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1. Introduction and Statement of Results

In 1867, Riemann [19] found a 1-parameter family of complete minimal surfaces in
the 3-dimensional Euclidean spaceE3 that are fibered by circles and straight lines
in parallel planes. Riemann also proved that these are the only surfaces (besides
the catenoid) with this property. In 1870, Enneper [3] proved that if a minimal sur-
face inE3 is foliated by pieces of circles, then the planes containing these circles
are actually parallel and so the surface is a piece of either a Riemann example or
a catenoid. Nowadays, we know more general uniqueness theorems for Riemann
minimal examples (see e.g. [4; 10; 14]).

In this paper we deal with the same kind of questions for maximal spacelike
surfaces in Lorentz–Minkowski 3-dimensional spaceL3. A smooth immersion of
a surface inL3 is calledspacelikeif the induced metric on the surface is a Rie-
mannian metric. A spacelike surface inL3 is maximal provided its mean curvature
vanishes. Spacelike maximal surfaces inL3 represent a maximum for the area in-
tegral [1]. It is known that the only complete maximal spacelike surfaces are planes
(see [1] and [2] for arbitrary dimension). Hence, it is natural to consider nonflat
maximal spacelike immersions with singularities. These singularities correspond
to either curves of points where the immersion is not spacelike or to isolated branch
points.

Some properties of minimal surfaces inE3 have an analogous version for maxi-
mal spacelike surfaces inL3. For example, they admit a Weierstrass representation
closely related to that of minimal surfaces inE3. As a matter of fact, there is a nat-
ural method of constructing maximal surfaces inL3 from minimal ones inE3, and
vice versa.

Inspired by the works of Riemann and Enneper just cited, we classify maximal
spacelike surfaces inL3 that are foliated by pieces of circles. Rotational maximal
surfaces inL3 have been studied in [7]. As in the minimal case inE3, a maxi-
mal spacelike surface inL3 is foliated by circles in parallel planes if and only if a
Shiffman-type function vanishes at any point of the surface. This function lies in
the kernel of the Lorentzian Jacobi operator of the surface. In this work we prove
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Figure 1 A piece of a maximal surface that is bounded by two spacelike straight
lines and containing two cone points of a Riemann-type surface in the familyR. The
whole surface is invariant under the translation determined by a half of the vector
joining orthogonally the two boundary straight lines.

a version of Shiffman’s theorem (see [20]) for maximal spacelike annuli bounded
by circles in parallel spacelike planes.

This paper is organized as follows. In Section 2, we introduce the concept of
circle in L3 and recall the Weierstrass representation for spacelike maximal sur-
faces. In Section 3, we determine the family of spacelike maximal surfaces fo-
liated by pieces of circles in parallel planes. To be more precise, we prove the
following.

LetM be a spacelike maximal surface inL3. If M is foliated by pieces
of circles in parallel planes, thenM is one of the surfaces described in:

Theorem 1, if the planes are spacelike;
Theorem 2, if the planes are timelike;
Theorem 3, if the planes are lightlike.

This space of maximal surfaces inL3 is related to a particular family of singly
periodic minimal annuli inE3 with parallel embedded ends of Riemann type
(see [10]). It includes, besides the catenoid, a 1-parameter family of singly pe-
riodic examplesR (see Remark 3) foliated by circles in parallel spacelike planes
whose set of singularities is mapped under the immersion on a discrete subset
of R3. In particular, the foliating curves, except the singular ones, are spacelike.
Therefore, these curves are eithercompletecircles orcompletestraight lines, and
any surface inR is like a Riemann minimal example inR3. See Figure 2 and
Figure 3.

Since maximal spacelike surfaces inL3 are stable, we have obtained easily the
following version of Shiffman’s theorem.
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Figure 2 A piece of a singly periodic Riemann-type surface whose level curves
are circles or straight lines with two singular points in parallel spacelike planes. The
immersion folds back at the singular points and so the foliation curves arepiecesof
circles or straight lines. The surface also contains singular cone points.

Figure 3 A piece of a singly periodic Riemann-type surface whose level curves
are pieces of circles or straight lines with two singular points in parallel spacelike
planes. At these singular points, the immersion folds back. In this case there are no
singular cone points.

A compact maximal spacelike annulus inL3 whose boundary consists of
two circles in parallel spacelike planes is a piece of either a Lorentzian
catenoid or a surface in the familyR.

In fact, we prove a slightly more general version of this theorem for annuli with
singularities of cone type. In Section 4 we prove the following Enneper-type re-
sult for maximal spacelike surfaces inL3.
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If a maximal spacelike surface inL3 is foliated by pieces of circles ly-
ing in a 1-parameter family of planes, then the planes in the family are
actually parallel.

Finally, we mention that some interesting results on constant mean curvature
hypersurfaces foliated by spheres in different ambient spaces have been recently
obtained by Jagy [5; 6]; see also [11; 12; 13; 16].

Acknowledgments. We would like to thank A. Ros for helpful discussions re-
lated to the main results in this paper. We are also grateful to F. Martin for drawing
our figures. This paper was prepared while the third author was visiting the De-
partamento de Geometría y Topología, Universidad de Granada. The third author
wishes to thank this institution for its hospitality.

2. Preliminaries

Throughout this paper,L3 will denote the 3-dimensional Lorentz–Minkowski
space(R3, 〈·, ·〉), where

〈·, ·〉 = dx 2
1 + dx 2

2 − dx3
3.

We will also denote the Euclidean metric inR3 by 〈·, ·〉0 = dx 2
1 + dx 2

2 + dx3
3 and

labelE3 = (R3, 〈·, ·〉0).
We say that a vectorv ∈R3− {0} is spacelike, timelike, or lightlike if and only

if 〈v, v〉 is positive, negative, or zero (respectively). The vector0 is spacelike by
definition. A plane inL3 is spacelike, timelike, or lightlike if and only if its Eu-
clidean unit normals are (resp.) timelike, spacelike, or lightlike. A curve is called
spacelike, timelike, or lightlike if and only if the tangent vector at any point is
spacelike, timelike, or lightlike. A surface inL3 is spacelike, timelike, or light-
like if and only if the tangent plane at any point is (resp.) spacelike, timelike, or
lightlike.

2.1. Circles inL3

We shall first determine which planar curves inL3 play the same role as circles
in Euclidean spaceE3. To do this, it is necessary to describe the family of planar
spacelike curves with nonzero constant curvature inL3. Let us examine the con-
cept of nonzero curvature for a regular planar curve inL3. Consider5 a plane in
L3 and letα = α(s) be a spacelike curve in5, wheres denotes the arc-length pa-
rameter ofα in L3. Let t(s) = α ′(s) be the unit tangent vector toα. Since we want
nonzero curvature, we assume thatt ′(s) never vanishes. The causal character of
the plane5 leads to three possibilities as follows.

Π is spacelike.In this case,(5, 〈·, ·〉) is a Riemannian plane and the definition
of curvature is the Riemannian one. Hence, given an orthonormal basis{e1,e2} in
5, the curves in5 with constant positive curvaturek are given by

α(s) = c+ 1

k
(cos(ks)e1+ sin(ks)e2), c∈5. (1)
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Π is timelike.Since〈t ′, t〉 = 0, it follows thatt ′ is a timelike vector in(5, 〈·, ·〉).
By definition, the curvatureκ of α is the numberκ = √−〈t ′, t ′ 〉. Thus, if{e1,e2}
is an orthogonal basis of5 such that〈e1,e1〉 = −〈e2,e2〉 = −1, then the space-
like curves in5 with constant curvaturek > 0 are given by

α(s) = c+ 1

k
(cosh(ks)e1+ sinh(ks)e2), c∈5. (2)

Π is lightlike. Sincet ′ 6= 0 andt is not lightlike, the equation〈t ′, t〉 = 0 im-
plies thatt ′ is a lightlike vector in5. Fix a constantlightlike field n onα. Then
t ′ = κn. Obviously, the functionκ depends on the choice ofn. However, the fact
thatκ is a nonzero constant does not depend on this choice. In other words,κ is
constant if and only ift ′ is a nonzero constant field onα. Therefore, a spacelike
curve with constant nonzero curvaturek 6= 0 in5 is given by

α(s) = c+ se1+ k
2
s2e2, c∈5, (3)

wheree2 = n is a fixedconstantlightlike field on5 ande1 is a constant unit
spacelike vector field on the curveα.

