̄ → X̄e−iβ , X → −X , (2.2)

and combinations of these. Escher has reached a perfection in his tessellations of the flat

surface, see for example figure 2 where he had to cut a repeating pattern to fit it into

a finite space of the picture. For a long time Escher struggled to produce an infinitely

repeating pattern in a finite figure. His desire was to capture infinity in a finite space.

It was Coxeter who gave Escher the idea for the Poincaré disk. When Escher saw the

figure of the tessellation of the hyperbolic plane by triangles produced by Coxeter in [36],

see figure 3, left, he realized that this solves his problem. The figure’s hyperbolic tiling,
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Figure 1. A tessellation of the flat surface plane covered with equilateral triangles. The shift of

the whole plane over the distance AB, will cover the underlying pattern again. This is a translation

of the plane. We can also turn the duplicate through 60 degrees about the point C, and we see that

it covers the original pattern exactly. This is a rotation. Also after a reflection in the line PQ, the

pattern remains the same.

Figure 2. Left: Escher’s tessellation of the flat surface plane with Angels and Devils design. Right:

Escher’s tessellations of the flat surface plane with Lizard/Fish/Bat design.

Figure 3. Left: Coxeter’s tessellation of a hyperbolic plane by triangles (Poincaré disk model).

Right: Escher’s tessellation for the hyperbolic tiling for the woodcut Angels and Devils, “Circle

Limit IV”.

with triangular tiles diminishing in size and repeating (theoretically) infinitely within the

confines of a circle, was exactly what Escher had been looking for in order to capture infinity

in a finite space. This allowed him to produce his well-known Circle Limit woodcuts, see

the Angels and Devils Circle IV, in figure 3, right.

The complex disk coordinates Z describing the hyperbolic geometry are particularly

suitable for providing a mathematical meaning to the concept of capturing infinity in a

finite space. Namely, a line element of the Poincaré disk of radius squared 3α = 1 can be
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Figure 4. A plot of V (ϕ) = tanh2
(

ϕ/
√
2
)

.

given as [15]

ds2 =
dx2 + dy2

(1− x2 − y2)2
=

dZdZ̄

(1− ZZ̄)2
=

1

2

dϕ2 + dθ2

cos2(
√
2θ)

, Z = tanh

(

ϕ+ iθ√
2

)

. (2.3)

The angular variable θ is periodic but the variable ϕ is unrestricted.

x2 + y2 < 1 ⇐⇒ tanh2
(

ϕ√
2

)

< 1 −∞ < ϕ < +∞ , 0 < θ < 2π . (2.4)

We have a map from a finite variable x2 + y2 < 1 describing an inside of the disk to an

infinite variable −∞ < ϕ < +∞, realized by the fact that tanh2
(

ϕ/
√
2
)

< 1: the origin of

the plateau potential for inflation in figure 4 can be traced to Escher’s concept of capturing

infinity in a finite space.

We will see that in our cosmological models the angular variable θ will be quickly

stabilized at θ = 0 whereas the inflaton field ϕ will have a plateau type potential V ∼
tanh2

(

ϕ/
√
2
)

in canonical variables, corresponding to a simple potential in the disk vari-

ables V ∼ ZZ̄.

The Cayley transform relates the upper half plane coordinate X, ImX > 0, to the

interior of the disk coordinate Z, |Z| < 1. For cosmological models this relation was

studied in [37]:

X = x̃+ iỹ = i
1 + Z

1− Z
, ỹ > 0 , Z =

X − i

X + i
, ZZ̄ < 1 . (2.5)

Tessellation of the hyperbolic half-plane are defined by its symmetries, by Möbius trans-

formations. The line element in half-plane variables, see the left part of figure 5, with

ỹ > 0 is

ds2hp = − dXdX̄

(X − X̄)2
=

dx̃2 + dỹ2

4ỹ2
. (2.6)

It corresponds to the unit size disk geometry

ds2d =
dZdZ̄

(1− ZZ̄)2
=

dx2 + dy2

(1− x2 − y2)2
= ds2hp . (2.7)
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Figure 5. Left: Escher’s tessellation of a hyperbolic half-plane with “Angels and Devils” design.

Right: Cayley transform of upper complex half-plane to a hyperbolic disk.

The symmetries in half plane include: translation of the real part of X, dilatation of

the entire plane, inversion, and reflection of the real part of X:

X → X + b , X̄ → X̄ + b , (2.8)

X → a2X , (2.9)

X → −1/X , (2.10)

X + X̄ → −(X + X̄) . (2.11)

The first three separate transformations can be also given in the form

X → aX + b

cX + d
, ∆ ≡ ad− bc 6= 0 , (2.12)

where a, b, c, d are real parameters. The first one, the shift of the real part, is the case of

c = 0, a = d = 1, the second one, rescaling, is b = c = 0, ad = 1, the third one, inversion,

is a = d = 0, b/c = −1.

In the case of the disk with R2
E = 3α the metric of the disk and half plane become,

respectively

ds2d = 3α
dZdZ̄

(1− ZZ̄)2
=

dx2 + dy2
(

1− x2+y2

3α

)2 , (2.13)

ds2hp = −3α
dXdX̄

(X − X̄)2
=

dx̃2 + 3αdỹ2

4ỹ2
. (2.14)

The curvature of the moduli space associated with the metric in (2.13) or (2.14) is given by

R = − 2

3α
. (2.15)

3 Pole inflation: hyperbolic geometry and attractors

In the form (2.14) it is particularly clear what is the origin of the ns and r equations in (1.2)

and (1.3). For a constant axion x̃ the hyperbolic geometry line element is

ds2hp|x̃=c = 3α
dỹ2

ỹ2
. (3.1)
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It was explained in [12] that in general, if one starts with a kinetic term for scalars in

the form

Lkin =
ap
2

dρ2

ρp
, (3.2)

and assumes that inflation takes place near ρ = 0, so that the potential is

V ∼ V0(1− cρ+ . . . ) , c > 0 , (3.3)

then one finds that at large N (assuming p > 1)

ns = 1− p

p− 1

1

N
, r =

8c
p−2
p−1 a

1
p−1
p

(p− 1)
p

p−1

1

N
p

p−1

. (3.4)

Note the following features of the general pole inflation models [12] described above

• For p = 2 the model displays an attractor behavior, where the dependence on c in

the potential (3.3) is absent (without absorbing such a dependence into a redefinition

of the residue of the pole as studied in [38]1). In such a case (3.4) simplifies to

ns = 1− 2

N
, r = ap

8

N2
. (3.5)

This case is realized in hyperbolic geometry with 2ap = R2
E . It is interesting that

the attractor features of cosmological models starting with the hyperbolic geometry

follow from one of the symmetries shown in (2.9). Namely, the kinetic term in (3.2)

for p = 2 is invariant under the change of the parameter c in the potential since if

and only if p = 2 we have for cρ = ρ′ that dρ2

ρ2
= d(ρ′)2

(ρ′)2
. The corresponding symmetry

of the hyperbolic half plane is the dilatation.

