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Maximal surfaces with singularities in Minkowski space

Masaaki Umehara and Kotaro Yamada
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Abstract. We shall investigate maximal surfaces in Minkowski 3-space with singulari-

ties. Although the plane is the only complete maximal surface without singular points,

there are many other complete maximal surfaces with singularities and we show that they

satisfy an Osserman-type inequality.
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Introduction

It is well-known that the only complete maximal (mean curvature zero)
space-like surface in the Minkowski 3-space L3 is the plane, and it is also
well-known that any maximal surface can be locally lifted to a null holo-
morphic immersion into C3 (see, for example, [K1] or [McN]). However,
the projection of a null holomorphic immersion to L3 might not be regular.
We shall call such surfaces maxfaces, and show that this class of generalized
surfaces is a rich object to investigate global geometry.

This is somewhat parallel to the case of flat surfaces in hyperbolic
3-space, in which the only complete non-singular examples are the horo-
sphere or hyperbolic cylinders. But if one considers flat (wave) fronts
(namely, projections of Legendrian immersions), there are many complete
examples and interesting global properties. See [KoUY3] and [KRSUY] for
details.

It should be remarked that Osamu Kobayashi ([K1, K2]) gave
a Weierstrass-type representation formula for maximal surfaces and inves-
tigated such surfaces with conelike singularities. Using the holomorphic
representation, Estudillo and Romero [ER] defined a class of maximal sur-
faces with singularities in more general type, and investigated criteria for
such surfaces to be a plane. Recently, Imaizumi [I2] studied the asymp-
totic behavior of maxfaces, and Imaizumi-Kato [IK] gave a classification
of maxfaces of genus zero with at most three ends. On the other hand,
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Lopez-Lopez-Souam [LLS] classified maximal surfaces that are foliated by
circles, which includes a Lorentzian correspondence of Riemann’s minimal
surface. Fernàndez-López-Souam [FLS] investigated the moduli space of
maximal graphs over the space-like plane with a finite number of conelike
singularities.

The Lorentzian Gauss map g of nonsingular maximal surface is a map
into upper or lower connected component of the two-sheet hyperboloid in L3.
By the stereographic projection from (1, 0, 0) of the hyperboloid to the
plane, the Lorentzian Gauss map g can be expressed as a meromorphic
function into C ∪ {∞} \ {ζ ∈ C ; |ζ| = 1}. The singular set of a maxface
corresponds to the set {|g| = 1}, and g can be extended meromorphically
on the singular set. We shall prove in Section 4 that a complete maxface
f : M2 → L3 satisfies the following Osserman-type inequality (The defini-
tion of completeness is given in Section 4.)

2 deg g ≥ −χ(M2)+(number of ends),

and equality holds if and only if all ends are properly embedded, where

g : M2 −→ S2 = C∪{∞}
is the Lorentzian Gauss map and deg g is its degree as a map to S2.

We also give examples for which equality is attained (Section 4). More-
over, applying the results on singularities of wave fronts in [KRSUY], we can
investigate singularities of maxfaces and give a criterion for a given singular
point to be locally diffeomorphic to cuspidal edges or swallowtails in terms
of the Weierstrass data (Section 3).

It should be remarked that Kim and Yang [KY] very recently con-
structed complete a genus one maxface of two catenoidal ends. Recently
Ishikawa and Machida [IM] showed that generic singular points of surfaces of
constant Gaussian curvature in the Euclidean 3-space and generic singular
points of improper affine spheres in the 3-dimensional affine space are both
cuspidal edges and swallowtails. On the other hand, Fujimori [Fu] and Lee
and Yang [LY] investigate space-like surfaces with singularities of mean cur-
vature one in the de Sitter space. (See also a forthcoming paper [FRUYY].)
In contrast to space-like maximal surfaces, time-like minimal surfaces are
related to Lorentz surfaces and a partial differential equation of hyperbolic
type, see Inoguchi-Toda [IT].

The authors thank Wayne Rossman, Shoichi Fujimori and the referee
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for valuable comments.

1. Preliminaries

The Minkowski 3-space L3 is the 3-dimensional affine space R3 with
the inner product

〈 , 〉 := −(dx0)2+(dx1)2+(dx2)2, (1.1)

where (x0, x1, x2) is the canonical coordinate system of R3. An immersion
f : M2 → L3 of a 2-manifold M2 into L3 is called space-like if the induced
metric

ds2 := f∗ 〈 , 〉 = 〈df, df〉
is positive definite on M2. Throughout this paper, we assume that M2 is
orientable. (If M2 is non-orientable, we consider the double cover.) Then
without loss of generality, we can regard M2 as a Riemann surface and f as
a conformal immersion.

The (Lorentzian) unit normal vector ν of a space-like immersion f :M2→
L3 is perpendicular to the tangent plane, and 〈ν, ν〉 = −1 holds. Moreover,
it can be regarded as a map

ν : M2 −→ H2
± = H2

+∪H2
−, (1.2)

where

H2
+ :=

{
ν = (ν0, ν1, ν2) ∈ L3 | 〈ν, ν〉 = −1, ν0 > 0

}
,

H2
− :=

{
ν = (ν0, ν1, ν2) ∈ L3 | 〈ν, ν〉 = −1, ν0 < 0

}
.

The map ν : M2 → H2± is called the Gauss map of f . A space-like immersion
f : M2 → L3 is called maximal if and only if the mean curvature function
vanishes identically. The composition of the Gauss map to the stereographic
projection π : H2± → C ∪ {∞} from the north pole (1, 0, 0) is expressed by

g := π◦ν = − ∂f0

∂f1 −√−1 ∂f2
(1.3)

which is a meromorphic function when f = (f0, f1, f2) is maximal. We also
call g the Gauss map of f . Since ν is valued on the set H2±, |g| 6= 1 holds
on M2. The original Gauss map ν of the maximal surface as in (1.2) is
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rewritten by

ν =
1

1− |g|2
(−(1+|g|2), 2Re g, 2 Im g

)
. (1.4)

A holomorphic map

F = (F 0, F 1, F 2) : M2 −→ C3

of a Riemann surface M2 to C3 is called a Lorentzian null map if

〈dF , dF 〉 = −(dF 0)2+(dF 1)2+(dF 2)2 = 0

holds on M2, where we denote by 〈 , 〉 the complexification of the Lorentzian
metric (1.1). Let g : M2 → C ∪ {∞} be a Gauss map of the conformal
spacelike maximal immersion f , then the holomorphic map

F :=
1
2

∫ z

z0

(−2g, (1+g2),
√−1(1−g2)

)
ω

is a Lorentzian null map defined on the universal cover M̃2 of M2, and
f = F + F holds, where ω is a holomorphic 1-form on M2 given by

ω := ∂f1−√−1 ∂f2.

Moreover

ds2 = (1−|g|2)2 ωω̄ (1.5)

holds (see [K1]). Let ds2
Hyp be the hyperbolic metric on C ∪ {∞} \

{ζ ∈ C ; |ζ| = 1}:

ds2
Hyp =

4 dζ dζ̄

(1− |ζ|2)2 .