These planar curves can be described from the Euclidean point of view as fol-
lows. Up to a linear isometry inL3, assume that5 is the plane5v = {x ∈ R3 :
〈x, v〉0 = 0} and thatv is one of the next vectors:v = (0,0,1), v = (1,0,0), or
v = 1√

2
(1,0,−1).

1. Let v = (1,0,0). Labele1 = (1,0,0) ande2 = (0,1,0). Then the spacelike
curves in5v of curvaturek > 0 are

α(s) = c+ 1

k
(cos(ks), sin(ks),0) (4)

(see (1)), wherec∈5v. These curves are Euclidean circles in horizontal planes.
2. Letv = (1,0,0). Labele1 = (0,0,1) ande2 = (0,1,0). Then, ifk > 0, the

curves (2) are given by

α(s) = c+ 1

k
(0, sinh(ks), cosh(ks)), (5)

wherec∈5v. These curves are Euclidean hyperbolas in vertical planes.
3. Letv = 1√

2
(1,0,−1). If we choose thefixedbasis of5v given bye1= (0,1,0)

ande2 = (1,0,1), then the curves in (3) are given by

α(s) = c+
(
µs + k

2
s2, s, µs + k

2
s2

)
, (6)

wherec ∈5v, µ ∈ R, andκ 6= 0. They are Euclidean parabolas(x − c1) =
k
2(y − c2)

2 + µ(y − c2), c1, c2 ∈R, in the plane5v.

We may summarize as follows.

Definition 1. A circle in L3 is a planar curve with nonzero constant curvature.
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There is another approach to the concept of circle. Letl be a straight line inL3

and considerG = {Rθ ; θ ∈ R}, the 1-parameter group of linear isometries inL3

that leavel pointwise fixed. This group is called the group ofrotationswith axisl.
Letp be a point lying inL3− l, and consider the curve determined by the orbit of
p under the action ofG. This planar curve has nonzero constant curvature, and it
is contained in a plane orthogonal tol. Hence, an equivalent definition of circle in
L3 is (see [12] for details) the following.

Definition 2. A curveα in L3 is a circle if there exists a straight linel in L3

such thatα describes the nonlinear orbit of a pointp ∈L3− l under the action of
the 1-parameter group of motions inL3 that fix pointwisel.

2.2. The Weierstrass Representation of Maximal Spacelike Surfaces inL3

We end this section with a few words about the Weierstrass representation of max-
imal spacelike surfaces inL3. Let X : M → L3 be a spacelike maximal immer-
sion of an orientable surfaceM in 3-dimensional Lorentz–Minkowski space. The
Gauss mapN of X assigns to each point ofM a point of the spacelike surface
H2 = {(x1, x2, x3)∈R3 : x 2

1 + x 2
2 − x 2

3 = −1}, which has constant intrinsic cur-
vature−1 with respect to the induced metric. Note thatH2 has two connected
components, one on whichx3 ≥ 1 and one on whichx3 ≤ −1.

Throughout this paper,C∗ denotes the extended complex planeC ∪ {∞}. De-
fine a stereographic projectionσ for H2 as follows:

σ : C∗ − {|z| = 1} → H2; z→
(−2 Re(z)

|z|2 −1
,
−2 Im(z)

|z|2 −1
,
|z|2 +1

|z|2 −1

)
,

whereσ(∞) = (0,0,1). Using isothermal parameters,M has in a natural way a

conformal structure, and up to a suitable choice of the orientation, the mapg
def=

σ−1 BN is meromorphic.
Moreover, there exists a holomorphic 1-formη onM such that the 1-forms

81= i

2
η(1− g2), 82 = −1

2
η(1+ g2), 83 = ηg (7)

are holomorphic onM and without common zeroes. Furthermore, the 1-forms8j
(j = 1,2,3) have no real periods, and the immersionX is determined, up to a
translation, by

X = Re
∫
(81,82,83). (8)

The induced Riemannian metricds2 onM is given by

ds2 = |81|2 + |82|2 − |83|2 =
( |η|

2
(1− |g|2)

)2

. (9)

Conversely, letM, g, andη be (resp.) a Riemann surface, a meromorphic map on
M, and a holomorphic 1-formη onM, such that:|g(P )| 6= 1 for all P ∈M; and
the 1-forms defined in (7) are holomorphic, have no common zeroes, and have no
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real periods. Then (8) defines a conformal spacelike maximal immersion ofM in
L3, and its Gauss map isσ B g. If we allow that the set{|g| = 1} 6= ∅, we say that
X : M → L3 is a maximal spacelike immersion with singularities. We also say
thatX(M) is a maximal spacelike surface with singularities inL3. In this case, the
immersionX is not regular at the nodal set of the harmonic function log(|g|).

We call (M,81,82,83) (or simply (M, g, η)) theWeierstrass representation
of X (see e.g. [7] for more details).

Remark 1. The transformation(M,81,82,83)→ (M, i81, i82,83) converts
Weierstrass data of maximal spacelike surfaces inL3 into Weierstrass data of min-
imal surfaces inR3, and vice versa. For more details about theory of minimal
surfaces, see [18].

Throughout this paper, we say that a maximal immersion inL3 is complete if
and only if the corresponding minimal one inR3 is. If the set of singularities of
a maximal immersion consists of cone points (see Definition 3), then this concept
of completeness agrees with the natural one (that divergent curves have infinite
length).

3. Existence of Maximal Surfaces of Riemann Type

In this section we classify the family of maximal spacelike surfaces inL3 that are
foliated by pieces of circles in parallel planes. The main tool used is the Weier-
strass representation of maximal spacelike surfaces inL3. At the end of the section,
we will introduce theLorentzianShiffman-type functions on a maximal surface
and then prove a version of Shiffman’s theorem (see [20]) for maximal spacelike
surfaces inL3.

LetX : M → L3 be a spacelike conformal nonplanar maximal immersion of a
Riemann surfaceM. We denote by(η, g) the Weierstrass representation ofX and
define8 = (81,82,83) as in (7). Letds2 denote the Riemannian metric inM
induced byX and〈·, ·〉. See equations (7), (8), and (9) for details.

Let v be a nonzero vector inR3, and denote by5v the plane{x ∈ R3 :
〈x, v〉0 = 0}. The vectorv can be timelike, spacelike, or lightlike. Hence, and up
to linear isometries inL3, we will assume thatv = (0,0,1), v = (1,0,0), or v =

1√
2
(1,0,−1).
Throughout this section, we suppose thatX(M) is foliated by curves of nonzero

constant curvature (circles inL3) in parallel planes with normal vectorv in E3. In
casev = (0,0,1), this means thatX(M) is foliated by pieces of Euclidean cir-
cles in horizontal planes. However, in casesv = (1,0,0) andv = 1√

2
(1,0,−1),

it means that the surfaceX(M) is foliated by pieces of Euclidean hyperbolas and
parabolas, respectively. See the preceding section.

The following three theorems describe, up to linear isometries ofL3, the Weier-
strass representation of the immersionX. Since these results are local, we will sup-
pose thatM is simply connected and that〈Re(8(P )), v〉0 + i〈Im(8(P )), v〉0 6=
0 for all P ∈ M. Moreover, we will assume that the holomorphic function
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z = 〈X, v〉0 + i〈X, v〉0∗ is a conformal parameter onM, where〈X, v〉0∗ is the
harmonic conjugate of〈X, v〉0.

3.1. Maximal Spacelike Surfaces Foliated by Pieces of Circles

We shall prove the following theorem.

Theorem1. If X(M) is foliated by pieces of Euclidean circles in parallel planes
with normal Euclidean vectorv = (0,0,1), then, up to scaling and linear isome-
tries inL3, the stereographic projectiong of the Gauss map ofX satisfies:

1. dg

dz
= g; or

2.
( dg
dz

)2 = g(g2 + 2rg + 1), wherer ∈R.
Proof. Consider the conformal parameterz = 〈X, v〉0 + i〈X, v〉0∗ = X3 + iX∗3 .
From (7), (8), and (9), we have:

X(P ) = Re

(∫ P
(
i

2

(
1

g
− g

)
dz, −1

2

(
1

g
+ g

)
dz, dz

))
; (10)

ds2 =
(

1− |g|2
2|g|

)2

|dz|2.