• This dilatation of the half plane in eq. (2.9), leading to the attractor property of

this particular pole inflation, will be shown below to also lead to the stabilization

of the inflationary trajectory, once this symmetry as well as the inversion symmetry

in (2.10) are implemented as symmetries of the Kähler potential.

4 Tessellation, Kähler frame, stability

The potential in N = 1 supergravity depends on a Kähler potential K and a superpoten-

tial W

V = eK(|DW |2 − 3|W |2) . (4.1)

Here we explain the choices of the Kähler frame, following [14], emphasizing the relation

to the elements of the tessellation and the stability of the inflaton directions. In [1] the

standard form of the Kähler potential was used describing a unit size Poincaré disk

KO = − ln(−i(τ − τ̄)) . (4.2)

1In the models of pole inflation in [38] a slightly different framework was proposed. It was suggested to

set c = 1 via a rescaling of ρ followed by a change of the kinetic term ap → ãp = c2−pap.

– 7 –
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The corresponding line element/kinetic term for the scalar

ds2 =
dτdτ̄

(τ − τ̄)2
(4.3)

has a Möbius symmetry

τ ′ =
aτ + b

cτ + d
, ad− bc 6= 0 , (4.4)

where a, b, c, d are real parameters. The axion-dilaton pair, using notation in [14], is for

3α = 1

τ = χ− ie−
√
2ϕ . (4.5)

We are not in space-time anymore but in the moduli space of scalars fields, therefore instead

of X = x̃+iỹ in eq. (2.6) we are using the holomorphic variable τ(x), where x ≡ xµ denotes

the space-time dependence of τ .

Note that the tessallation of the hyperbolic plane in τ variables consists of a few

independent operations (subgroups of the Möbius group). The hyperbolic line element

in (2.6), (4.3) is invariant under all transformations of this group. In terms of the axion

field χ(x) and the scalar field ϕ(x) in (4.5) the relevant symmetries in (2.8) are a shift of

the axion by a constant and a reflection of the axion in (2.11)

χ(x) → χ(x) + b , (4.6)

χ(x) → −χ(x) . (4.7)

Let us look at the relevant tessellations of the half plane in figure 5 left and compare it with

the tessellations in figure 1 of the flat full plane. These two symmetries in (4.6) and (4.7)

are the obvious ones. According to (4.6) one can shift the Angels and Devils to the right

(for positive b) or to the left (for negative b), the same way as it is done in figure 1 of the

flat full plane. There the whole plane, not only an upper half of it, is shifted to the right

by the distance AB, and the pattern covers the plane again. According to (4.7) we can

choose a vertical line, like in figure 1 it is a line PQ, and we can make a reflection in this

line, preserving the pattern, see also figure 2 left, which shows the Angels and Devils away

from the boundary of a half plane, where one can see clearly the existence of such PQ lines.

Altogether, this is a convincing argument to give the symmetries of the hyperbolic plane

in (4.6) and (4.7) a name: Tessellation Set 1.

The other two symmetries of the geometry in (4.3) are the inversion and the scaling

τ → −1/τ , (4.8)

τ → a2τ . (4.9)

These two symmetries are absent in a full plane, see for example figure 2 left. However,

in the half plane which has a boundary, these symmetries control the fact that near the

boundary the Angels and Devils in figure 5 left are getting smaller, still preserving the

pattern. These are rather non-trivial tessellations inherited from the finite size hyperbolic

disk tessellations in figure 3. These are symmetries responsible for capturing infinity in a

– 8 –
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finite space. We will give the symmetries of the hyperbolic plane in (4.8) and (4.9) the

name: Tessellation Set 2.

The Kähler potential in (4.2) is invariant under the axion shift symmetry (4.6) and

axion reflection (4.7), i.e. under Tessellation Set 1. However, it breaks the remaining

symmetries of the geometry: inversion symmetry (4.8) and the scaling symmetry (4.9), it

is not invariant under Tessellation Set 2.

In case when the axion Re τ is an inflaton field, and the Kähler potential is of the form

eK =
1

(Im τ)3α
, (4.10)

the potential tends to have a run-away factor depending on the sinflaton, Imτ :

V =
1

(Im τ)3α
(|DW |2 − 3|W |2) . (4.11)

This is known in string theory as the Kähler moduli problem. In the string the-

ory/supergravity context the KKLT construction [39, 40] is one way to stabilize these

type of moduli; another one is LVS [41]. In the axion monodromy inflation [42], this prob-

lem was addressed in models without supersymmetry, where the 2-form axion does not

have a susy partner.

For α-attractor models a new Kähler frame was proposed in [14] where it was argued

that in case that the pseudo-scalar is a heavy field and the scalar field is a light one, it is

relatively easy to stabilize the axion. The corresponding Kähler potential takes the form

Knew = −1

2
ln

(

−(τ − τ̄)2

4τ τ̄

)

. (4.12)

In terms of symmetries corresponding to a set of a hyperbolic plane tessellations, it is

complimentary to the Kähler potential in (4.2).

The Kähler potential in (4.12) is invariant under the inversion symmetry (4.8) and

the scaling symmetry (4.9), i.e. under Tessellation Set 2. However, it breaks the remain-

ing symmetries of the geometry: the axion shift symmetry (4.6) and the axion reflection

symmetry (4.7). It is not invariant under Tessellation Set 1. The Kähler potential has a

shift symmetry for a dilaton, complemented by a rescaling of the axion [14]

χ → a

d
χ , ϕ → ϕ+

1√
2
ln

a

d
. (4.13)

At χ = 0 one finds that

eKnew|τ=−τ̄ = e−
1
2
ln(− (τ−τ̄)2

4ττ̄
)|τ=−τ̄ = 1 . (4.14)

and there is no run-away behavior of the potential. Good choices of the superpotentials

produce desirable cosmological models with

Vnew = |DWnew|2 − 3|Wnew|2 . (4.15)

– 9 –
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Thus, in the new frame, the Kähler potential has an inflaton flat direction, which is lifted

by the superpotential.