Then we have

Lemma 1.1 The pull-back of the metric ds2
Hyp by the Gauss map g satis-

fies

Kds2 ds2 = g∗ds2
Hyp =

4 dg dḡ

(1− |g|2)2 , (1.6)

where Kds2 is the Gaussian curvature of ds2. In particular, the Gaussian
curvature of maximal surface in L3 is non-negative.
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Remark 1.2 The only complete maximal space-like immersion is a plane.
This classical fact is easily proved as follows: Without loss of generality, we
may assume M2 is connected and simply-connected. Moreover, we may
assume the Gauss map is valued in H2−, that is |g| < 1. Suppose M2 is
biholomorphic to the unit disk D2. Since (1−|g|2)2ωω̄ < ωω̄, the metric ωω̄

is a complete flat metric on D2, which is impossible. So M2 is conformally
equivalent to C, then g is constant. This implies that the image of f is
a plane.

2. Maxfaces

Definition 2.1 A smooth map f : M2 → L3 of an oriented 2-manifold M2

into L3 is called a maximal map if there exists an open dense subset W ⊂
M2 such that f |W is a maximal immersion. A point p where ds2 degenerates
is called a singular point of f .

Definition 2.2 Let f : M2 → L3 be a maximal map which gives a maxi-
mal immersion on W ⊂ M2, and p ∈ M2 \W a singular point. Then p is
called an admissible singular point if
(1) On a neighborhood U of p, there exists a C1-differentiable function

β : U ∩ W → R+ such that the Riemannian metric β ds2 on U ∩ W

extends to a C1-differentiable Riemannian metric on U , and
(2) df(p) 6= 0
hold. A maximal map f is called a maxface if all singular points are admis-
sible.

The condition “df(p) 6= 0” is equivalent to “rank df = 1” at the singular
point p.

Proposition 2.3 Let M2 be an oriented 2-manifold and f : M2 → L3

a maxface which is a maximal immersion on an open dense subset W ⊂ M2.
Then there exists a complex structure of M2 which satisfies the following:
(1) f |W is conformal with respect to the complex structure.
(2) There exists a holomorphic Lorentzian null immersion F : M̃2 → C3

such that f ◦ π = F + F , where π : M̃2 → M2 is the universal cover
of M2.

The holomorphic null immersion F as above is called the holomorphic
lift of the maxface f .
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Proof of Proposition 2.3. Since the induced metric ds2 = f∗ 〈 , 〉 gives
a Riemannian metric on W , it induces a complex structure on W . So it is
sufficient to construct a complex coordinate on a neighborhood of an ad-
missible singular point which is compatible to the complex structure on W .

Let p be an admissible singular point of f and U a sufficiently small
neighborhood of p. By definition, there exists a function β on U ∩W such
that β ds2 extends to a C1-differentiable Riemannian metric on a neighbor-
hood U . We assume U is simply connected. Then there exists a positively
oriented orthonormal frame field {e1, e2} with respect to β ds2 which is
C1-differentiable on U . Using this, we can define a C1-differentiable almost
complex structure J on U such that

J(e1) = e2, J(e2) = −e1. (2.1)

Since ds2 is conformal to β ds2 on W , J is compatible to the complex struc-
ture on W induced by ds2. There exists a C1-differentiable decomposition

(T ∗M2)C = (T ∗M2)(1,0)⊕(T ∗M2)(0,1)

with respect to J . Since f is C∞-differentiable, df is a smooth R3-valued
1-form. So we can take the (1, 0)-part ζ of df with respect to this decompo-
sition. Then ζ is a C1-differentiable C3-valued 1-form which is holomorphic
on W with respect to the complex structure (2.1). In particular dζ vanishes
on W . Moreover, since W is an open dense subset, dζ = 0 holds on U .

As we assumed that U is simply connected, the Poincaré lemma implies
that there exists a C1-differentiable map FU : U → C3 such that dFU = ζ.

Since the point p is an admissible singularity, ζ + ζ̄ = df(p) 6= 0 on M2.
In particular ζ 6= 0, and at least one component of ζ = dFU does not vanish
at p. If we write FU = (F 0, F 1, F 2), we can choose j = 0, 1, 2 such that
dF j(p) 6= 0. Using this F j , we define a function z = F j : U → C = R2.
Then, z gives a coordinate system on M2 on a neighborhood of p, because
dF j(p) 6= 0. Since z = F j is a holomorphic function U ∩ W , it gives
a complex analytic coordinate around p compatible with respect to that of
U ∩W . (If k is another suffix such that dF k(p) 6= 0, then w = F k gives also
a local complex coordinate system compatible with respect to z. In fact,

dw

dz
=

dF k

dF j
=

ζk

ζj

is holomorphic on U ∩W , and satisfies the Cauchy-Riemann equation on U ,
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since ζk, ζj are C1-differentiable and U ∩W is open dense in U .)
Since p is arbitrary fixed admissible singularity, the complex structure

of W extends across each singular point p, In particular, ∂f is holomorphic
whole on M2 and there exists a holomorphic map F : M̃2 → C3 such that
dF = ∂f . Since ∂(F +F ) = dF = ∂f , F +F differs f ◦π by a constant. So
we may take F such that F +F = f ◦π. Since f |W is a maximal immersion,
F is a Lorentzian null holomorphic immersion on π−1(W ). Since π−1(W )
is open dense subset, F is a Lorentzian null map on M̃2. Moreover, since
df(p) 6= 0 at each admissible singular point, we have

dF (q) = ∂(f ◦π)(q) = ∂f(p) 6= 0 (q ∈ π−1(p))

which implies that F is an immersion whole on M̃2. ¤

Conversely, a Lorentzian null immersion F : M2 → C3 gives a maxface
f = F + F , if it defines a maximal immersion on an open dense subset.
More precisely, we have:

Proposition 2.4 Let M2 be a Riemann surface and F : M2 → C3 a holo-
morphic Lorentzian null immersion. Assume

−|dF 0|2+ |dF 1|2+ |dF 2|2 (2.2)

does not vanish identically. Then f = F + F is a maxface. The set of
singularities of f is points where (2.2) vanishes.

Proof. If (2.2) does not vanish identically, the set

W = {−|dF 0|2+|dF 1|2+|dF 2|2 6= 0}
is open dense in M2. Since F is Lorentzian null,

−|dF 0|2 + |dF 1|2 + |dF 2|2 =−|(dF 0)2|+ |dF 1|2 + |dF 2|2
=−|(dF 1)2 + (dF 2)2|+ |dF 1|2 + |dF 2|2
≥−(|dF 1|2 + |dF 2|2) + |dF 1|2 + |dF 2|2
= 0.

Then it holds that

−|dF 0|2+|dF 1|2+|dF 2|2 > 0 on W.

In particular, f = F + F determines a conformal maximal immersion of W
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into L3 with induced metric

ds2 = 2
(−|dF 0|2+ |dF 1|2+ |dF 3|2).

On the other hand, since F is an immersion, dF 6= 0. Then

|dF 0|2 + |dF 1|2 + |dF 2|2 > 0.