Let α(t) be a curve in(M, ds2) parameterized by the arc length such that
X3(α(t)) = C (i.e., Re(z(α(t))) = C), whereC is a constant. For the sake
of simplicity, write z(t) = z(α(t)), X(t) = X(α(t)), andg(t) = g(α(t)). Then

we have|1−|g|
2|

2|g|
∣∣ dz
dt

∣∣ = 1, and since Re
(
dz
dt

) = 0 we deduce thatdz
dt
= ± 2i|g|

1−|g|2 . Up

to the changeg→ 1/g (which corresponds to the linear isometry inL3 defined by
the symmetry with respect to the planex1 = 0), 83 does not change, and we can
assume that

dz

dt
= 2i|g|
|g|2 −1

. (11)

SinceX is spacelike andv = (0,0,1), the vectorsdX
dt

and d2X

dt 2
are spacelike.

Hence, from (10) and (11), it is not hard to check that the planar curvaturek(t) of
the curveX(t) is given by

k(t) =
√〈
d2X

dt 2
,
d2X

dt 2

〉
=
√〈
d2X

dt 2
,
d2X

dt 2

〉
0

= Im

(
d log(g)

dt

)
.

Since83 = dz, this 1-form does not vanish at any point inM, and the same holds
for the mapg. Thus, up to a choice of the branch, the map log(g) is holomor-
phic and well-defined onM. For simplicity, we writeu = Re(log(g)) andv =
Im(log(g)).

At this point, we introduce the new parameters(t) determined (up to an addi-
tive constant) by the equationds

dt
= 1

sinh(u(α(t)) . Observe that equation (11) gives



Maximal Surfaces of Riemann Type 477

dz(α(s))

ds
= i and so, for any constantC, we can chooses(t) = Im(z(t)). On the

other hand, it is clear that

k(s)
def= k(t(s)) = dv/ds

sinh(u)
,

and sincek(s) is constant we have

d2v

ds2
− du
ds

dv

ds
coth(u) = 0.

If we define

S1= Im

((
d(log(g))

dz

)2 3|g|2 −1

2(|g|2 −1)
−
(
d2g

dz2

)
1

g

)
(12)

and take into account thats(t) = Im(z(t)), we obtain

S1= 0. (13)

In particular, the function Im(h1) is harmonic, where

h1=
(

2

(
d2g

dz2

)
1

g
− 3

(
d(log(g))

dz

)2)
|g|2,

and thus
h1

|g|2 − λ1− µ
g
= 0, (14)

whereλ1∈ R andµ ∈ C. In particular, Im(h1) = −Im(µ̄g). On the other hand,
labeling

h2 = 2

(
d2g

dz2

)
1

g
−
(
d(log(g))

dz

)2

,

from (13) we deduce that Im(h2) = Im(h1) and thus

h2 + µ̄g + λ2 = 0, (15)

whereλ2 ∈R.
From equations (14), (15), and their derivatives, it is not hard to see that

λ1= λ2,

(
dg

dz

)2

+ g
2
(µ̄g2 + 2λ1g + µ) = 0.

Up to a rotation about thex3-axis (which is a linear isometry inL3 that substitutes
g for θg, |θ | = 1),we can suppose thatµ∈R andµ ≤ 0. Furthermore, up to a ho-
mothety inL3 (which corresponds to a homothetical change of variablez→ kz,

k ∈R), we can putµ = −2, provided thatµ 6= 0. This leads to case 2 of the the-
orem. In caseµ = 0, we deduce thatλ1 6= 0 (recall thatX is nonplanar); hence
we can assume thatλ1 = ±1. Taking into account thats(t) = Im(z(t)), k(s) =
constant6= 0, and the preceding expression fork(t(s)), we deduce thatλ1 = 1.
Up to the changeg → 1/g once again if necessary, we obtain case 1. This con-
cludes the proof.
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Remark 2. Following the proof of Theorem 1, it is easy to see thatX(M) is foli-
ated by pieces of straight lines in planes parallel to5v, v = (0,0,1), if and only if
µ = 0 andλ1 = −1

(
i.e., dg

dz
= ig). In this case,X(M) is a piece of the complete

maximal spacelike surface with Weierstrass data(
C∗, 81= 1− g2

2g2
dg, 82 = i(1+ g2)

2g2
dg, 83 = −i 1

g
dg

)
.

Up to the change of variablesg = eiu, these meromorphic data determine, follow-
ing (8), a well-defined maximal spacelike surface with singularities in theu-plane.
This surface is the one associated to the helicoid according to Remark 1.

Let us now determine the surfaces arising from cases 1 and 2 in Theorem 1. In
case 1 and from (10), we derive thatX(M) is a piece of the complete maximal
spacelike surface with singularities determined by the Weierstrass data(

C∗, 81= i

2

1− g2

g2
dg, 82 = −1

2

1+ g2

g2
dg, 83 = 1

g
dg

)
.

This rotational surface is the one associated, following Remark 1, to the catenoid
with vertical normal vector at the ends.

To discuss case 2, consider the compact Riemann surfaceN̄r = {(u,w) : w2 =
u(u2 + 2ru + 1)} and observe that, except in the degenerate caser 2 = 1, this
surface is homeomorphic to a torus. Whenr 2 = 1, N̄r is the Riemann sphere.
Assume thatr 2 6= 1. Then define the Weierstrass data

Nr = N̄r − (u−1(0) ∪ u−1(∞)), g = u, ηg = du/w,
with 8j (j = 1,2,3) as in (7). However, these meromorphic data do not define a
maximal immersion because the 1-forms8j have real periods on certain homol-
ogy curves (see (8)). Indeed, first observe that the 1-form81 is exact. Letl denote
a closed real interval in theu-plane whose limit points lie inu(w−1(0))∪{∞} and
w
∣∣
l
≤ 0, and letγ be any closed curve inNr in the same homology class of the

lift to N̄r of l. If γ ′ is any closed curve withγ ′ 6= mγ, m ∈ Z (e.g., a curve in
the same class of homology of the lift of a closed real intervall′ in theu-plane as
before, but satisfyingw

∣∣
l
≥ 0), then it is easy to see that the period

∫
γ ′ 8j does

not vanish forj = 2,3. Furthermore, ifp : Ñr → N̄r is the covering that satisfies
p∗(H1(Ñr ,Z)) = {mγ : m ∈ Z}, then the lift toÑr of the Weierstrass data just
listed gives new Weierstrass data without real periods and also determines a com-
plete singly periodic maximal spacelike surface with singularities inL3. SinceÑr
is conformally equivalent toC∗, the liftMr of Nr to Ñr is conformally diffeomor-
phic toC∗ minus infinitely many points, which are just the lifts of the two ends of
Nr. Sincedz = du/w, it is clear from (10) thatX(M) is a piece of this surface.

If r 2 < 1 then the associated minimal surfaces, according to Remark 1, have
been recently studied in [9] and [8].

In the degenerated case we haver = ±1, and up to the changeg → v2 it is
straightforward to check thatX(M) is a piece of the maximal spacelike surface
with singularities associated to the following Weierstrass data:
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C− {0, i√±1,−i√±1

}
, 81= −i v

2 − (±1)

v2
dv,

82 = − v4 +1

v2(v2 + (±1))
dv, 83 = 2

v2 + (±1)
dv

)
.

Note that in caser = −1, the periods of8j (j = 1,2,3) are imaginary and so the
immersion given in (8) is well-defined onM−1 = C − {0,1,−1}. In caser = 1,
this does not occur and the immersion is well-defined in a suitable coveringM1

of C− {0, i,−i}.
Remark 3. If r ≤ 1, it is not hard to see that any level curvex3 = C with C ∈R
is either noncompact or nonspacelike (i.e., it contains singular points lying in the
set{|g| = 1}). See Figures 2 and 3. For the 1-parameter family of surfacesR =
{Mr : r > 1}, the set{|g| = 1} has infinitely many connected components inMr,

all of them homeomorphic toS1, and the image under the immersion of this set
of singularities is a discrete subset ofL3. Indeed, any connected componentc of
{|g| = 1} is a lift toMr of one of the two closed curves inNr defined by|u| = 1.
These two curves are pointwise invariant under the antiholomorphic transforma-
tion in Nr given byT(u,w) = (1/ū, w̄/ū) that satisfiesT ∗(8j ) = −8j for j =
1,2,3. Hence, it is not hard to conclude that the points ofc are mapped under the
immersion on the same pointPc ∈ L3 and that the maximal surface is symmet-
ric with respect toPc (see Definition 3). In particular,c = x−1

3 (x3(Pc)) andc ⊂
{|g| = 1} are the only singular level curves; the other level curvesx3 = C, C /∈
{x3(Pc) : c ⊂ {|g| = 1}}, are spacelike (i.e., they are either complete circles or
straight lines). See Figure 1.