Clearly, the relation between the old frame (4.2) and the new frame (4.12) satisfies the

Kähler symmetry

Knew → K − lnΦΦ̄ , Wnew → W · Φ , (4.16)

and one theory can be related to the other. However, the potential in (4.15) is expected

to be small to describe slow roll inflation, it will produce small deviation of the flatness

of the theory in the inflaton direction. Therefore the new choice of the frame (4.12) has

an advantage over the choice in (4.2) with regard to the stabilization of the inflationary

trajectory. Starting with KO one has to look for a WO which will make the inflationary

potential approximately flat despite the fact that we started with the strong run-away

potential in (4.11). Instead, we start with Knew with a flat inflaton potential broken by a

small Wnew. In technical terms, it was a flip of one set of a hyperbolic plane tessellation

in (4.6), (4.7), which we called Tessellation Set 1, to another set in hyperbolic plane tes-

sellation in (4.8), (4.9), which we called Tessellation Set 2, which has created a desirable

stabilization effect.

5 Dynamical stabilization of seven-disk models

The seven disk model in [1] has the following Kähler potential

K = −
7
∑

i=1

log(Ti + T̄i) . (5.1)

Here we use for each of the seven unit size disks the following variables Ti = iτi and

Ti = e−
√
2ϕi +iχi. It was argued in [1] that such a Kähler potential for the seven disks can

be derived from maximally supersymmetric models with 8 Majorana spinors, M-theory,

superstring theory, maximal supergravity, by a consistent truncation to a minimal super-

symmetric model with a single Majorana spinor.

Following [14] and as explained in the previous section, we make a choice of the Kähler

frame where the Kähler potential has an inflaton shift symmetry: we use the following

Kähler potential

K0 = −1

2

7
∑

i=1

log
(Ti + T̄i)

2

4TiT̄i
. (5.2)

An equivalent form can be given in disk variables

K0 = −1

2

7
∑

i=1

log
(1− ZiZ̄i)

2

(1− Z2
i )(1− Z̄2

i )
. (5.3)

At this level the seven-disk theory has an unbroken N = 1 supersymmetry and no potential.

Our first step is to find a superpotential and scalar potential depending on the disk variables

Ti which has an N = 1 supersymmetric minimum producing the constraints on the moduli

– 10 –
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which were imposed in [1], namely:

3α = 7 : T1 = T2 = T3 = T4 = T5 = T6 = T7 ≡ T

3α = 6 : T1 = T2 = T3 = T4 = T5 = T6 ≡ T , T7 = const

3α = 5 : T1 = T2 = T3 = T4 = T5 ≡ T , T6 = T7 = const

3α = 4 : T1 = T2 = T3 = T4 ≡ T , T5 = T6 = T7 = const

3α = 3 : T1 = T2 = T3 ≡ T , T4 = T5 = T6 = T7 = const

3α = 2 : T1 = T2 ≡ T , T3 = T4 = T5 = T6 = T7 = const

3α = 1 : T1 ≡ T , T2 = T3 = T4 = T5 = T6 = T7 = const (5.4)

Let us explain for example how the single α-attractor model with 3α = 7 case is

achieved here. The kinetic terms for the seven complex moduli originally is

Lkin = −
7
∑

i=1

dTidT̄i

(Ti + T̄i)2
. (5.5)

The Kähler potential of each Ti corresponds to the α-attractor with 3α = 1. When the

condition that

T1 = T2 = T3 = T4 = T5 = T6 = T7 ≡ T (5.6)

is enforced the kinetic term becomes

Lkin = −7
dTdT̄

(T + T̄ )2
. (5.7)

This is an α-attractor model with 3α = 7 with regard to the kinetic term. In the following,

we will show how the above identifications (5.4), or equivalently, 3α = 1, . . . , 7 are realized

by a dynamical mechanism.

5.1 Step 1: enforcing an N = 1 supersymmetric minimum

We would like to dynamically enforce that all seven fields (or a subset thereof, see be-

low) move synchronously during inflation so that Ti − Tj = 0. This can be done via a

superpotential that gives a very large mass to the combinations Ti − Tj :

W0 = M
∑

1≤i<j≤7

(Ti − Tj)
2 . (5.8)

We find that the minimum with unbroken supersymmetry,

DiW0 = 2M
∑

j 6=i

(Ti − Tj)−
(Ti − T̄i)

2Ti(Ti + T̄i)
M

∑

1≤j<k≤7

(Tj − Tk)
2 = 0 , (5.9)

enforces the conditions that Ti−Tj = 0. Since this impliesW0 = 0, this solution corresponds

to a supersymmetric Minkowski critical point of the scalar potential.

Let us go to canonically normalized fields Ti = e−
√
2ui(1+ i

√
2ai), such that for ai = 0

we have

Lkin = −
∑

i

K0,TiT̄i
∂µTi∂

µT̄i = −1

2

∑

i

(∂µui∂
µui + ∂µai∂

µai) . (5.10)
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The mass matrix at the critical point is diagonalized by introducing the new coordinates

u = 1√
7

∑7
i=1 ui, a = 1√

7

∑7
i=1 ai, ũj =

1√
(8−j)(7−j)

((7− j)uj − uj+1 − uj+2 − . . .− u7) and

ãj = 1√
(8−j)(7−j)

((7 − j)aj − aj+1 − aj+2 − . . . − a7), j = 1, . . . , 6. For the kinetic terms,

restricting to the saxions (the axions work in the same way), we have

Lkin = −1

2

∑

i

∂µui∂
µui = −1

2

(

∂µu∂
µu+

6
∑

j=1

∂µũj∂
µũj

)

. (5.11)

The canonical masses in these new variables at the supersymmetric minimum are then

given by

m2
u = m2

a = 0 , m2
ũj

= m2
ãj = 3136e

−4
√

2
7
u
M2 . (5.12)

Thus we have kept the ‘diagonal’ directions massless, while making all the ‘transverse’

directions arbitrarily heavy.