Hence if we set

β :=
|dF 0|2 + |dF 1|2 + |dF 2|2

−|dF 0|2 + |dF 1|2 + |dF 2|2
on W , β is a positive function on W such that

β ds2 = 2
(|dF 0|2+ |dF 1|2+ |dF 2|2)

can be extended to a Riemannian metric on M2. This completes the proof.
¤

Remark 2.5 Even if F is a holomorphic Lorentzian null immersion, f =
F + F might not be a maxface. In fact, for the Lorentzian null immersion

F = (z, z, 0) : C −→ C3,

f = F + F degenerates on whole C.

For maximal surfaces, an analogue of the Weierstrass representation formula
is known (see [K1]). Summing up, we have:

Theorem 2.6 (Weierstrass-type representation for maxfaces) Let M2 be
a Riemann surface and f : M2 → L3 a maxface. Then there exists a mero-
morphic function g and a holomorphic 1-form ω on M2 such that

f = Re
∫ z

z0

(−2g, (1+g2),
√−1(1−g2)

)
ω, (2.3)

where z0 ∈ M2 is a base point. Conversely, let g and ω be a meromorphic
function and a holomorphic 1-form on M2 such that

(1+ |g|2)2 ωω̄ (2.4)

is a Riemannian metric on M2 and (1− |g|2)2 does not vanish identically.
Suppose

Re
∮

γ

(−2g, (1+g2),
√−1(1−g2)

)
ω = 0 (2.5)
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for all loops γ on M2. Then (2.3) defines a maxface f : M2 → L3. The set
of singular points of f is given by {p ∈ M2 ; |g(p)| = 1}.
Definition 2.7 We set

dσ2 := (1+|g|2)2|ω|2 = 2(|dF 0|2+|dF 1|2+|dF 2|2), (2.6)

and call it the lift-metric of the maxface f , where F = (F 0, F 1, F 2) is the
holomorphic lift.

The metric (1/2)dσ2 is nothing but the pull-back of the canonical Her-
mitian metric on C3 by the holomorphic lift F . We call a pair (g, ω) in
Theorem 2.6 the Weierstrass data of the maxface f . As seen in (1.4), g is
the Gauss map on regular points of f . We also call g : M2 → C ∪ {∞} the
Gauss map of the maxface f .

Denote by Kdσ2 the Gaussian curvature of the lift-metric dσ2. Then,
by (2.6), we have

(−Kdσ2) dσ2 =
4dg dḡ

(1 + |g|2)2 . (2.7)

The right-hand side is the pull-back of the Fubini-Study metric of P 1(C)
by the Gauss map g : M2 → C ∪ {∞} = P 1(C).

Remark 2.8 In [ER], Estudillo and Romero defined a notion of gener-
alized maximal surfaces as follows: Let M2 be a Riemann surface and
f : M2 → L3 a differentiable map. Then f is called a generalized maximal
surface if (1) ϕ := ∂f/∂z is holomorphic, (2) −(ϕ0)2 + (ϕ1)2 + (ϕ2)2 = 0,
and (3) −|ϕ0|2 + |ϕ1|2 + |ϕ2|2 is not identically zero. Singular points of such
a surface is either (A) an isolated zero of ϕ (a “branch point”) or (B) a point
where |g| = 1. Propositions 2.3 and 2.4 implies that a maxface in our sense
is a generalized maximal surface without singular points of type (A).

3. Singularities of maxfaces

In the previous section, we defined maxfaces as surfaces with singulari-
ties. So it is quite natural to investigate which kind of singularities appear
on maxfaces. We note that {(x, y, z) ∈ R3 ; x2 = y3} is the cuspidal edge,
and {(x, y, z) ∈ R3 ; x = 3u4+u2v, y = 4u3+2uv, z = v} is the swallowtail.
We shall prove the following:
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Theorem 3.1 Let U be a domain of the complex plane (C, z) and f : U →
L3 a maxface with the Weierstrass data (g, ω = ω̂ dz), where ω̂ is a holo-
morphic function on U . Then
(1) A point p ∈ U is a singular point if and only if |g(p)| = 1.
(2) The image of f around a singular point p is locally diffeomorphic to

a cuspidal edge if and only if

Re
(

g′

g2ω̂

)
6= 0 and Im

(
g′

g2ω̂

)
6= 0

hold at p, where ω(z) = ω̂(z)dz and ′ = d/dz.
(3) The image of f around a singular point p is locally diffeomorphic to

a swallowtail if and only if

g′

g2ω̂
∈ R \ {0} and Re

{
g

g′

(
g′

g2ω̂

)′}
6= 0

hold at p.

In [KRSUY], a criterion for a singular point on a wave front in R3 to
be a cuspidal edge or a swallowtail is given. We shall recall it and prove the
theorem as an application of it: We identify the unit cotangent bundle of
the Euclidean 3-space R3 with R3 × S2 = {(x,n) ; x ∈ R3, n ∈ S2}, then

ξ := n1 dx1+n2 dx2+n3 dx3
(
x = (x1, x2, x3), n = (n1, n2, n3)

)

gives a contact form and a map

L = (fL,n) : U (⊂ R2) −→ R3×S2

is called a Legendrian if the pull-back of the contact form ξ vanishes, that is
(fL)u and (fL)v are both perpendicular to n, where z = u +

√−1 v. If L is
a Legendrian immersion, the projection fL of L into R3 is called a (wave)
front.

Now let L = (f,n) : U → R3×S2 be a Legendrian immersion. A point
p ∈ U where f is not an immersion is called a singular point of the front f .

By definition, there exists a smooth function λ on U such that

fu×fv = λ n (3.1)

where × is the Euclidean vector product of R3. A singular point p ∈
U is called non-degenerate if dλ does not vanish at p. We assume p is
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a non-degenerate singular point. Then there exists a regular curve around
the point p

γ = γ(t) : (−ε, ε) −→ U

(called the singular curve) such that γ(0) = p and the image of γ coincides
with the set of singular points of f around p. The tangential direction of
γ(t) is called the singular direction. On the other hand, a non-zero vector
η ∈ TU such that df(η) = 0 is called the null direction. For each point γ(t),
the null direction η(t) determined uniquely up to scalar multiplications. We
recall the following

Proposition 3.2 ([KRSUY]) Let p = γ(0) ∈ U be a non-degenerate sin-
gular point of a front f : U → R3.
(1) The germ of the image of the front at p is locally diffeomorphic to

a cuspidal edge if and only if η(0) is not proportional to γ̇(0), where
γ̇ = dγ/dt.

(2) The germ of the image of the front at p is locally diffeomorphic to
a swallowtail if and only if η(0) is proportional to γ̇(0) and

d

dt
det

(
γ̇(t), η(t)

)∣∣∣∣
t=0

6= 0.