3.2. Maximal Spacelike Surfaces Foliated by Pieces of Hyperbolas

Let us study the casev = (1,0,0). In this case, the metric induced by〈·, ·〉 on5v

is given bydx 2
2 − dx 2

3 .

We adapt the Weierstrass representation(g, η) of X to this new frame as fol-
lows. Define

gh = −i g +1

g −1
, ηh = 2

(−igh +1)2
η, (16)

and observe that

81= ghηh, 82 = 1
2(1− g2

h)ηh, 83 = − 1
2(1+ g2

h)ηh. (17)
Recall that in this casedz = 81.

Theorem 2. If X(M) is foliated by pieces of Euclidean hyperbolas in parallel
planes with normal Euclidean vectorv = (1,0,0), then, up to scaling and linear
isometries inL3, the meromorphic mapgh defined in(16) of X satisfies:

1.
( dgh
dz

)2 = gh;
2.
( dgh
dz

)2 = ±gh(gh − 1);
3. dgh

dz
= igh; or

4.
( dgh
dz

)2 = gh(g2
h + 2rgh + r0), wherer ∈R andr0 ∈ {1,−1}.



480 Francisco J . López, Rafael López, & Rabah Souam

Proof. Note that〈X, v〉0 = X1 and so, from (16), (8), and (9), we have:

X(P ) = Re

(∫ P
(
dz,

1

2

(
1

gh
− gh

)
dz, −1

2

(
1

gh
+ gh

)
dz

))
; (18)

ds2 =
(

Im(gh)

|gh|
)2

|dz|2.

Let α(t) be a curve in(M, ds2) parameterized by the arc length such that
X1(α(t)) = C (i.e., Re(z(α(t))) = C), whereC is a constant. We writez(t) =
z(α(t)), X(t) = X(α(t)), andgh(t) = gh(α(t)). Then we have|Im(gh)||gh|

∣∣ dz
dt

∣∣ = 1,
and since Re

(
dz
dt

) = 0 we deduce thatdz
dt
= ±i |gh|Im(gh)

. Up to the changegh→−gh
(which corresponds to the linear isometry inL3 determined by the reflection about
thex1-axis),81 does not change, and we can assume that

dz

dt
= i |gh|

Im(gh)
. (19)

SinceX is spacelike andv = (1,0,0), the vectorsdX
dt

and d2X

dt 2
are spacelike and

timelike, respectively. Therefore, from (18) and (19), the planar curvaturek(t) of
the curveX(t) is given by

k(t) =
√
−
〈
d2X

dt 2
,
d2X

dt 2

〉
= Re

(
d log(gh)

dt

)
.

Because81 = dz, the mapgh never vanishes onM. Thus, up to a choice of the
branch, the map log(gh) is holomorphic and well-defined onM. For simplicity,
we writeu = Re(log(gh)) andv = Im(log(gh)).

At this point, we introduce the new parameters(t) determined (up to an addi-
tive constant) by the equationds

dt
= |gh|

Im(gh)
. Observe thatdz(α(s))

ds
= i; hence we

can chooses(t) = Im(z(t)) for any constantC. On the other hand, it is clear that

k(s)
def= k(t(s)) = du/ds

sin(v)
,

and sincek(s) is constant we have

d2u

ds2
− du
ds

dv

ds
cot(v) = 0.

If we define

S2 = Re

((
d(log(gh))

dz

)2(
1− i Re(gh)

2 Im(gh)

)
−
(
d2gh

dz2

)
1

gh

)
(20)

and take into account thats(t) = Im(z(t)), it follows that

S2 = 0. (21)

In particular, the function Im(h1) is harmonic, where
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h1=
((
d2gh

dz2

)
1

gh
− 1

2

(
d(log(gh))

dz

)2)
gh,

and thus
h1

gh
+ λ1gh − µ = 0, (22)

whereλ1∈R andµ ∈C. In particular, Im(h1) = −Im(µ̄gh). On the other hand,
labeling

h2 = −d
2gh

dz2
+ 3

2

(
d(log(gh))

dz

)2

gh,

from (21) we deduce that Im(h2) = −Im(h1) and thus

h2 − µ̄gh + λ2 = 0, (23)

whereλ2 ∈R.
From equations (22), (23), and their derivatives, it is not hard to see that(

dgh

dz

)2

= gh(−λ1g
2
h + 2µgh − λ2), µ∈R.

SinceX is nonplanar,λ1 = λ2 = 0 implies thatµ 6= 0. In this case, and up to
scaling inL3,we can supposeµ = ± 1

2 . Taking into account thats(t) = Im(z(t)),
k(s) = constant6= 0 and the preceding expression fork(s), we deduce thatµ =
− 1

2 . Up to the changegh → 1/gh if necessary, we obtain case 3 of the theorem.
Assume now that|λ1| + |λ2| 6= 0. Up to the changegh → 1/gh, which corre-
sponds to the linear isometry inL3 given by a symmetry with respect to the plane
x2 = 0,we can suppose thatλ2 6= 0. Moreover, note that the changegh→±e lgh
(l ∈R) is associated to the linear isometryR in L3 given by

R(x1, x2, x3) =
(
x1,±(cosh(l )x2 + sinh(l )x3),±(cosh(l )x3+ sinh(l )x2)

)
.

Therefore, up to this kind of rigid motion inL3 and homotheties, we can suppose
thatλ1 = 1 andλ2 = ±1, provided thatλ1 6= 0 also (case 4). Analogously,λ1 =
0 andλ2 6= 0 lead to case 1 (ifµ = 0) and case 2 (ifµ 6= 0) of the theorem. This
concludes the proof.

Remark 4. Following the proof of Theorem 2, it is easy to see thatX(M) is fo-
liated by pieces of straight lines in parallel planes to5v, v = (1,0,0), if and only
if µ = 1

2 andλ1 = λ2 = 0
(
i.e., dgh

dz
= gh

)
. In this case,X(M) is a piece of the

complete maximal spacelike surface with singularities determined by the follow-
ing Weierstrass data:(

C∗, 81= 1

gh
dgh, 82 = 1− g2

h

2g2
h

dgh, 83 = −1+ g2
h

2g2
h

dgh

)
.

These meromorphic data determine, following (8), a well-defined maximal sur-
face. This surface is the one associated to the helicoid (viewed inE3 with hori-
zontal axis) following Remark 1. See Figure 4.
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Figure 4 A piece of a translational invariant maximal surface foliated by hyper-
bolas in parallel timelike planes.

Let us determine the surfaces arising from the four cases of Theorem 2. In case 1,
and doing the changegh → u2, it is easy to see thatX(M) is a piece of the com-
plete maximal spacelike surface with singularities determined by the Weierstrass
data (

C∗, 81= 2du, 82 = 1− u4

u2
du, 83 = −1+ u4

u2

)
.

Since the three 1-forms are exacts, the maximal immersion given by (8) is well-
defined.

In case 2, and up to linear isometries inL3,we have two possibilities: eitherdgh
dz
=√

gh(gh −1) or dgh
dz
= i√gh(gh −1). Suppose first thatdgh

dz
= √gh(gh −1). Up

to the changegh → 1
1−u2 and from (18), we obtain thatX(M) is a piece of the

maximal spacelike surface with singularities associated to the Weierstrass data(
C− {1,−1}, 81= 2

1− u2
du, 82= (2− u

2)u2

(u2 −1)2
du, 83= u

4 − 2u2 + 2

(u2 −1)2
du

)
.