Analogously we can ‘identify’ any number 1 ≤ n < 7 of the seven fields and decouple

all other fields by making them heavy. We simply choose the superpotential

W0 = M

(

∑

1≤i<j≤n

(Ti − Tj)
2 +

7
∑

k=n+1

(Tk − c)2
)

. (5.13)

This choice of W0 leads to a dynamical realization of the proposal in [1] that there is a

relation between the moduli of the seven disks. In presence of the superpotential (5.13) a

set of conditions (5.4) follows from the conditions for a supersymmetric minimum

DiW0 = 0 . (5.14)

Again after going to canonically normalized fields Ti = e−
√
2ui(1 + i

√
2ai), the canon-

ical masses at the minimum for the fields u = 1√
n

∑n
i=1 ui, a = 1√

n

∑n
i=1 ai, ũj =

1√
(n+1−j)(n−j)

((n − j)uj − uj+1 − uj+2 − . . . − un) and ãj = 1√
(n+1−j)(n−j)

((n − j)aj −
aj+1 − aj+2 − . . .− an), j = 1, . . . , n− 1 and uk, ak, k > n are given by

m2
u = m2

a = 0 , m2
ũj

= m2
ãj = 64n2e

−4
√

2
n
u
M2 , m2

uk
= m2

ak
= 64c4M2 . (5.15)

Thus we have kept the ‘diagonal’ directions massless, while making all the ‘transverse’

directions arbitrarily heavy.

5.2 Step 2: introducing a cosmological sector

Until now we have only kept the 7 complex moduli resulting from the consistent reduction

of N = 8 supersymmetry (from M-theory, superstring theory and maximal supergravity) to

N = 1 theory and by allowing the superpotential W0 to depend on these moduli. We found

a supersymmetric Minkowski minimum where the solution requires that an assumption

in [1] given in (5.4) is realized dynamically as a consistency condition of the supersymmetric

minimum for the moduli dependent superpotential in (5.13).
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We would now like to lift one of the flat directions, the u direction, and use it for

inflaton. We also need to stabilize its axion partner, the axion a, and we need to keep all

other fields heavy during inflation. At this point we define Step 2 in our model building,

as was similarly done before in the KKLT uplifting. In its early version in [39, 40] it was

suggested that a non-perturbative effect in string theory, the effect of the anti-D3 brane,

can be used to uplift the AdS vacuum to a de Sitter vacuum. A more recent version of such

a stringy uplift, which became a useful tool in supergravity cosmological model building,2

is to use a nilpotent supermultiplet S, signaling the presence of the uplifting anti-D3 brane

in the theory.

To that extent we introduce in our supergravity model a new field S that can be taken

to be nilpotent, giving a connection to D-brane physics in string theory,3 i.e. S2 = 0. It

has a canonical Kähler potential

K1 = K0 + SS̄ . (5.16)

We also modify the superpotential so that for the case of n identical fields Ti it takes

the form

W1 = W0 + Sf(T1 + . . .+ Tn) , 1 ≤ n ≤ 7 , (5.17)

where f is a so far unspecified function. Here we are only interested in the regime of

inflation, not the exit stage, so for simplicity we will put to zero the S-independent part of

W , which may exist in addition to W0 above. We find that the Ti, 1 ≤ i ≤ 7, critical point

equations are satisfied for S = 0, Ti = Tj , i, j ∈ {1, . . . , n}, Re(Tk) = c, k ∈ {n+ 1, . . . , 7},
Im(Ti) =Im(Tk) = 0, and f(nRe(T1))f

′(nRe(T1)) = 0. In this case the F-term for S is

simply DSW = f(nRe(T1).

5.2.1 3α = 7 case

For n = 7 the superpotential is given by

W = M
∑

1≤i<j≤7

(Ti − Tj)
2 + Sf(T1 + . . .+ T7) . (5.18)

The critical point equations ∂TiV = 0 are all solved for Ti = Tj , ∀i, j, Im(Ti) = 0 and

f(7Re(τ1))f
′(7Re(τ1)) = 0. For such a solution we have V = f2, where we have taken f

to satisfy f(T ) = f(T̄ ) so that in particular f(7Re(T1)) = f(7Re(T1)).

We again go to canonically normalized fields as above but now we want to study

inflation where u is displaced from its minimum but all the other fields are not. So in

particular we keep all a = a1i = u1i = 0, and displace u from umin which is determined via

f(7e
−
√

2
7
umin)f ′(7e−

√

2
7
umin) = 0. During inflation one finds the following masses for the

2In the supergravity context it was first shown in [43] that the nilpotent multiplet is useful in cosmological

model building.
3The stabilizer S does not necessarily have to be nilpotent. Instead, we may use a usual chiral superfield

as stabilizer and add the nilpotent superfield only for SUSY breaking in the vacuum. Even in such a case,

the cosmological predictions are not affected, if the SUSY breaking scale is sufficiently smaller than the

scale of inflation [44].
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directions transverse to the inflaton u

m2
a = 28e

−2
√

2
7
u (

(f ′)2 − ff ′′)+ 2f2 ,

m2
uj

= 3136e
−4

√

2
7
u
M2 + 4e

−
√

2
7
u
ff ′ ,

m2
aj = 3136e

−4
√

2
7
u
M2 + 2f2 , (5.19)

where the argument of f , f ′ and f ′′ is 7e−
√

2
7
u
and the prime denotes the derivative with

respect to the argument. We see that during inflation it is not guaranteed that all transverse

directions remain stable, however, to leading order in large M the above expressions reduce

to equation (5.12) above. Note that the ũj will become exponentially light during inflation

when u ≫ 1 (unless f or f ′ compensate for this).

We have explained above near eqs. (5.5), (5.6), (5.7) how the kinetic term becomes

equal to the one with 3α = 7. Now we would like to see what the situation is with

a superpotential and a scalar potential. We find that when (5.6) is imposed via W0 in

eq. (5.8) then the superpotential becomes

W = Sf(7T ). (5.20)

We may also use the rescaled single disk variable T ′ ≡ 7T . The kinetic term and the

superpotential are now given by

Lkin = −7
∂µT

′∂µT̄ ′

(T ′ + T̄ ′)2
, W = Sf(T ′). (5.21)

This is an α-attractor model with 3α = 7. Note that to bring this model to the standard

form of the α-attractor model with 3α = 7 we have used again a symmetry of the hyperbolic

geometry: Tessellation Set 2, responsible for the attractor feature of our models, which

allows us to rescale the half plane coordinate.