Now, we identify the Minkowski space L3 with the affine space R3, and
denote by 〈 , 〉Euc the Euclidean metric of R3. To prove Theorem 3.1, we
prepare the following:

Lemma 3.3 Let f : M2 → L3 ' R3 be a maxface with Weierstrass data
(g, ω). Then f is a projection of a Legendrian map L : M2 → R3 × S2.
Moreover, f is a front on a neighborhood of p, and p is a non-degenerate
singular point if and only if

Re
(

g′

g2ω̂

)∣∣∣∣
p

6= 0, (3.2)

where ω = ω̂ dz.

Proof. Let z = u +
√−1 v be a complex coordinate of M2 around p and

write ω = ω̂ dz, where ω̂ is a holomorphic function in z. Then (2.3) implies

fz =
1
2
(−2g, 1 + g2,

√−1(1− g2)
)
ω̂,
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fz̄ =
1
2
(−2ḡ, 1 + ḡ2,−√−1(1− ḡ2)

)
ω̂.

Thus, we have

fu×fv = −2
√−1 fz×fz̄ = (|g|2−1)|ω̂|2(1+gḡ, 2Re g, 2 Im g),

where × is the Euclidean vector product of R3. Let

n :=
1√

(1 + |g|2)2 + 4|g|2 (1+|g|2, 2Re g, 2 Im g). (3.3)

Then n is the Euclidean unit normal vector of f , that is 〈df(X),n〉Euc = 0
for all X ∈ TM2, where 〈 , 〉Euc is the Euclidean inner product.

From now on, we assume |g(p)| = 1, and hence ω(p) 6= 0. At the
singular point p, we have

df =
1
2
(−2g, (1 + g2),

√−1(1− g2)
)
ω̂ dz

+
1
2
(−2ḡ, (1 + ḡ2),−√−1(1− ḡ2)

)
ω̂ dz̄

=
1
2

(
−2,

1
g

+ g,
√−1

(
1
g
− g

))
gω

+
1
2

(
−2,

1
ḡ

+ ḡ,−√−1
(

1
ḡ
− ḡ

))
ḡω̄

= (−1,Re g, Im g)(gω + ḡω̄)

because ḡ(p) = 1/g(p). In particular,

η =
√−1
gω̂

, (3.4)

gives the null-direction at p, where we identify TpM
2 with R2 and C as

ζ =a+
√−1b∈C ↔ (a, b)∈R2 ↔ a

∂

∂u
+b

∂

∂v
↔ ζ

∂

∂z
+ζ̄

∂

∂z̄
. (3.5)

On the other hand, we have

dn(p) =
√−1
2
√

2

(
dg

g
− dḡ

ḡ

) (
0, Im g,−Re g

)
.

If dg(p) = 0 then (f,n) is not an immersion at p because dn(p) = 0. So we
may assume dg(p) 6= 0. Then the null direction of dn at p is proportional
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to

µ =
(

g′

g

) (
′ =

d

dz

)
(3.6)

under the identification with (3.5). On the other hand, f is a front on
a neighborhood at p if and only if 〈df, df〉Euc + 〈dn, dn〉Euc is positive
definite, that is η in (3.4) and µ in (3.6) are linearly independent, or equiv-
alently

0 6= det(µ, η) = Im(µ̄η) = Im
g′

g

√−1
gω̂

.

Then we have the first part of the conclusion. On the other hand, the
function λ as in (3.1) is calculated as

λ = 〈fu × fv,n〉Euc = (|g|2−1)|ω̂|2
√

(1 + |g|2)2 + 4|g|2. (3.7)

Since dσ2 in (2.6) is a Riemannian metric, g must have pole at p if ω(p) = 0
for p ∈ M2. In this case, f is an immersion at p since |g(p)| 6= 1. Hence it
is sufficient to consider the case ω(p) 6= 0. At a singular point p, we have

dλ(p) = 2
√

2 |ω̂|2 (ḡ dg + g dḡ) = 2
√

2 |ω̂|2
(

dg

g
+

dḡ

ḡ

)

because |g(p)| = 1. Hence dλ(p) 6= 0 if and only if dg(p) 6= 0. If (3.2) holds
at p, p is non-degenerate because dg(p) 6= 0. ¤

Remark 3.4 At a singular point p such that g′/(g2ω̂)(p) = 0, f is not
a front. For example, for a maxface f defined by the Weierstrass data
g = ez and ω =

√−1 dz, the pair (f(z),n(z)) is not an immersion into
R3 × S2 at z = 0.

Proof of Theorem 3.1. We have already shown (1) in the proof of Lemma
3.3. Assume Re(g′/(g2ω̂)) 6= 0 holds at a singular point p. Then f is a front
and p is a non-degenerate singular point. Since the singular set of f is
characterized by gḡ = 1, the singular curve γ(t) with γ(0) = p satisfies
g(γ(t))g(γ(t)) = 1. Differentiating this, we get

Re
(

g′

g
γ̇

)
= 0

(
′ =

d

dz
, ˙ =

d

dt

)
.

This implies that γ̇ is perpendicular to g′/g, that is, proportional to
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√−1 (g′/g). Hence we can parametrize γ as

γ̇(t) =
√−1

(
g′

g

)(
γ(t)

)

under the identification as in (3.5). On the other hand, the null direction is
given as (3.4). Then by Proposition 3.2, the germ of the image of the front
at p is locally diffeomorphic to a cuspidal edge if and only if det(γ̇, η) 6= 0.
Here,

det(γ̇, η) = Im γ̇η = − Im
√−1

g′

g

√−1
gω̂

.

Then we have (2).
Next, we assume Im(g′/(g2ω̂)) = 0 holds at the singular point p. In

this case,

d

dt

∣∣∣∣
t=0

det(γ̇, η) = Im
((

g′

g2ω̂

)′ dγ

dt

)
= −Re

(
g′

g2ω̂

)′(g′

g

)

= −
∣∣∣∣
g′

g

∣∣∣∣
2

Re
{

g

g′

(
g′

g2ω̂

)′}
.

Thus, the second part of Proposition 3.2 implies (3). ¤

4. Complete Maxfaces

Firstly, we define completeness and finiteness of total curvature for max-
faces:

Definition 4.1 Let M2 be a Riemann surface. A maxface f : M2 → L3

is complete (resp. of finite type) if there exists a compact set C ⊂ M2 and
a symmetric 2-tensor T on M2 such that T vanishes on M2 \ C and ds2 +
T is a complete metric (resp. a metric of finite total Gaussian curvature)
on M2, where ds2 is the pull-back of the Minkowski metric by f .

Later (Theorem 4.6), we shall show that complete maxfaces are always
of finite type.

Remark 4.2 As seen in Lemma 1.1, the Gaussian curvature of ds2 is
non-negative wherever ds2 is non-degenerate. Then the total curvature of
ds2 +T is well-defined as a real number or +∞. (The total curvature of ds2

itself is not well-defined because (1.6) diverges on the singular set {|g| = 1}.
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In fact, the only complete maxface of finite total curvature (in the sense of
improper integral) is the plane ([ER, Theorem 5.2]).

Lemma 4.3 If a maxface f : M2 → L3 is complete (resp. of finite type),
then the lift-metric dσ2 is complete (resp. a metric of finite total absolute
curvature) on M2.