The three 1-forms have no real periods, so the immersionX in (8) is well-defined.
If dgh

dz
= i√gh(gh −1) then we obtain the conjugate Weierstrass data, and the im-

mersion is well-defined in a suitable covering ofC− {1,−1}.
In case 3, and using (18), we have the following Weierstrass data:(
C− {0}, 81= i

gh
dgh, 82 = i(1− g2

h)

2g2
h

dgh, 83 = − i(1+ g
2
h)

2g2
h

dgh

)
.

The lift of these meromorphic data to the holomorphic universal coveringC leads
to a rotational maximal surface. The associated minimal surface, according to Re-
mark 1, is a catenoid with horizontal normal vector at the ends.

The discussion of case 4 is similar to that of case 2 of Theorem 1. Consider the
compact Riemann surfacēM0 = {(u,w) : w2 = u(u2 + 2ru + r0)} and observe
that, except in the degenerate caser 2 = r0 = 1, this surface is homeomorphic to a
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torus. Ifr 2 = r0 = 1, thenM̄0 is the Riemann sphere. Assume that eitherr 2 6= 1
or r0 6= 1. Then define the Weierstrass data(

M0 = M̄0 − (u−1(0) ∪ u−1(∞)), gh = u, ηhgh = du/w
)
,

with 8j (j = 1,2,3) as in (17). However, these meromorphic data do not define
a maximal immersion because the 1-forms8j have real periods on certain homol-
ogy curves (see (8)). Indeed, first observe that, from (18) and taking into account
dz = du/w, if r0 = 1 (resp.r0 = −1) then82 (resp.83) is exact. Letl denote a
closed real interval in theu-plane whose limit points lie inu(w−1(0)) ∪ {∞} and
w
∣∣
l
≤ 0, and letγ be any closed curve inM0 in the same homology class of the

lift to M̄0 of l. If γ ′ is any closed curve withγ ′ 6= mγ, m ∈ Z (e.g., a curve in
the same class of homology of the lift of a closed real intervall′ in theu-plane as
before, but satisfyingw

∣∣
l
≥ 0), then it is easy to see that the period

∫
γ ′ 8j does

not vanish, wherej = 1,3 (if r0 = 1) or j = 1,2 (if r0 = −1). Furthermore, if
p : M̃0→ M̄0 is the covering that satisfiesp∗(H1(M̃0,Z)) = {mγ : m∈Z}, then
the lift to M̃0 of the Weierstrass data displayed previously gives new Weierstrass
data without real periods and also determines a complete singly periodic maximal
surface with singularities inL3. SinceM̃0 is conformally equivalent toC∗, the lift
ofM0 is conformally diffeomorphic toC∗minus infinitely many points, which are
just the lifts of the two ends ofM0. It is clear thatX(M) is a piece of this surface.

If r 2 < 1 andr0 = 1, then Remark 1 leads (as in Section 3.1) to the examples in
[9] and [8] (but from a different point of view inE3).

In the degenerated case we haver = ±1 andr0 = 1, and up to the change
gh→ v2 it is straightforward to check thatX(M) is a piece of the maximal space-
like surface with singularities associated to the following Weierstrass data:(

C− {0, i√(±1),−i√(±1)
}
, 81= 2

v2 + (±1)
dv,

82 = −v
2 − (±1)

v2
dv, 82 = − v4 +1

(v2 + (±1))v2
dv

)
.

Note that in caser = −1, the periods of8j (j = 1,2,3) are imaginary and so the
immersion given in (8) is well-defined. In caser = 1, this does not occur and the
immersion is well-defined in a suitable covering ofC− {0, i,−i}.

3.3. Maximal Spacelike Surfaces Foliated by Pieces of Parabolas

Finally, we study the casev = 1√
2
(1,0,−1). For convenience, we introduce the

following frame inE3:

e1= (0,1,0), e2 = 1√
2
(1,0,1), e3 = v = 1√

2
(1,0,−1).

We labelyj = 〈ej, ·〉0, j = 1,2,3, as the three coordinate functions associated to
this frame. WriteYj = 〈ej, X〉0, j = 1,2,3. SinceX =∑3

j=1Yjej, for simplicity
and in what follows we writeX = (Y1, Y2, Y3). Note that the metric induced by
〈·, ·〉 on5v (i.e., on the planey3 = 0) is given bydy2

1.
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The adapted Weiertrass representation ofX is given by9j(ξ) = ∂Yj

∂ξ
dξ (j =

1,2,3), whereξ is a conformal parameter onM. In other words,

91= 82, 92 = 1√
2
(81+83), 93 = 1√

2
(81−83).

From (7), it is easy to see that

92
1 + 29293 = 0.

Sincedz = 93, defininggp = 91/dz yields

91= gp dz, 92 = −1

2
g2
p dz, 93 = dz. (24)

Theorem 3. If X(M) is foliated by pieces of Euclidean parabolas in parallel
planes with normal Euclidean vectorv = 1√

2
(1,0,−1), then, up to scaling and

linear isometries inL3, the meromorphic mapgp defined in(24) of X satisfies:

1.
( dgp
dz

)2 = gp; or

2.
( dgp
dz

)2 = ±gp(gp − r); r ∈R; or

3. dgp

dz
= i.

Proof. From (24), (8), and (9), we have:

X(P ) = Re

(∫ P
(
gp dz,−

g2
p

2
dz, dz

))
; (25)

ds2 = (Im(gp))2|dz|2.
Let α(t) be a curve in(M, ds2) parameterized by the arc length such that
Y3(α(t)) = C (i.e., Re(z(α(t))) = C), whereC is a constant. We writez(t) =
z(α(t)), X(t) = X(α(t)), andgp(t) = gp(α(t)). Then we have|Im(gp)|

∣∣ dz
dt

∣∣ = 1,
and since Re

(
dz
dt

) = 0 we deduce thatdz
dt
= ± i

Im(gp)
. Up to the changegp →−gp

(which corresponds to the linear isometry inL3 determined by the symmetry with
respect to the planey1= 0), we can assume that

dz

dt
= − i

Im(gp)
. (26)

SinceX is spacelike andv = 1√
2
(1,0,−1), the vectorsdX

dt
and d2X

dt 2
are spacelike

and lightlike, respectively. Therefore, the planar curvature of the curveX(t) is
constant if and only if the function

k(t) =
√〈
d2X

dt 2
,
d2X

dt 2

〉
0

= −Re

(
dgp

dt

)
is constant. For simplicity, we writeu = Re(gp) andv = Im(gp).

At this point, we introduce the new parameters(t) determined (up to an addi-
tive a constant) by the equation:ds

dt
= − 1

Im(gp)
. Observe that equation (26) gives
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dz(α(s))

ds
= i and so we can chooses(t) = Im(z(t)) for any constantC. On the

other hand, it is clear that

k(s)
def= k(t(s)) = du

ds

1

v
;

sincek(s) is constant, we have

d2u

ds2
− du
ds

dv

ds

1

v
= 0.

If we define

S3 = Re

(
d2gp

dz2
+
(
dgp

dz

)2 1

gp − gp
)

(27)

and take into account thats(t) = Im(z(t)), we have

S3 = 0. (28)

In particular, the function Im(h1) is harmonic, whereh1= gp d
2gp

dz2 , and thus

d2gp

dz2
− λ1gp − µ = 0, (29)

whereλ1 ∈ R andµ ∈ C. Hence, we deduce that Im(h1) = −Im(µ̄gp). On the
other hand, labeling

h2 = gp d
2gp

dz2
−
(
dgp

dz

)2

,

from (28) we deduce Im(h2) = Im(h1) and thus

h2 + µ̄gh + λ2 = 0, (30)

whereλ2 ∈R.
From Equations (29), (30), and their derivatives, it is not hard to see that(

dgp

dz

)2

= λ1g
2
p + 2µgp + λ2, µ∈R.

BecauseX is nonplanar,λ1 = µ = 0 implies thatλ2 6= 0. In this case, and up to
scaling inL3,we can supposeλ2 = ±1. Taking into account thats(t) = Im(z(t)),
k(s) = constant6= 0 and the preceding expression fork(s), we deduce thatλ2 =
−1. Up to the changegp → −gp if necessary, we obtain case 3 of the theorem.
Assume now that|λ1| + |µ| 6= 0. The changegp → gp + l, l ∈ R, is associated
to the linear isometryR in L3 given by

R(y1, y2, y3) =
(
y1+ ly3,−ly1+ y2 − l

2

2
y3, y3

)
.