The inflationary regime is at T ′ = T̄ ′ = e−
√

2/7ϕ and we find that the inflaton La-

grangian is given by

Linf = −1

2
∂µϕ∂

µϕ− f2
(

e−
√

2/7ϕ
)

. (5.22)

5.2.2 3α = 1, . . . , 6 cases

Likewise we can study the case where only a subset of the Ti align during inflation. We

take again the Kähler potential in equation (5.16) and the superpotential

W1 = W0 + Sf(T1 + . . .+ Tn) . (5.23)

The critical point equations ∂TiV = 0 are all solved for Ti = Tj , ∀i, j ≤ n, Re(Tk) = c,

∀k > n, Im(Ti) =Im(Tk) = 0, and f(nRe(T1))f
′(nRe(T1)) = 0. For such a solution

we have V = f2, where we again took f to satisfy f(T ) = f(T̄ ) so that in particular

f(nRe(T1)) = f(nRe(T1)).
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We can now again calculate the canonically normalized masses during inflation, i.e.

when u is displaced form its minimum but all the other fields are not. The canonically

normalized masses of the fields transverse to the inflaton u are given by

m2
a = 4ne

−2
√

2
n
u (

(f ′)2 − ff ′′)+ 2f2 ,

m2
ũj

= 64n2e
−4

√

2
n
u
M2 + 4e

−
√

2
n
u
ff ′ ,

m2
ãj = 64n2e

−4
√

2
n
u
M2 + 2f2 ,

m2
uk

= 64c4M2 ,

m2
ak

= 64c4M2 + 2f2 , (5.24)

where the argument of f , f ′ and f ′′ is ne−
√

2
n
u
and the prime denotes the derivative with

respect to the argument. So again we see that stability during inflation is dependent on

the function f (as well as on M). Note that all the previous results can be obtained as

restrictions of equation (5.24). The case with 7 aligned fields follows by simply plugging in

n = 7 and dropping the uk and ak. The results in the previous subsection follow for f = 0.

5.2.3 3α = 1, . . . , 7 in disk variables

We can likewise analyze this model in disk variables in which case we have the following

Kähler and superpotential

K = −1

2

7
∑

i=1

log

[

(1− ZiZ̄i)
2

(1− Z2
i )(1− Z̄2

i )

]

+ SS̄ ,

W = M

(

∑

1≤i<j≤n

(Zi − Zj)
2 +

7
∑

k=n+1

(Zk − c)2
)

+ Sf(Z1 + . . .+ Zn) . (5.25)

Again after going to canonically normalized fields Zi = tanh
(

ϕi+iθi√
2

)

, we can calculate the

canonical masses for the fields ϕ = 1√
n

∑n
i=1 ϕi, θ = 1√

n

∑n
i=1 θi, ϕ̃j =

1√
(n+1−j)(n−j)

((n−
j)ϕj −ϕj+1 −ϕj+2 − . . .−ϕn) and θ̃j =

1√
(n+1−j)(n−j)

((n− j)θj − θj+1 − θj+2 − . . .− θn),

j = 1, . . . , n − 1 and ϕk, θk, k > n. We find during inflation, i.e. for arbitrary ϕ but

θ = ϕ̃j = θ̃j = ϕk = θk = 0, that the masses for the fields transverse to the inflaton ϕ are

given by

m2
a =

1

cosh4 ϕ√
2n

(

n
(

(f ′)2 − ff ′′)+ ff ′ sinh

√
2ϕ

n

)

+ 2f2 ,

m2
ϕ̃j

=
4n2M2

cosh8 ϕ√
2n

− 2ff ′
tanh ϕ√

2n

cosh2 ϕ√
2n

,

m2
ãj =

4n2M2

cosh8 ϕ√
2n

+ 2ff ′
tanh ϕ√

2n

cosh2 ϕ√
2n

+ 2f2 ,

m2
ϕk

= 4(c2 − 1)4M2 ,

m2
ak

= 4(c2 − 1)4M2 + 2f2 , (5.26)
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where the argument of f , f ′ and f ′′ is n tanh ϕ√
2n

and the prime denotes a derivative with

respect to the argument. So as before, stability during inflation depends on the function

f(n tanh ϕ√
2n
) and M . We also see that again the masses of the ϕ̃j fields will become

exponentially small for large ϕ (unless we choose a very special function f). The above

equations are valid for 1 ≤ n ≤ 7 and arbitrary functions f .

6 Examples: single-disk and two-disk manifolds

The dynamics of the 14-dimensional moduli space of the seven-disk manifold is complicated.

We described it above paying attention to the mass of the non-inflaton moduli and trying

to show that there is a possibility for these masses to be positive during inflation, i.e.

the unwanted moduli are stabilized in our seven-disk models. However, it is important to

relate our new results to the well known single-disc models, as well as to explain the basic

mechanism of the merger of several cosmological attractors in a toy model with only a

two-disk manifold, where we can perform a more detailed analysis of the dynamics of the

system.

6.1 Basic single-disk models

We begin with models in half-plane variables with

K = −3α

2
log

(T + T̄ )2

4T T̄
+ SS̄ , (6.1)

and with the simple superpotential

W = mS(1− T ) . (6.2)

It is convenient to switch to the new variables T = e
−
√

2
3α

ϕ
(1 + i

√
2a). During inflation,

the field a is stabilized at a = 0, whereas the field ϕ is the canonically normalized inflaton

field with the plateau potential

V = m2

(

1− e
−
√

2
3α

ϕ
)2

. (6.3)

This is the simplest representative of E-models introduced in [10, 11, 13]. The theory

of initial conditions for inflation in similar theories of inflation with plateau potentials

was developed in [15, 45–49]. The amplitude of the scalar perturbations in such models

matches the Planck normalization for m ≈ 10−5√α [50]. The set of the E-model potentials

for 3α = 1, 2, 3, . . . , 7 is shown in figure 6.

In what follows, it will be also important for us to know the value of the inflaton field

corresponding to the moment when the remaining number of e-foldings of inflation becomes

equal to some number N . By solving field equations in the leading approximation in 1/N ,

one finds [52]

ϕN ≈
√

3α

2
log

4N

3α
. (6.4)
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Figure 6. E-model potentials for 3α = 1, 2, 3, . . . , 7. The central (blue) line corresponds to

3α = 1. The third line from the center (green) corresponds to the supergravity generalization of

the Starobinsky model with α = 1 [10, 51]. The outer line shows the potential with 3α = 7. The

value of the inflaton field ϕ is shown in Planck units Mp = 1; the height of the potential is shown

in units of m2.