Proof. Let (g, ω) be the Weierstrass data of f and T a symmetric 2-tensor
as in Definition 4.1. Then by (1.5) and (2.6), we have ds2 +T ≤ dσ2 outside
the compact set C. Thus, if ds2 + T is complete, so is dσ2.

We denote the Gaussian curvature of the metric dσ2 by Kdσ2 . Then we
have

(−Kdσ2)dσ2 =
4dg dḡ

(1 + |g|2)2 ≤
4dg dḡ

(1− |g|2)2 = Kds2 ds2 on M2 \C

(4.1)
because of (1.6) and (2.7). Thus, if ds2 + T is of finite total curvature, the
total absolute curvature of dσ2 is finite. ¤

Our definition of ‘completeness’ of maxface is rather restrictive: In fact
the universal covering of complete maxface might not be complete since the
singular set might not be compact on the universal cover. The following
‘weak completeness’ seems useful in some cases.

Definition 4.4 A maxface f : M2 → L3 is weakly complete if the lift-
metric dσ2 is a complete metric.

By Lemma 4.3, completeness implies weakly completeness. However,
the converse is not true. For example, let

F :=
∫ (−2

√−1 z, 1−z2,
√−1(1+z2)

) dz

(z2 − 1)2
.

Then F is a Lorentzian null immersion of the universal cover of C ∪ {∞} \
{−1, 1} into C3, and f = F + F gives a maxface defined on C ∪ {∞} \
{−1, 1}. Though the lift-metric

dσ2 =
(|z|2 + 1)2

|z2 − 1|2 dz dz̄

is complete on C ∪ {∞} \ {−1, 1}, the induced metric

ds2 =
(|z|2 − 1)2

|z2 − 1|2 dz dz̄
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is not. In fact, the set of singularities (degenerate points of ds2) is the set
{|z| = 1} which accumulates at z = ±1.

Proposition 4.5 Let f : M2 → L3 be a weakly complete maxface. Sup-
pose that the lift-metric dσ2 has finite absolute total curvature. Then the
Riemann surface M2 is biholomorphic to a compact Riemann surface M

2

excluding a finite number of points {p1, . . . , pn}. Moreover, the Weierstrass
data (g, ω) of f can be extended meromorphically on M

2.

Proof. By our assumptions, the lift-metric dσ2 is a complete metric of finite
absolute total curvature. Moreover, by (4.1), the Gaussian curvature of dσ2

is non-positive. Hence by Theorem A.1 in Appendix (or by Theorem 9.1
in [O]), M2 is biholomorphic to M

2 \ {p1, . . . , pn}.
Identifying C ∪ {∞} with the unit sphere S2, the total absolute curva-

ture of dσ2 is nothing but the area of the image of the Gauss map g : M2 →
S2 counting multiplicity. Hence if dσ2 is a metric of finite total curvature,
g cannot have an essential singularity at {pj}. Finally, we shall prove that
pj is at most a pole of ω. If g(pj) 6= ∞, there exists a neighborhood U of pj

in M
2 such that |g| is bounded on U . In this case,

dσ2 = (1+ |g|2)2 ωω̄ ≤ k ωω̄

holds on U , where k is a positive constant, and hence ωω̄ is complete at pj .
Then by Lemma 9.6 of [O], ω must have a pole at pj .

On the other hand, if g(pj) = ∞, dσ2 ≤ k(g2ω)(g2ω) holds on a neigh-
borhood of pj , where k is a positive constant. Hence g2ω has a pole at pj .

¤

We call the points p1, . . . , pn in Proposition 4.5 the ends of the max-
face f . For a weakly complete maxface of finite total absolute curvature
with respect to dσ2, the Gauss map g is considered as a holomorphic map
g : M

2 → C ∪ {∞}.
Theorem 4.6 If a maxface f : M2 → L3 is complete, then it is of finite
type.

Remark 4.7 This assertion is essentially different from the case of min-
imal surfaces in the Euclidean 3-space. There are many complete minimal
surfaces with infinite total curvature like as a helicoid. The main difference
is that the Gaussian curvature of maximal surfaces are non-negative while
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that of minimal surfaces are non-positive.

Proof. Since the Gaussian curvature of f is nonnegative, Theorem 13 of
Huber [H] implies that M2 is diffeomorphic to M

2 \ {p1, . . . , pn}, where
M

2 is a compact Riemann surface and {p1, . . . , pn} is a finite subset in M
2.

Moreover, a modification of Theorem 15 in Huber [H] yields that M2 is
biholomorphic to M

2 \ {p1, . . . , pn}. (See the introduction of Li [Li] and
also the Appendix.) We fix an end pj arbitrary, and take a small coordinate
neighborhood (U, z) with the origin pj . Without loss of generality, we may
assume that there are no singular points on U \ {pj}, and thus we may
also assume that |g| < 1 holds on U \ {pj} for the Gauss map g. (In fact,
g changes to 1/g if we move the position of the stereographic projection to
the south pole.) By the Great Picard theorem, g has at most pole at z = pj .

We now suppose |g(pj)| = 1 for an end pj . Since g : M
2 → C ∪ {∞}

is holomorphic at pj , we can take a complex coordinate z on M
2 such that

z(0) = pj and g(z) = a + zk, where a is a complex number with |a| =
1 and k is a positive integer. In this coordinate, the set {z ; |g(z)|2 =
(a + zk)(ā + z̄k) = 1} accumulates at the end z = 0. Thus the singular
set of f is non-compact, which contradicts to completeness. Hence we have
|g(pj)| 6= 1. Then there exists a positive number ε (< 1) such that |g|2 <

1− ε holds on U . In this case, the Gaussian curvature Kds2 (resp. Kdσ2) of
ds2 (resp. dσ2) satisfies

Kds2 ds2 =
4dg dḡ

(1− |g|2)2 ≤
(

2
ε
− 1

)2 4dg dḡ

(1 + |g|2)2 =const.(−Kdσ2)dσ2.

(4.2)
Since pj is a pole of g, dσ2 has finite total curvature on U . Hence ds2 is of
finite type at the end pj . ¤

Corollary 4.8 A maxface f : M2 → L3 is complete if and only if f is
weakly complete of finite total curvature with respect to the lift-metric dσ2

and |g(pj)| 6= 1 holds for each end p1, . . . , pn.

Proof. Let f : M2 → L3 be a complete maxface. Then f is of finite type
by the previous theorem. By Lemma 4.3, f is weakly complete whose total
absolute curvature of the lift-metric is finite, and get the conclusion.

Conversely, we let f : M
2 \ {p1, . . . , pn} → L3 be an weakly complete

maxface whose total absolute curvature of the lift-metric is finite, and as-
sume |g(pj)| 6= 1 for j = 1, . . . , n. Fix an end pj and assume |g(pj)| < 1.
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Then we can take a neighborhood Uj such that |g|2 < 1 − ε holds on Uj ,
where ε ∈ (0, 1) is a constant. In this case,

ds2 = (1−|g|2)2ωω̄ ≥ ε2ωω̄ ≥ ε2

4
(1+|g|2)2ωω̄ =

ε2

4
dσ2

holds on Uj . Since dσ2 is complete at pj , so is ds2. ¤

Remark 4.9 In the case of |g(pj)| = 1, the unit normal vector ν tends to
a null (light-like) vector at the end. Imaizumi [I2] investigated the asymp-
totic behavior of such ends.