Hence, up to this kind of rigid motion inL3 and homotheties, we can suppose that
λ2 = 0 andλ1= ±1, provided thatλ1 6= 0 (case 2). Whenλ1= 0 andµ 6= 0, we
also take into account the changegp → −gp (which corresponds to a symmetry
with respect to the planey1= 0) to obtain case 1. This concludes the proof.
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Remark 5. Following the proof of Theorem 3, it is easy to see thatX(M) is fo-
liated by pieces of straight lines in parallel planes to5v, v = 1√

2
(1,0,−1), if and

only if λ1 = µ = 0 andλ2 = 1
(
i.e., dgp

dz
= 1

)
. In this case, and after the change

g → −√2u, we have thatX(M) is a piece of the complete maximal spacelike
surface with singularities associated to the following Weierstrass data:(

C, 81= (u2 −1) du, 82 = 2u du, 83 = (u2 +1) du
)
.

These meromorphic data determine, following (8), a well-defined maximal space-
like surface with singularities. It is the surface associated, according to Remark 1,
to the Enneper surface (viewed with horizontal normal vector at the end inE3).

See Figure 5.

Figure 5 A piece of a maximal surface foliated by parabolas in parallel lightlike planes.

Let us now determine the surfaces arising from the three cases of Theorem 3. In
case 1, doing the changeg → √2u2 and up to scaling, it is easy to see from (25)
and the definition of9j (j = 1,2,3) thatX(M) is a piece of the complete maxi-
mal spacelike surface with singularities associated to the Weierstrass data

(C, 81= (1− u4) du, 82 = 2u2 du, 83 = −(1+ u4) du).

The three1-forms are exact, so the maximal immersion given by (8) is well-defined.
In case 2, and up to linear isometries inL3, we have two possibilities: either

dg

dz
= √g(g − r) or dg

dz
= i
√
g(g − r). Suppose first thatdg

dz
= √g(g − r). We

distinguish two new cases:r 6= 0 andr = 0. Considerr 6= 0. Up to the change
g→ ru2

u2−1
, and from (25) and the definition of9j (j = 1,2,3),we get thatX(M)

is a piece of the maximal spacelike surface with singularities associated to the
Weierstrass data
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C̄− {1,−1}, 81= −2+ 4u2 − 2u4 + r 2u4

√
2(u2 −1)3

du,

82 = − 2ru2

(u2 −1)2
du, 83 = 2− 4u2 + 2u4 + r 2u4

√
2(u2 −1)3

du

)
.

If r = 0 then, up to the changeg→√2u and scaling, the meromorphic data are(
C− {0}, 81= 1− u2

u
du, 82 = 2du, 83 = −1+ u2

u
du

)
.

In both cases, there are no real periods and the maximal immersion given in (8)
is well-defined. Concerning the second possibilitydg

dz
= i
√
g(g − r), a similar

argument leads to the conjugate of the previous surfaces. In this case, the immer-
sion defined in (8) has real periods and so is well-defined in a suitable covering of
C̄− {1,−1} (if r 6= 0) orC− {0} (if r = 0).

In case 3, using the changeg → i
√

2u, (25) and the definition of9j (j =
1,2,3), we obtain the following Weierstrass data:

(C, 81= (1+ u2) du, 82 = −2iu du, 83 = (u2 −1) du).

This rotational maximal surface inL3 is associated, following Remark 1, to the
Enneper surface, but viewed inE3 with the horizontal normal vector at its end.

3.4. Shiffman Type Functions and Maximal Spacelike Annuli
Bounded by Circles

We conclude Section 3 by introducing the Shiffman-type functions on a maximal
spacelike surface inL3.

LetX : M → L3 be a maximal spacelike immersion, and let(η, g) denote the
Weierstrass representation ofX (see (7)). Recall thatg is the stereographic pro-
jection of the Gauss map ofX.

Let ξ be any conformal parameter onM, and let1ξξ̄ denote the Laplacian

∂

∂ξ

∂

∂ξ̄
= 1

4

(
∂2

∂x 2
+ ∂2

∂y2

)
.

Then, the functionsSj (j = 1,2,3) given in (12), (20), and (27) satisfy the
equation

1ξξ̄Sj −
2

(1− |g|2)2
∣∣∣∣dgdξ

∣∣∣∣2Sj = 0.

In other words, these functions lie in the kernel of the Jacobi operator1− |σ|2 on
M. As usual,|σ| represents the norm of the second fundamental form ofX in L3,

and1 is the Laplacian associated to the induced metric onM.

Furthermore, we have proved in Theorems 1, 2, and 3 that a nonruled maximal
spacelike surface inL3 is foliated in parallel planes by pieces of circles, hyper-
bolas, or parabolas if and only if the functionS1, S2, orS3 (respectively) vanishes
on the surface. It is natural to call these three functions as the Lorentzian Shiffman
functions. See [20].
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On the other hand, it will be interesting to note that the functionS1 has a good
behavior around singularities ofconetype. Let us explain the details, starting with
the following definition.

Let X : M → L3 be a maximal spacelike immersion with singularities, and
label(η, g) as its Weierstrass data, following (7). Suppose that the set of singular-
ities{|g| = 1} inM contains a connected componentc that is homeomorphic toS1.

In particular, the stereographic projectiong of the Gauss map ofX has no branch
points onc. Assume also that there is an antiholomorphic involutionT : M → M

satisfying

(i) T ∗(8j ) = −8j, j = 1,2,3;
(ii) T fixes pointwisec.

It is clear from (8) thatX(c) is a point,Pc, in L3, and thatX(M) is invariant under
the reflection about this point.

Definition 3. We callPc a cone pointof X(M). We also say thatX(M) has a
singularity of cone typeatPc.

It is not hard to prove the following lemma.

Lemma 1. LetPc be a cone point inX(M) associated to the curve of singulari-
tiesc in M. Then, the Shiffman functionS1 extends in a differentiable way toc.

Proof. Let z be a conformal parameter around an arbitrary point inc such that
dz = 83. Without loss of generality, we can suppose thatz B T = −z̄, and so lo-
cally c becomes the curve Re(z) = 0. Moreover, equationg B T = 1/ḡ gives that
g = ef(z), wheref(−z̄) = −f(z).

From (12), the functionS1 extends toc if and only if

G(z)
def= Im

((
d(log(g))

dz

)2 1

|g|2 −1

)
extends toc. To see this, takez0 ∈ iR and observe that

f(z) =
∞∑
m=0

am(z0)(z− z0)
m,

where Re(a2j(z0)) = 0, and Im(a2j+1(z0)) = 0 for j ∈ Z. Since the meromor-
phic functiong has no ramification points onc, it follows thata1(z0) 6= 0 for all
z0 ∈ c.

On the other hand,

|g(z)| −1= eRe(f(z)) −1= Re(f(z))H̃1(Re(f(z))),

whereH̃1(w) = (ew − 1)/w for w ∈ C. In particular,H̃1(0) = 1. Taking into
account the preceding Taylor series expansion off, we deduce that Re(f(z)) =
Re(z)G1(z), whereG1 is a suitable differentiable function aroundc. Moreover,
using thata1(z0) 6= 0 for all z0 ∈ c, we infer that

∣∣(G1

∣∣
c

)∣∣ ≥ ε > 0. Thus,

|g(z)| −1= Re(z)H1(z),
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where
∣∣(H1

∣∣
c

)∣∣ ≥ ε ′ > 0. Furthermore, a similar argument gives that

Im

((
d(log(g))

dz

)2)
= Re(z)H2(z),

whereH2 is differentiable aroundc. We conclude that, aroundc,

G(z) = H2(z)

H1(z)(1+ |g|(z))
is a differentiable function.

Figure 6 A maximal spacelike annulus bounded by two circles in parallel space-
like planes and containing a cone point.

Looking at the expression of Jacobi operator, it is straightforward to check that
maximal spacelike surfaces are stable in a strong sense; that is, the first eigenvalue
of this operator on any compact domain is positive. As a consequence of this fact
and Lemma 1, we can prove the following version of Shiffman’s theorem for max-
imal spacelike annuli with singularities of cone type inL3.

Let S denote a slab determined by two spacelike planes51,52 in L3.