For α-attractors with a more general class of potentials V = m2
(

1− e
−
√

2
3α

ϕ)2n
one has

ϕN ≈
√

3α

2
log

4Nn

3α
. (6.5)

Now we will consider α-attractors in disk variables. The simplest model is described by

K = −3α

2
log

(1− ZZ̄)2

(1− Z2)(1− Z̄2)
+ SS̄ , W = mS Z . (6.6)

This leads to the T-model potential of the inflaton field [11, 13]

V = m2 tanh2
ϕ√
6α

. (6.7)

The set of the T-model potentials for 3α = 1, 2, 3, . . . , 7 is shown in figure 7. In the leading

approximation in 1/N, the predictions of E-models and T-models for the observational

parameters ns and r coincide with each other for any given α. However, the value of the

inflaton field corresponding to the moment when the remaining number of e-foldings of

inflation becomes equal to some number N is slightly different, because of the different

shape of the potential at small ϕ [53, 54]:

ϕN ≈
√

3α

2
log

8N

3α
. (6.8)

For T-models with more general potentials V = m2 tanh2n ϕ√
6α

one has

ϕN ≈
√

3α

2
log

8Nn

3α
. (6.9)
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Figure 7. T-model potentials for 3α = 1, 2, 3, . . . , 7. The central (blue) line corresponds to the

disk with 3α = 1. The third line from the center (green) corresponds to the conformal inflation

model with α = 1 [9]. The outer line shows the potential with 3α = 7. The value of the inflaton

field ϕ is shown in Planck units Mp = 1; the height of the potential is shown in units of m2.

6.2 Two-disk models and disc merger in half-plane variables

In the two-disk case, we have just 4 moduli and would like to see the stabilization of 3 of

them. By making some simple choices of the superpotential function f(T ) we can show

that the relevant potentials acquire a plateau shape describing α-attractors with 3α = 1

or 2. A more complete dynamical picture will be revealed since we will be able to study

not only the masses of the non-inflaton stabilized moduli near the inflaton trajectory, but

the global properties of the models.

Here we start with

K = −1

2
log

(T1 + T̄1)
2

4T1T̄1
− 1

2
log

(T2 + T̄2)
2

4T2T̄2
+ SS̄ . (6.10)

Starting with a two-disk model, each a unit size one, we have two options: one can freeze

dynamically one of the directions, e.g. T2, by stabilizing it at some point T2 = c, and get

3α = 1 for inflation driven by the field T1. Alternatively, one can enforce T1 = T2 and get

inflation with 3α = 2.

6.2.1 T2 = 1, 3α = 1

As an example of the model of two-disk model with 3α = 1, we will study the theory with

the superpotential

W = mS(1− T1) +M(1− T2)
2 . (6.11)

Here m ∼ 10−5 is the inflaton mass scale, up to a factor O(1), and M ≫ m is the stabilizing

mass parameter. During inflation at S = 1 − T2 = 0 supersymmetry is unbroken in the

T1, T2 directions, but broken in the S direction:

DT1W = −mS +KT1

(

mS(1− T1) +M(1− T2)
2
)

∣

∣

∣

S=1−T2=0
= 0 ,

DT2W = 2M(1− T2) +KT2

(

mS(1− T1) +M(1− T2)
2
)

∣

∣

∣

S=1−T2=0
= 0 ,

DSW = m(1− T1) + S̄(
(

mS(1− T1) +M(1− T2)
2
)

∣

∣

∣

S=1−T2=0
= m(1− T1) 6= 0 . (6.12)
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Figure 8. Potential V (ui) in the theory defined via equations (6.10) and (6.11). For M = 10m

we have a heavy and stabilized u2. The remaining field u1 plays the role of the inflaton with the

E-model α-attractor potential V = m2
(

1−e−
√

2u1

)2

corresponding to 3α = 1. The fields are shown

in Planckian units Mp = 1; the height of the potential is shown in units of m2.

As before, we will use the new variables ui and ai, where Ti = e−
√
2ui(1+ i

√
2ai). The

variables ui and ai become canonical in the limit of small ai. For M = 0 and a1 = a2 = 0,

the potential depends only on the field u1. One can easily check that for any u1 and M 6= 0,

the fields u2, a1 and a2 vanish at the (local) minimum of the potential. The potential of

the field u1 for u2 = a1 = a2 = 0 is the standard potential (6.3) of the E-model α-attractor

with 3α = 1:

V = m2
(

1− e−
√
2u1

)2
. (6.13)

The masses of the fields ai are always greater than the Hubble constant, so they are strongly

stabilized at a1 = a2 = 0. The same is true for the field u2, which is strongly stabilized at

u2 = a1 = a2 = 0 for M > m
8
√
3
. The inflationary potential in terms of u1 and u2 for ai = 0

is shown in figure 8.

6.2.2 A transition from two α = 1/3 moduli to a single α = 2/3

Now we study a model illustrating the dynamical merger of two α-attractors with α = 1/3

to a single α-attractor with α = 2/3. We will consider the superpotential

W = mS

(

1− T1 + T2

2

)

+M(T1 − T2)
2 . (6.14)

As we will see, the corresponding potential V is very different from the one studied in the

previous subsection.

We will investigate the potential V using variables ui and ai, where Ti = e−
√
2ui(1 +

i
√
2ai). One finds that the critical point equations ∂aiV = 0 are solved for a1 = a2 = 0

and this solution corresponds to a minimum of the potential in these two directions. For

large M , the two fields ui are merged during inflation into one canonically normalized field
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Figure 9. The potential of the canonical fields ui for M = 500m. The height of the potential

is shown in units m2. The colored area shows the part of the potential with V < m2; the red

area in the upper right corner shows the inflationary plateau asymptotically approaching V = m2.

From there on, inflation continues when the field rolls towards the narrow gorge along which the

fields u1 and u2 coincide. This gorge is seen as a narrow diagonal cut beginning at the center of

the figure. For ϕ = (u1 + u2)/
√
2 > 2

3
log 8

√

2M
m

, the gorge is wide, as seen in the right upper

corner of the figure. The stable inflaton directions are shown by the blue valleys along which one

of the ui remains nearly constant. The potential along each such direction asymptotically behaves

as the α-attractor potential with 3α = 1. The merger of these two attractors, which occurs when

ϕ becomes smaller than 2

3
log 8

√

2M
m

, corresponds to the phase transition to 3α = 2.

ϕ = (u1+u2)/
√
2 and the field orthogonal to it vanishes, χ = (u1−u2)/

√
2 = 0. However,

one can show that for M ≫ m, ϕ > 2
3 log

8
√
2M
m and χ = 0 the field χ acquires a tachyonic

mass, which leads to a tachyonic instability for the χ direction.

The nature of this effect is illustrated by figures 9 and 10. The colored area in figure 9

shows the part of the potential with V < m2; the red area in the upper right corner shows

an infinitely long inflationary plateau asymptotically approaching V = m2. The fields tend

to roll down from this plateau towards the narrow gorge, along which the fields u1 and u2
coincide. But at the early stages of this process the fields fall towards one of the two stable

inflaton directions shown by the two blue valleys in figure 9 along which one of the fields

ui remains nearly constant, see the field flow diagram in figure 10.