To prove the inequality mentioned in Introduction, we first investigate
the behavior of the holomorphic lift around a single end.

Proposition 4.10 Let ∆∗ = {z ∈ C ; 0 < |z| < 1} and f : ∆∗ → L3 be
a maxface such that an end 0 is complete, and denote by F the holomorphic
lift of it. Then dF has a pole at 0 of order at least 2.

Proof. Since f is complete, the lift-metric

dσ2 = 2

(∣∣∣∣
dF 0

dz

∣∣∣∣
2

+
∣∣∣∣
dF 1

dz

∣∣∣∣
2

+
∣∣∣∣
dF 2

dz

∣∣∣∣
2
)

dz dz̄

is a complete metric at the origin. Then at least one of dF j/dz (j = 0, 1, 2)
has a pole at z = 0. We assume dF/dz has a pole of order 1 at z = 0. Then
dF/dz is expanded as

dF

dz
=

1
z
(a0, a1, a2)+O(1),

where O(1) denotes the higher order terms. Since f = F +F is well-defined
on a neighborhood of z = 0, the residue of dF at z = 0 must be real
(see (2.5)): (a0, a1, a2) ∈ R3. On the other hand, by the nullity of F , we
have

−(a0)2+(a1)2+(a2)2 = 0. (4.3)

Here, by (1.3),

g(0) = − lim
z→0

dF 0

dF 1 −√−1 dF 2
= − a0

a1 −√−1 a2
.

Then by (4.3), |g(0)|2 = (a0)2/{(a1)2 + (a2)2} = 1. This is a contradiction,
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because of Theorem 4.8. Hence dF has a pole of order at least 2. ¤

Theorem 4.11 (Osserman-type inequality) Let M
2 be a compact

Riemann surface and f : M
2 \{p1, . . . , pn} → L3 a complete maxface. Then

the Gauss map g : M
2 → C ∪ {∞} satisfies

2 deg g ≥ −χ(M2)+n = −χ(M2)+2n,

and equality holds if and only if all ends are properly embedded, that is, there
exists a neighborhood Uj of each end pj such that f |Uj\{pj} is an embedding.

Proof. By (2.7), we have

deg g =
1
4π

∫

M2

(−Kdσ2)dAdσ2 .

By a rigid motion in L3, we may assume g(pj) 6= ∞ (j = 1, . . . , n). Since

dσ2 = (1+ |g|2)2 ωω̄

and ω has at least pole of order 2, the inequality follows from the proof
of the original Osserman inequality for the metric dσ2. (See Theorem 9.3
in [O], or [Fa]).

As we assumed g(pj) 6= ∞ (j = 1, . . . , n), the equality holds if and only
if ω has a pole of order exactly 2 at each end. Assume ω has pole of order 2
at pj and take a coordinate z around pj such that z(pj) = 0. Without loss
of generality, we may assume g(0) = 0. By a direct calculation, we have an
expansion of f(z) as

f(z) =
a

r
(cos θ, sin θ, 0)+c log r (0, 0, 1)+O(1) (z = re

√−1 θ)

around z = 0, where a ∈ R \ {0} and c ∈ R are constants (see [KoUY1]
and also [I2]). If c 6= 0 (resp. c = 0), the end is asymptotic to the end of the
Lorentzian catenoid as in Example 5.1 (resp. the plane), which is embedded.
Conversely, if ω has pole of order more than 2 at pj , a similar argument to
that of Jorge-Meeks [JM] or [S] concludes that the end is not embedded.
(A good reference is [KoUY1].) ¤

5. Examples

We shall first introduce two classical examples.
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Example 5.1 (Lorentzian catenoid) Rotating a curve x1 = a sinh(x0/a)
(a 6= 0) in the x0x1-plane around the x0-axis, we have a surface of revolution

f : S1×R 3 (θ, t) 7−→ a
(
t, cos θ sinh t, sin θ sinh t

) ∈ L3.

Then one can see that f gives a maximal immersion on S1×R \ {0}, hence
f is a maximal map in the sense of Definition 2.1, and S1 × {0} is the set
of singularities of f . Since the induced metric is represented as

ds2 = a2 sinh2 t (dt2+dθ2), (5.1)

cosech2 t ds2 = a2(dt2 + dθ2) extends smoothly across on the singularities.
Hence f is a maxface. Moreover, it can be easily seen that f is complete.
The Weierstrass representation of f is given as follows: Let M2 = C \ {0}
and g = z, ω = a dz/z2. Then (g, ω) gives the Lorentzian catenoid (5.1).
The set of singularities is {|z| = 1} and its image by f is the origin in L3 at
which the image of f is tangent to the light-cone (see Figure 1 left). Such
a singularity is called a conelike singularity, which was first investigated
in [K2]. See also [FLS] and [I1].

the Lorentzian catenoid the Lorentzian Enneper surface:
the singular set is shown in the black line.

Fig. 1. Examples 5.1 and 5.2

Example 5.2 (Lorentzian Enneper surface) Let M2 = C and (g, ω) =
(z, dz). Then there exists the maxface f : C → L3 with Weierstrass data
(z, dz). The set of the singularities is the unit circle {|z| = 1}. The points
±1, ±√−1 are swallowtails and the points e

√−1π
4 , e

√−1 3
4
π, e

√−1 5
4
π, e

√−1 7
4
π

are neither cuspidal edges nor swallowtails. In fact, these four points are
cuspidal crosscaps (see [FSUY]). The singular points other than these 8



Maximal surfaces 33

points are cuspidal edges (see Figure 1, right).

To produce further examples, we consider a relationship between
maxfaces and minimal surfaces in the Euclidean space R3, and shall give
a method transferring minimal surfaces to maxfaces.

Let f : M2 → L3 be a maxface and F = (F 0, F 1, F 2) : M̃2 → C3 its
holomorphic lift, where M̃2 is the universal cover of M2. Set

F0 :=
(
F 1

0 , F 2
0 , F 3

0

)
=

(
F 1, F 2,

√−1 F 0
)
.

Since F is a Lorentzian null immersion, F0 is an (Euclidean) null immersion,
that is,

(dF 1
0 )2 +(dF 2

0 )2 +(dF 3
0 )2 = 0.

Hence

f0 = F0 +F0 (5.2)

is a conformal minimal immersion of M̃2 into the Euclidean 3-space R3.

Definition 5.3 A minimal immersion f0 : M̃2 → R3 as in (5.2) is called
the companion of the maxface f .

The companion of the Lorentzian catenoid (resp. the Lorentzian
Enneper surface) as in Examples 5.1 and 5.2 is the helicoid (resp. the
Enneper surface).