Corollary 1. LetA be a compact maximal spacelike annulus inL3 whose set of
singularities consists of a finite( possibly empty) set of cone points. Suppose that
A is bounded by a circle or a cone point in51 and by a circle or a cone point in52.

Then the intersection ofAby a plane contained inS is either a circle or a cone point.
Therefore,A is a piece of either a Lorentzian catenoid or a surface in the familyR.

Proof. Up to a linear isometry inL3,we can suppose that the Euclidean normal vec-
tor of51 and52 is(0,0,1).We writeX : M → L3 as the maximal immersion such
thatA = X(M), and we labelc1 andc2 as the two boundary closed curves in∂M.

First, note that the caseX(M) bounded by two cone pointsPc1 andPc2 is impos-
sible. Otherwise, by successive reflections about cone points, we obtain a complete
maximal spacelike annulus̃X : M̃ → L3, with infinitely many cone singularities,
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Figure 7 A translational invariant fundamental piece of a Riemann-type example
inR. It is a spacelike annulus bounded by two cone points and with one end asymp-
totic to a plane. This annulus is a graph over any spacelike foliation plane.

such thatX̃(M̃ ) is invariant under a translation. The quotient ofM̃ under the holo-
morphic transformation induced by this translation gives a torusT, and the Weier-
strass data(81,82,83) of X̃ can be induced on this torus. Furthermore,8j is
holomorphic, and so8j = λjτ0 for j = 1,2,3, whereλj ∈C andτ0 is a nonzero
holomorphic 1-form onT . Since82

1 +82
2−82

3 = 0 and the associated maximal
immersion is singly periodic, it is not hard to see thatλj = rjλ, whererj ∈R, λ∈
C, andr 2

1 + r 2
2 − r 2

3 = 0. In particular,X̃(M̃ ) lies in a lightlike straight line inL3,

which is absurd.
Hence, we can suppose that at least one of the boundary curvesc1, c2 is mapped

underX onto a circle. After a reflection about a boundary cone point (if it exists),
we can suppose that, in fact, both curvesc1 andc2 determine circles and so the
set of singularities lies in the interior ofM.

SinceA is an annulus with boundary lying in horizontal planes, basic Morse
theory or complex analysis implies that the third coordinate function of the im-
mersion has no critical points. Thus, there are no points inM with vertical normal
vector and so the stereographic projection of the Gauss mapg (see (7)) has nei-
ther zeroes nor poles. Looking at (12) and taking into account Lemma 1, we infer
thatS1 is well-defined onM. As mentioned previously,S1 lies in the kernel of the
Jacobi operator1− |σ|2 onM. Furthermore, sinceX(c1) andX(c2) are circles in
the planesx3 = C with C ∈R, we deduce thatS1 vanishes on∂M.

On the other hand, if we denote byds2 the induced metric onM, then the met-
ric ds2

0 = 1
(|g|−1)2

ds2 has no singular points; that is, it is a Riemannian metric on

M that is conformal tods2. Labeling10 as the Laplacian associated tods2
0 yields

that1 = 1
(|g|−1)2

10, where1 is the Laplacian associated tods2. Furthermore, it
is clear that

10S1− qS1= 0,

whereq = |σ|2(|g|−1)2 > 0. Since the first eigenvalue of the operator10−q on
M is positive andS1 lies in its kernel, we have thatS1 vanishes at any point ofM—
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that is, the surface is foliated by circles or cone points in horizontal planes. These
kinds of surfaces were classified in Theorem 1. Finally, Remark 3 implies thatA

is a piece of either a catenoid or a surface lying in the familyR. See Figure 7.

Remark 6. Recall that the plane is the only spacelike maximal graph inL3 (in
fact, the only complete spacelike maximal surface inL3). However, any surface
inR has a translational fundamental piece consisting of a spacelike annulus with
two boundary cone points and an interior end that is asymptotic to a plane. It can
be proved that this piece is in fact a graph on the planex3 = 0, as occurs with a
half-catenoid.

Therefore, the space of spacelike graphs inL3 with a finite number of cone
points is nontrivial, and its study could be an interesting problem.

4. Maximal Surfaces Foliated by Pieces of Circles

Consider a spacelike maximal surface foliated by pieces of circles. In this sec-
tion we show that the planes of the foliation are actually parallel (see Theorem 4).
To do this, we use a similar technique to that developed for the Euclidean case in
[15, pp. 85–86]. The main dificulty in Lorentz–Minkowski space lies in the causal
character of the foliation planes: spacelike, timelike, and lightlike. As a matter of
fact, each case needs a different discussion.

LetM be an oriented maximal spacelike surface inL3 and considerX = X(u, v)
a local system of coordinates inM. We writeXu = ∂X

∂u
andXv = ∂X

∂v
. As the mean

curvature ofX vanishes, we have

E[Xu,Xv,Xvv] − 2F [Xu,Xv,Xuv] +G[Xu,Xv,Xuu] = 0, (31)

where
E = 〈Xu,Xu〉, F = 〈Xu,Xv〉, G = 〈Xv,Xv〉

are the coefficients of the first fundamental form with respect to{Xu,Xv} and
where [u1,u2,u3] denotes the determinant of the vectorsu1, u2, andu3 (see e.g.
[17] or [21, Chap. 7]). On the other hand, sinceX is spacelike,

W 2 = EG− F 2 = 〈Xu,Xu〉〈Xv,Xv〉 − 〈Xu,Xv〉2 > 0. (32)

Let us assume thatM is foliated by pieces of circles inL3; in other words, assume
thatM is generated by a 1-parameter family of pieces of circles, each of which is
contained in a plane ofL3. Denote byu the parameter of this family. We distin-
guish the following three cases.

Case 1: the planes are spacelike.Choose an orthogonal basis{e1(u),e2(u)} in
eachu-plane. Then the surface can be parameterized by

X(u, v) = c+ r(cosve1+ sinve2), u∈ I, v ∈ J (33)

(see (1)), whereI andJ are real intervals,c = c(u) belongs to theu-plane, and
r = r(u) > 0 is a smooth function.

Case 2: the planes are timelike.Let {e1(u),e2(u)} be an orthogonal basis in
eachu-plane, with−〈e1,e1〉 = 〈e2,e2〉 = 1. Following (2), we have
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X(u, v) = c+ r(coshve1+ sinhve2), u∈ I, v ∈ J, (34)

wherec, I, J, andr are as given in Case 1.

Case 3: the planes are lightlike.Following (3),

X(u, v) = c+ ve1+ rv2e2, u∈ I, v ∈J, (35)

whereI, J, c, andr 6= 0 are as before and where, for eachu, e1(u) ande2(u) are
vectors in theu-plane such that〈e1,e1〉 = 1 and〈e2,e2〉 = 0.

In Cases 1 and 2, letN(u) denote the unit orthogonal vector to theu-plane inR3

(the lightlike Case 3 merits a different treatment). Notice thatN(u) is not a light-
like vector and thatN(u) does not belong to theu-plane.

Let us explain the global strategy. Reasoning by contradiction, suppose that the
planes containing the pieces of circles are not parallel. This means thatN′(u) 6= 0
for u in some real interval, and hence the curveC havingN(u) as unit tangent field
is not a straight line. We will construct a moving frame adapted to the foliation,
one that actually comes from the Frenet frame of the curveC; we will express
(33) and (34) in terms of this frame. Later, we shall compute (31). We will obtain
either a real trigonometric polynomial or just a polynomial in one variable that
vanishes in some interval ofR. The fact that the coefficients of this polynomial
vanish will give the contradiction.

Theorem 4. LetM be a maximal spacelike surface in the Lorentz–Minkowski
spaceL3 foliated by pieces of circles. Then the planes containing these pieces of
circles must be parallel.

Proof. As just mentioned, the proof is by contradiction. We say that a setI ⊂ R
is spacelike, timelike, or lightlike if and only if, for anyu∈ I, the associated plane
in the foliation is (resp.) spacelike, timelike, or lightlike. In the next three sub-
sections we shall prove that the planes in the foliation are parallel on spacelike,
timelike, and lightlike intervals. Since the set of points ofR whose correspond-
ing plane in the foliation is spacelike (resp., timelike) is open, it is not hard to see
that the union of the spacelike, timelike, and lightlike open intervals is an open
and dense subset ofR. Because the map that takes everyu on its corresponding
plane in the foliation is continuous, we deduce that the foliation must be by circles
in parallel planes.