Note that this process is very slow to develop because the tachyonic mass of this field χ

at the inflationary plateau with M ≫ m and ϕ > 2
3 log

8
√
2M
m is exponentially small, much

smaller than the Hubble constant, just like the inflaton mass. Thus, the field χ, as well

as the inflaton field, will experience inflationary fluctuations. But the general evolution of

these fields is dominated by their classical rolling, as shown in figure 10.

The potential along each of the two blue valleys in figure 9 asymptotically behaves

as the α-attractor potential with α = 1/3. When ϕ becomes smaller than 2
3 log

8
√
2M
m ,

the tachyonic mass of the field χ vanishes, this field becomes stable at χ = 0, and the

two inflaton directions merge into the inflationary gorge with χ = 0. This corresponds to
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Figure 10. Gradients of the inflationary potential. In the area where the slow-roll regime is

possible (colored areas in figure 9), these gradients describe the inflationary slow-roll evolution of

the fields ui. The fields starting their motion at the inflationary plateau in the right upper corner

in figures 9 and figure 10 typically fall down towards one of the two streams, each of which can be

approximately described as an α-attractor with 3α = 1. Then these streams merge into one stream

corresponding to 3α = 2.

symmetry restoration between u1 and u2. The potential along the bottom of this gorge

is V = m2 (1− e−ϕ)
2
, which corresponds to α = 2/3 in the E-model (6.3). Quantum

fluctuations of the field χ for a while remain large, until the positive mass squared of the

field χ becomes greater than the Hubble constant squared H2 ∼ V/3. This happens at

ϕ < 1
2 log

16
√
3M

m . This concludes the merger of the two inflaton directions and the phase

transition from α = 1/3 to α = 2/3.

It is important to discuss the necessary condition that the effective trajectory 3α = 2

lasts for N e-foldings. The two axions have a positive mass O(H) even for large ϕ, so we

do not find any further constraints from their stabilization. However, as mentioned above,

the χ-direction may acquire a tachyonic mass for sufficiently large ϕ, and there the inflaton

trajectory bifurcates into two trajectories with 3α = 1.

Let us estimate how large M is required to be in order to stabilize the field χ along

the trajectory 3α = 2 for the last N e-foldings. According to (6.4), the inflaton field value

as a function of the e-folding number N is given by ϕN ≈
√

3α
2 log 4N

3α for the E-models we

study. Thus in our example with 3α = 2 we find ϕN = log(2N), and the mass of χ is

m2
χ = 2e−4ϕ(128M2 −m2e3ϕ +m2e2ϕ) =

32M2 − 2m2N3 +m2N2

2N4
. (6.15)

From this expression, we obtain the following condition for M :

M >
N3/2m

4
(6.16)
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in the leading order in large N . For N = 55, this constraint becomes M & 100m. To pro-

duce the observational result for the amplitude os scalar perturbations we need m ∼ 10−5

in Planck units, so M should be greater than O(10−3). This implies that the inflation-

ary trajectory χ = 0, which corresponds to α-attractor with α = 2/3, becomes stable for

M & 1015 − 1016GeV, which is well below the Planck scale and may correspond to the

string/GUT scale, which is quite natural in our context.

It is also useful to know the condition that the mass of χ becomes larger than H, so

that χ fluctuations are suppressed during the last N e-folds. From eq. (6.15), the condition

mχ > H can be satisfied for

M >
N2

4
√
3
m. (6.17)

For N = 55, this constraint reads M & 450m, and this can also be satisfied naturally, if

M is a Planck/string/GUT scale parameter.

Note that all the way until the field ϕ becomes smaller than 1
2 log

16
√
3M

m , the mass

squared of the field χ remains much smaller than H. In this regime, classical evolution of

all fields typically brings them towards one of the two valleys corresponding to α = 1/3,

but details of this evolution may be somewhat affected by quantum fluctuations of the

field χ; see a discussion of a very similar regime in [55]. However, for M > N2

4
√
3
m the

evolution of the universe during the last N e-foldings is described by the standard single

field α-attractor theory with α = 2/3.

6.3 Disk merger in disk variables

In this section, we discuss the two-disk model in the disk variables Zi with

K = −1

2

2
∑

i=1

log
(1− ZiZ̄i)

2

(1− Z2
i )(1− Z̄2

i )
+ SS̄ , W =

m

2
S(Z1 + Z2) +M(Z1 − Z2)

2 . (6.18)

As in the case with half-plane variables Ti, the stabilization of inflationary trajectory

at Z1 = Z2 leads to the α-attractor potential with 3α = 2. We use the parametrization

Zi = tanh 1√
2
(ϕi + iθi) such that ϕi and θi become canonical variables on the inflationary

trajectory θi = 0. As in the E-model discussed in the previous section, for a large M ,

χ = 1√
2
(ϕ1 − ϕ2) becomes heavy and is stabilized at the origin. There, the direction

ϕ = 1√
2
(ϕ1 + ϕ2) becomes the inflaton. Note that the axionic directions θi always have

positive masses and are stabilized at θi = 0. The scalar potential in this T-model is given

by V = m2 tanh2 ϕ
2 and is shown in figures 11 and 12.

To make the merger last for N e-foldings, the mass parameter M should be sufficiently

large, as in the case of the E-model studied in the previous section. The axionic directions

do not acquire tachyonic mass even for large ϕ but the field χ does. On the 3α = 2

trajectory, the last e-folding number N and the value of ϕ satisfy the same relation as in

eq. (6.8), and mχ is given by

m2
χ ≈ 16M2 −m2N3

N4
(6.19)

in the leading order in large N .
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Figure 11. A view from above on the inflationary potential. The red area shows the inflationary

plateau asymptotically rising to V = m2. The blue lines show valleys corresponding to inflationary

attractors with α = 1/3. After the merger, they form a narrow gorge with the potential V =

m2 tanh2 ϕ
2
, which corresponds to the T-model α-attractor with α = 2/3 shown in figure 12. The

value of the inflaton field ϕ, which corresponds to the merger point, depends on the parameter M .

For sufficiently large M , the last 60 e-folds of inflation are described by the single attractor with

α = 2/3.

Figure 12. A part of the figure 11 shown in the same range of ϕ as in figure 11, but in a very

narrow range of χ near the inflaton direction χ = 0. One can easily recognize the T-model potential

V = m2 tanh2 ϕ
2
with 3α = 2, which is produced by merging of the inflaton directions with 3α = 1

shown by the blue lines in the figure 11.