The lift-metric of a maxface f as in (2.6) is the induced metric of the
companion f0, and the Gauss map g0 of f0 is represented as

g0 = −√−1 g, (5.3)

where g is the Gauss map of f . Moreover, by Lemma 4.3 and by Theo-
rem 4.6, dσ2 is a complete metric on M2 with finite total curvature if f is
complete.

By definition of F0, there exists representations ρj : π1(M2) → R (j =
1, 2, 3) such that

F0◦τ = F0+
(√−1ρ1(τ),

√−1ρ2(τ), ρ3(τ)
) (

τ ∈π1(M2)
)

(5.4)

holds, where τ in the left-hand side is considered as a deck transformation
on M̃2.
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Conversely, we should like to construct a complete maxface via the
complete minimal surfaces of finite total curvature:

Proposition 5.4 Let M2 be a Riemann surface and M̃2 the universal
cover of it. Assume a null holomorphic immersion F0 : M̃2 → C3 satisfies
the following conditions.
(1) There exists representations ρj (j = 1, 2, 3) such that (5.4) holds for

each τ ∈ π1(M2).
(2) If we set dF0 = (ϕ1

0, ϕ
2
0, ϕ

3
0), the function −|ϕ3

0|2 + |ϕ1
0|2 + |ϕ2

0|2 does
not vanish identically.

Then there exists a maxface f : M2 → L3 whose companion is f0 = F0 +F0.
Moreover, if the induced metric of f0 defines a complete metric of finite
total curvature on M2, then f is a complete maxface if and only if

|g(pj)| 6= 1
(

g :=
√−1

∂f3
0

∂f1
0 −

√−1 ∂f2
0

)
(j = 1, . . . , n),

(5.5)
where M2 = M

2 \ {p1, . . . , pn} with compact Riemann surface M
2 and

{p1, . . . , pn} is the set of ends.

Proof. Let

ϕ =
(−√−1 ϕ3

0, ϕ
1
0, ϕ

2
0

)
and F :=

∫ z

z0

ϕ,

where z0 ∈ M̃2 is a base point. Then by the condition (1), f = F + F

is well-defined on M2. Moreover, by (2),
〈
dF , dF

〉
is not identically 0.

Hence f is a maxface. Suppose now that f0 is complete and of finite total
curvature. Then, the lift-metric dσ2 is complete and of finite total curvature.
If |g(pj)| 6= 1 for j = 1, . . . , n, f is complete by Theorem 4.8. ¤

Example 5.5 (Lorentzian Chen-Gackstatter surface) We set

M
2 = {(z, w) ∈ C2∪{∞,∞} ; w2 = z(z2−a2)},

where a is a positive real number, and set

ϕ0 :=
1
2

(( z

w
−B2 w

z

)
,
√−1

( z

w
+ B2 w

z

)
, 2B

)
dz,

where
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B2 =
∫ a

0

x dx√
x(a2 − x2)

/∫ a

0

(a2 − x2) dx√
x(a2 − x2)

.

Then

f0 := F0+F0,

(
F0 =

∫ z

z0

ϕ0

)

gives a complete minimal immersion f0 of M2 := M
2 \ {∞} into R3, which

is called Chen-Gackstatter surface ([CG]).
Since the third component of ϕ0 is an exact form, F 3

0 is well-defined
on M2. In particular, (5.4) holds for ρ3 = 0.

Moreover, g = Bw/z in (5.5) tends to 0 as z → ∞. Hence the corre-
sponding maxface f : M2 → L3 given by Proposition 5.4 is complete, which
is called the Lorentzian Chen-Gackstatter surface.

Example 5.6 (Minimal surfaces which admits a Lopez-Ros deformation)
Let f : M2 → R3 be a complete conformal minimal immersion of finite total
curvature. Then there exists a null holomorphic lift F : M̃2 → C3 such that
f = F + F . Then we have a representation ρ : π1(M2) → R3 such that

F ◦τ = F +
√−1 ρ(τ)

(
τ ∈ π1(M2)

)
. (5.6)

Then f is called a minimal surface which admits the Lopez-Ros deformation
if ρ(π1(M2)) is contained in a 1-dimensional subspace of R3. In this case,
by a suitable rotation of the surface, we may assume that

ρ
(
π1(M2)

) ⊂ R
(
0, 0, 1

)
. (5.7)

We set

dF =
1
2
(
(1−g2),

√−1(1+g2), 2g
)
ω.

For each non-zero real number λ, replacing Weierstrass data (g, ω) by
(λg, ω/λ), the new minimal immersion

fλ = Fλ+Fλ, dFλ =
1
2
(
(1−λ2g2),

√−1(1+λ2g2), 2g
)
ω

also gives a conformal minimal immersion of M2 because of (5.7). In par-
ticular, fλ is complete and of finite total curvature. The 1-parameter family
{fλ} is called a Lopez-Ros deformation of f [LR]. Then one can easily check
that all of

√−1 Fλ satisfy (5.4) with ρ1 = ρ2 = 0. Moreover, except for only
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finite many values of λ, the condition |g(pj)| 6= 1 holds (j = 1, . . . , n),
where p1, . . . , pn are ends of the immersion f . Thus we can construct com-
plete maxface f̂λ from

√−1 Fλ except for at most finitely many values of λ.
Remark that fλ and f−λ are congruent with each other. The number of
λ > 0 such that f̂λ is not complete is not exceed the number of the ends n.

Many examples of minimal surfaces which admit Lopez-Ros deforma-
tion are known [Lo, KaUY, Mc]. So we have uncountably many examples
of complete maxfaces.

Example 5.7 The Jorge-Meeks surface is a complete minimal surface
in R3 with n catenoidal ends. Such a surface is realized as an immersion

f0 : C∪{∞}\{1, ζ, . . . , ζn−1} −→ R3 (ζ = e2πi/n)

with Weierstrass data

g0 = zn−1, ω0 =
dz

(zn − 1)2
.

It can be easily checked that, there exists a maxface f whose minimal com-
panion is the Jorge-Meeks’ surface. Here, g in (5.5) is zn−1, |g| = 1 holds
on each end. Hence the maxface f is not complete but weakly complete.
As pointed out in Remark 4.9, Imaizumi [I2] investigated weakly complete
maxface, and introduced a notion of simple ends for an end pj satisfying
|g(pj)| = 1. Imaizumi and Kato [IK] classified weakly complete maxfaces of
genus zero with at most 3 simple ends.

A. A consequence of Huber’s theorem.

This appendix was prepared for the forthcoming paper Fujimori,
Rossman, Umehara, Yamada and Yang [FRUYY], but the other authors
allow to put it in this paper. We shall show that the following assertion is
a simple consequence of Huber’s theorem [H, Theorem 13].

Theorem A.1 Let (M2, ds2) be a complete Riemannian 2-manifold and
K the curvature function. Suppose

∫

M2

(−K−) dA < ∞, (A.1)

where

K− := min(K, 0).
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Then there exists a compact Riemann surface M
2 and finite points

p1, . . . , pn ∈ M
2 such that M2 is bi-holomorphic to M

2 \ {p1, . . . , pn}.
This assertion was pointed out in Li [Li] without proof. Here, we shall

give a proof for a help for readers. To prove the assertion we use the
following well-known fact in Huber’s paper

Fact A.1 (Huber [H, Theorem 13]) Let (M2, ds2) be a complete
Riemannian 2-manifold such that (A.1) holds. Then M2 is diffeomorphic
to M

2 \ {p1, . . . , pn}, where M
2 is a compact 2-manifold.