Hence, we can split the proof into three parts.

1: The surface is foliated by pieces of circles in spacelike planes

In this case,N(u) is a timelike vector:〈N(u),N(u)〉 = −1. Consider{t,n,b} the
Frenet frame of the integral curveC (N = t). Write the velocity vectorc′ as

c′ = αt + βn + γb, (36)

whereα, β, γ are smooth functions ofu. Up to a change of coordinates in (33)
given by a translation onv, and taking into account thatn andb are spacelike, we
can put
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X(u, v) = c+ r cosvn + r sinvb.

Up to signs, letκ andσ be respectively the curvature and the torsion of the curve
C. Notice thatκ 6= 0 becauseN ′ 6= 0, where the prime symbol denotes the de-
rivative with respect tou. Moreover,t ′ is a spacelike vector. Frenet equations for
C are:

t ′ = κn;
n′ = κt + σb;
b′ = −σn.

From (31), a straightforward computation yields

0= a cos 3v + b sin 3v + c cos 2v + d sin 2v + e cosv + f sinv + g, (37)

where

a = − 1
2r

3κ(r 2κ 2 − β2 + γ 2),

b = r 3κβγ,

c = 1
2r

3(−5rκ 2α + 6r ′κβ + rκ ′β − rκβ ′).
Froma = b = 0, we deduce thatγ = 0 andβ = ±rκ. Moreover,c = 0 implies
thatα = ±r ′. Therefore, it is not hard to see thatW = 0, a contradiction. Thus,
κ = 0 andC is a straight line.

2: The surface is foliated by pieces of circles in timelike planes

In this situation,N is a unit spacelike vector:〈N(u),N(u)〉 = 1. Let t = N the
unit tangent vector ofC. Since we are assuming the planes are not parallel,N ′ =
t ′ 6= 0. Moreover, it is clear that〈t ′, t〉 = 0. We distinguish three possibilities as
follows.

First Case:〈t ′, t ′ 〉 > 0. Let n be the unit spacelike vector field alongC such
thatt ′ = κn for some smooth functionκ 6= 0. Takeb = t ∧n,where∧ stands for
the cross product inL3. Notice that〈b,b〉 = −1. Up to a change of coordinates
by translations onv, we can write (34) as

X(u, v) = c+ r sinhvn + r coshvb.

Here, Frenet equations are

t ′ = κn,

n′ = −κt + σb,

b′ = σn.

The formula (31) can now be written as

0= a cosh 3v + b sinh 3v + c cosh 2v + d sinh 2v + e coshv + f sinhv + g,
where, with the same notation of (36),
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a = −r 3κβγ,

b = 1
2r

3κ(−r 2κ 2 + β2 + γ 2),

c = 1
2r

3(5rκ 2α − 6r ′κβ − rκ ′β + rκβ ′),
d = 1

2r
3(rκ ′γ − rκγ ′ − 6r ′κγ ).

Froma = 0, we have thatβγ = 0. We then reason as follows.

(i) Supposeβ = 0. Thenb = 0 implies thatγ 2 = r 2κ 2, and fromc = 0 we get
thatα = 0. Finally, d = 0 yieldsr ′ = 0. ThenW 2 = −r 4κ 2 < 0, which is
a contradiction.

(ii) Supposeγ = 0. Thenb = 0 givesβ = ±rκ, andc = 0 implies thatα =
±r ′. We deduce thatW = 0, a contradiction.

Second Case:〈t ′, t ′ 〉 < 0. Let n be the unit timelike vector field alongC such
thatt ′ = κn. The parameterization ofX is given by

X(u, v) = c+ r coshvn + r sinhvb,

whereb = t ∧ n. The corresponding Frenet equations are

t ′ = κn,

n′ = κt + σb,

b′ = σn.

Hence, we can write (31) as

0= a cosh 3v + b sinh 3v + c cosh 2v + d sinh 2v + e coshv + f sinhv + g,
where

a = − 1
2r

3κ(r 2κ 2 − β2 − γ 2),

b = −r 3κβγ,

c = 1
2r

3(−5rκ 2α + 6r ′κβ + rκ ′β − rκβ ′),
d = 1

2 r
3(−rκ ′γ + rκγ ′ − 6r ′κγ ).

Fromb = 0, we deduceβγ = 0.

(i) Supposeβ = 0. Froma = 0, it follows thatγ 2 = r 2κ 2, and using thatc =
0 we obtainα = 0. Hence,d = 0 impliesr ′ = 0. Therefore, the coefficient
e can now be computed easily as−3r 5κ3 = 0, a contradiction.

(ii) Therefore,γ = 0. Taking into account thata = 0, we haveβ = ±rκ.
Moreover,c = 0 givesα = ±r ′. With these data, one can check thatW = 0,
which is absurd.

Third Case:〈t ′, t ′ 〉 = 0. Since we are assuming that the foliation planes are not
parallel, it follows thatt ′ 6= 0. Hencet ′ is a lightlike vector lying in theu-plane.
Let n = t ′. For eachu, let b be the unique vector orthogonal tot such that
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〈b,b〉 = 0 and 〈b,n〉 = 1.

In fact, from (34) we have

n = λ(u)(−e1+ e2), b = 1

λ(u)
(e1+ e2),

whereλ is a differentiable function ofu. We may choose as a new parameter
−ev/2λ(u) instead ofv; then, still denoting the new parameter byv, (34) becomes

X(u, v) = c+ rvn − r

2v
b,

with r, v 6= 0. The Frenet equations are now

t ′ = n,

n′ = σn,

b′ = −t − σb.

Equation (31) gives

0= a 1

v6
+ b 1

v5
+ c 1

v4
+ d 1

v3
+ e 1

v2
,

where

a = − r
5

4
+ r

3β2

4
,

b = r 3

4
(−5rα + 6r ′β − rβ ′),

c = −2r 3α2 − r
3αβ ′

2
− r

3σαβ

2
+ r

3α ′β
2
+ 3r 3r ′2

2

+ r
4r ′σ
2
− r

4r ′′

2
− 3r 3βγ

2
+ r 2r ′αβ.

Froma = 0 we haveβ = ±r. Moreover,b = 0 implies thatα = ±r ′, and from
c = 0 we infer thatγ = 0. Hence, it is not hard to check thatW = 0, which is a
contradiction.

3: The surface is foliated by pieces of circles in lightlike planes

With a change of notation, (35) becomes

X(u, v) = c+ vn + rv2 t,

wherec, t,n lie in theu-plane,r > 0, v ∈ I, 〈t, t〉 = 〈n, t〉 = 0, and〈n,n〉 =
1. For eachu, let b(u) be the unique lightlike vector orthogonal ton such that
〈t,b〉 = 1 and [t,n,b] = 1. Note that, since a lightlike plane is the orthogonal
plane to any lightlike vector that belongs to it, the planes are parallel if and only
if the field t is constant (i.e., doesn’t depend on the parameteru). We may assume
that t ′ = κn. Indeed, it is easily seen that one can always determine a functionµ

of u such that the field̃t = µt satisfies the preceding requirement (accordingly,
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one must changer into r̃ = r/µ). Since we are assuming that the planes are non-
parallel, we haveκ 6= 0. The corresponding Frenet equations are

t ′ = κn,

n′ = σ t − κb,

b′ = −σn.

The vector fieldc′ is given in (36). The hypothesisH = 0 means here that

0= av4 + bv3+ cv2 + dv + e,
where

a = 7rκ 2(2r 2γ − r ′),
b = 16r 2κ 2β + 4rr ′κγ − 2r 2κγ ′ − r ′κ ′ + 2r 2κ ′γ − 8rκ 2σ + r ′′κ −16r 3κγ 2,

c = −2rκβ ′ − 9rκ 2α + 2rκ ′β − 20r 2κβγ + r ′γ ′ − 3r ′κβ + 4rr ′γ 2 − r ′′γ
− κ ′σ +11rκσγ + κσ ′.

Froma = 0, it follows that r ′ = 2r 2γ. The equationb = 0 givesσ = 2rβ. A
computation ofc with these data givesα = 0. Therefore, it is easy to prove that
W = 0, which is absurd.
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