The corresponding stability constraints on M in this model are the same as the con-

straints (6.16), (6.17) in the model studied in the previous section. The mass squared of

the field χ is positive during the last N e-foldings for M > N3/2

4 m. For N = 55, this

constraint becomes M & 100m. The mass of the field χ becomes greater than the Hubble

scale for M > N2

4
√
3
m. For N = 55, this is achieved for M & 450m. For m ∼ 10−5, the
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required value of the mass parameter M should be greater than 10−2− 10−3 in the Planck

mass units.

7 Back to the seven-disk scenario: stability of the inflationary trajectory

In the previous two sections we explored the effect of the merger of two disks, and found that

for sufficiently strong stabilization described by the parameter M one can easily stabilize

the inflationary directory in such a way that during the last 50–60 e-foldings of inflation

instead of two independent α attractors with α = 1/3 one has a single inflaton potential

with α = 2/3.

This investigation can be easily generalized for the 7-disk model studied in section 5,

so here we will only present the result of this investigation of the theory in the half-plane

variables, with the function f = m(1− 1
n(T1+ . . .+Tn)), with n ≤ 7. Then, in analogy with

equations (6.16), (6.17), one finds that at N ≫ 1 the mass matrices of all fields orthogonal

to the inflaton direction are positively definite, i.e. the inflationary trajectory is stable, for

M >
2N3/2m

n3
, (7.1)

and the strong stabilization with all of these masses greater than the Hubble constant is

achieved for

M >
2N2m√

3n3
. (7.2)

This result coincides with the result for the two-disk merger (6.16), (6.17) for n = 2. It

also shows that the merger of n disks is easier to achieve for large n. In particular, for

n = 7 the stability condition (7.1) during the last N = 55 e-foldings of inflation is satisfied

for M & 2.4m, and the strong stabilization condition (7.2) of the α-attractor regime with

α = 7/3 for N . 55 is satisfied for M & 10m.

For α = 7/3, the Planck normalization for m is m ≈
√

7
3 × 10−5, which leads to the

stability condition M & 7× 10−5 in the Planck mass units.

8 Discussion

In this paper we have used the relative simplicity of the general class of α-attractor mod-

els, [9]–[12], to propose cosmological models with discrete values of the α-parameter

3α = R2
E = 1, 2, . . . , 7 . (8.1)

These models realize the suggestion in [1] that the consistent truncation of theories with

maximal supersymmetry (M-theory, superstring theory, N = 8 supergravity) to minimal

N = 1 supersymmetry models, leads to cosmological models with seven discrete values for

the square of the radius of the Escher disk in moduli space.

It is instructive to remind us here that, if one would assume that the maximal super-

symmetry models are first truncated to half-maximal supersymmetry models, for example,
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N = 4 supergravity [32] and maximal N = 4 superconformal models [33–35], one would

recover the hyperbolic geometry with a single unit size disk. This would mean that 3α = 1.

In the first part of the paper we have described the advantage of using the hyperbolic

geometry of the moduli space to explain the relation between the tilt of the spectrum ns

and the number of e-foldings N , ns ≈ 1 − 2
N , which is supported by the observational

data. We also provided a geometric reason for α-attractor models with plateau potentials,

and explained the relation of hyperbolic geometry to the Escher’s concept of ‘capturing

infinity’ in a finite space. Finally, we have shown that understanding ‘tessellations’ of the

hyperbolic disk, or equivalent of the half-plane geometry, is useful for the choice of the

Kähler frame providing the stability of cosmological models. To derive the dynamical

cosmological models supporting the case (8.1) we employ a two-step procedure:

As the first step, in section 5.1, we introduce a superpotential W0(Ti) in (5.13) where

Ti are coordinates of the seven-disk manifold. It is consistent with N = 1 supersymmetry,

such that it has a supersymmetric minimum realizing dynamically the conditions on seven

complex moduli (5.4), which were postulated in [1]. The superpotential depends on the

parameter m, controlling the inflaton potential, and the parameter M , which is responsible

for the dynamical merger of the disks in a state where some of the moduli Ti coincide.

As a second step, in section 5.2, we introduce the cosmological sector of α-attractor

models. In addition to seven complex disk moduli we introduce a stabilizer superfield

S which can be either a nilpotent superfield, associated with the uplifting anti-D3 brane

in string theory, or the one with a very heavy scalar, which during inflation serves the

purpose of stabilizing the non-inflaton directions. The corresponding Kähler potential and

superpotential are given in eqs. (5.16) and (5.17) respectively, with W0 given in eq. (5.13).

The original models contain a rather large number of moduli: seven complex scalars

and a stabilizer. We have studied these cosmological models close to the inflationary

trajectory and we have found the conditions where the masses of all non-inflaton directions

are positive. A more detailed study was performed in section 6 in a toy model where the

starting point is a two-disk manifold, where the regimes with 3α = 1 or 3α = 2 are possible.

We studied these models both in half-plane coordinates and in disk coordinates. The

global analysis of the cosmological evolution was performed, not just near the inflationary

trajectory, and it was possible to evaluate the value of the parameter M providing more

than N = 55 e-folds of inflation in the regime with 3α = 2. Depending on the choice of W1

we have found models with M & 10−2−10−3MPl, describing inflation either with 3α = 1, or

3α = 2. A cosmological phase transition between these two regimes is possible for smaller

values of M . The analogous considerations for the seven-disk models in section 7 show

that the cosmological stability of the maximally symmetric regime with 3α = 7 requires

M & 10m ∼ 7× 10−5MPl.

Thus, in this paper we provided a dynamical realization of a new class of cosmological

α-attractors motivated by maximally supersymmetric theories, such as M-theory, super-

string theory, and maximal N = 8 supergravity [1]. These models suggest a set of discrete

targets for the search of tensor modes in the range 10−3 . r . 10−2. In particular, the

maximally symmetric model 3α = 7 and r ≈ 10−2 becomes an interesting realistic target

for relatively early detection of B-modes. The case with 3α = 1, r ≈ 10−3 remains a well

motivated longer term goal.
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For decades, one of the main goals of inflationary cosmology was to use observations

to reconstruct the inflation potential [56]. From this perspective, it is especially interesting

that in the new class of inflationary models, α-attractors, the main cosmological predictions

are determined not by the potential, but by the hyperbolic geometry of the moduli space.

This suggests that the cosmological observations probing the nature of inflation may tell

us something important not only about the large-scale structure of our universe, but also

about the geometry of the scalar manifold.
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