Moreover, the following assertion is known:

Fact A.2 (Blanc-Fiala [BF], Huber [H, Theorem 15]) Let (M2, ds2) be
a complete Riemannian 2-manifold such that (A.1) holds. Then M2 is
parabolic.

This assertion firstly proved by Blanc and Fiala when M2 is simply
connected. To prove our theorem, we apply the above fact for this simply
connected case.

Proof of the Theorem A.1. By Fact A.1, M2 is diffeomorphic to M
2 \

{p1, . . . , pn}. We fix an end pj . There exists a coordinate neighborhood
(Uj ;u, v) of M

2 such that pj corresponds to the origin and the boundary
∂Uj is a simple closed C∞-regular curve. Then by uniformization theo-
rem of annuli (see Ahlfors-Sario, Riemann surface (Princeton), I4D, II3B),
(Uj \ {pj}, ds2|Uj\{pj}) is conformally equivalent to

∆(r) := {z ∈ C ; r < |z| < 1}
where r ∈ [0, 1). Then ds2 can be considered as a metric defined on ∆(r).
Let λ : ∆(r) → [0, 1] be a C∞-function such that
(1) λ(z) = 0 when |z| ≤ (r + 1)/2
(2) λ(z) = 1 when |z| ≥ (r + 2)/3
Then we can define a new metric dσ2 by

dσ2 = (1−λ)ds2+λ
4dz dz̄

(1 + |z|2)2 .

Since this metric is constant Gaussian curvature 1 when |z| > 1 and can be
extended at z = ∞, and we obtain a complete simply connected Riemannian
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manifold
({z ∈ C∪{∞} ; |z| > r}, dσ2

)

Moreover, the integral of the negative part of the curvature function of dσ2

is finite. So we can apply Fact A.2 and can conclude that ({z ∈ C ∪ {∞} ;
|z| > r}, dσ2) is parabolic, namely conformally equivalent to C, which
implies that

({z ∈ C ; r < |z| < (r + 1)/2}, ds2|{z∈C ; r<|z|<(r+1)/2}
)

is
conformally equivalent to a punctured disc. Thus we must conclude that
r = 0. ¤
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[FLS] Fernández, I., López F.J. and Souam R., The space of complete embedded max-

imal surfaces with isolated singularities in 3-dimensional Lorentz-Minkowski

space L3, Math. Ann. 332 (2005), 605–643.

[FRUYY] Fujimori S., Rossman W., Umehara M., Yamada K. and Yang S.-D., Spacelike

constant mean curvature one surfaces in de Sitter 3-space, in preparation.

[H] Huber A., On subharmonic functions and differential geometry in large, Com-

ment. Math. Helv., 32 (1957), 13–72.

[I1] Imaizumi T., Maximal surfaces with conelike singularities of finite type, Kobe

J. Math., 18 (2001), 51–60.

[I2] Imaizumi T., Maximal surfaces with simple ends, Kyushu J. Math., 58 (2004),

59–70.

[IK] Imaizumi T. and Kato S., in preparation.



Maximal surfaces 39

[IM] Ishikawa G. and Machida Y., Singularities of improper affine spheres and

surfaces of constant Gaussian curvature, math. DG/0502154, to appear in

International J. Math.

[IT] Inoguchi J. and Toda M., Timelike minimal surfaces via loop groups, Acta.

Appl. Math. 83 (2004), 313-355.

[JM] Jorge L.P.M. and Meeks W.H., III, The topology of complete minimal surfaces

of finite total curvature, Topology, 22 (1983), 203–221.

[K1] Kobayashi O., Maximal surfaces in the 3-dimensional Minkowski space L3,

Tokyo J. Math., 6 (1983), 297–309.

[K2] Kobayashi O., Maximal surfaces with conelike singularities, J. Math. Soc.

Japan, 36 (1984), 609–617.

[KRSUY] Kokubu M., Rossman W., Saji K., Umehara M. and Yamada K., Singularities

of flat fronts in hyperbolic 3-space, Pacific J. Math. 221 (2005), 303–351.

[KaUY] Kato S., Umehara M. and Yamada K., An inverse problem of the flax of

minimal surfaces, Indiana Univ. Math. J., 46 (1997), 529–560.

[KoUY1] Kokubu M., Umehara M. and Yamada K., Minimal surfaces that attain equal-

ity in the Chern-Osserman inequality, Contemporary of Mathematics, 308

(2002), 223–228.

[KoUY2] Kokubu M., Umehara M. and Yamada K., An elementary proof of Small’s

formula for null curves in PSL(2, C) and an analogue for Legendrian curves

in PSL(2, C), Osaka J. of Math., 40 (2003), 687–715.

[KoUY3] Kokubu M., Umehara M. and Yamada K., Flat fronts in hyperbolic 3-space,

Pacific J. of Math., 216 (2004), 149–175.

[KY] Kim Y.W. and Yang S.-D., Elliptic catenoids in Lorentz-Minkowski three-

space with an arbitrary number of handles, in preparation.

[LLS] Lopez F.J., Lopez R. and Souam R., Maximal surfaces of Riemann type in

Lorentz-Minkowski space L3, Michigan Math. J., 47 (2000), 469–497.

[Lo] Lopez F.J., New complete genus zero minimal surfaces with embedded parallel

ends, Proc. of the Amer. Math. Soc., 112 (1991), 539–544.

[Li] Li P., Complete surfaces of at most quadratic area growth, Comment. Math.

Helv., 72 (1997), 67–71.

[LY] Lee S.-W. and Yang S.-D., A spinor representation for spacelike surfaces of

constant mean curvature −1 in de Sitter three space, to appear in Osaka J.

Math.

[LR] Lopez F.J. and Ros A., On embedded complete minimal surfaces of genus zero,

J. Differential Geometry, 33 (1991), 293–300.

[Mc] McCune C., Rational minimal surface, Q. Math., 52 (2001), 329–354.

[McN] McNertney L.V., One-parameter families of surfaces with constant curvature

in Lorentz 3-space, thesis, Brown University, 1980.

[O] Osserman R., A Survey of Minimal Surfaces, Dover Publications, 1986.

[S] Schoen R., Uniqueness, symmetry and embeddedness of minimal surfaces, J.

Differential Geometry, 18 (1983), 791–809.



40 M. Umehara and K. Yamada

M. Umehara

Department of Mathematics

Graduate School of Science

Osaka University

Toyonaka, Osaka 560-0043, Japan

E-mail: umehara@math.wani.osaka-u.ac.jp

K. Yamada

Faculty of Mathematics

Kyushu University

Higashi-ku, Fukuoka 812-8581, Japan

E-mail: kotaro@math.kyushu-u.ac.jp


