
Maximal Synthesis for Hennessy-Milner Logic

A.C. van Hulst, M.A. Reniers, W.J. Fokkink
Eindhoven University of Technology

Eindhoven, The Netherlands
{ahulst,m.a.reniers,w.j.fokkink}@tue.nl

Abstract—We present a solution for the synthesis on Kripke-
structures with labelled transitions, with respect to Hennessy-
Milner Logic. This encompasses the definition of a theoretical
framework that is able to express how such a transition
system should be modified in order to satisfy a given HML-
formula. The transition system is mapped under bisimulation
equivalence onto a recursive structure, thereby unfolding up
to the applicable reach of a given HML-formula. Operational
rules define the required adaptations to ensure validity upon
this structure. Synthesis might result in multiple valid adap-
tations which are all related to the original transition system
via simulation. The set of synthesized products contains an
outcome which is maximal with respect to all deterministic
simulants which satisfy the HML-formula.

I. INTRODUCTION

This paper concerns the synthesis on Kripke-structures
with labelled transitions, for formulas in Hennessy-Milner
Logic [13]. We formally define a theoretical framework
which is able to modify a transition system in order to
satisfy a given HML formula. Synthesis is thereby required
to modify the transition structure to the least possible extent,
and to preserve simulation of the original model.

We consider Kripke structures with labelled transitions be-
cause this combination eloquently captures both the process
dynamics as well as the state-based information of a system.
Such a model was introduced earlier as KTS in [19]. Basic
properties are added to HML to allow full expressibility of
formulas on the modelling structure. Within this context,
resolving the synthesis problem already proved to be a quite
challenging effort. Imposing no restrictions upon the general
class of LTSes leads to states playing different roles at
various stages of synthesis, for instance if loops are involved.
Therefore, a recursive transition structure, which is unfolded
up to the applicable reach of the synthesized formula, is
derived under bisimulation equivalence. Operational rules
define the required modifications within this unfolded struc-
ture in order to satisfy the given HML-formula.

Multiple outcomes might exist, for instance if the syn-
thesized formula contains a disjunction. Each result in this
synthesized set satisfies the given formula and is related via
simulation to the original structure. The result set contains an
outcome which is maximal with respect to all deterministic
simulants which satisfy the HML-formula. Key elements of
the synthesis process are shown in Figure 1. Note that our
approach of using the simulation preorder does not guarantee

deadlock-freeness. Computational complexity of the method
described in this paper is potentially exponential in terms of
the size of the HML formula subject to synthesis.

LTS HML FormulaUnfolding

Synthesis

Result1

ResultN

ResultMAXUnfolded structure

Figure 1. Key parts of the synthesis process include unfolding up to the
applicable reach of the synthesized formula as well as the actual synthesis
itself, which may result in multiple solutions.

The main contribution of this paper lies in a definition
of synthesis on non-deterministic transition systems that
connects to existing modelling approaches and is maximally
permissive. In modelling and verification of discrete-event
systems, a dual approach based on LTS-like structures and
logical formulas is often used. Within this two-folded setup,
discrete-event models are used to capture process dynamics
as well as state-based information. On the other hand,
requirements are often specified in a declarative way, based
on some form of (temporal) logic. Our definition of synthesis
modifies a discrete-event model in order to satisfy one or
more logical requirements, and is therefore in line with
the existing modelling approach. Additionally, synthesis is
defined upon non-deterministic transition systems with no
limitations on cyclic behavior. This allows for modelling the
input LTS in the broadest possible way.

Synthesis should modify a transition system to the least
possible extent. It should not remove a state or transition
unless such removal is absolutely neccessary to gain validity
of the requirement. If further analysis is to be applied to
the synthesized model, for instance to investigate liveness
properties, it is of the utmost importance that as much
behavior as possible is preserved. Using the simulation
preorder, this is expressed as maximality with respect to
all simulants which satisfy the synthesized formula. For the
specific definition of synthesis as outlined in this article, this
property is shown for all deterministic simulants.

The research in this paper is part of the broader context
of model based systems engineering (MBSE), a discipline
which closely co-aligns with the field of supervisory control
theory [18]. Within MBSE, model-based design techniques

such as automated verification, model-driven controller de-
sign and code generation are integrated into a single work-
flow. Various applications include the supervisory control
synthesis of theme park vehicles [11] and a compositional
interchange format for hybrid systems [20]. We view the
type of synthesis in this paper as a future integral part of
MBSE, in order to efficiently obtain a verified system.

Previous and ongoing similar research into this prob-
lem revolves around several extended logics. Notably the
branching time temporal framework [8], the µ-calculus [16],
unrestricted CTL [1], linear temporal logic [27], [24], PLTL-
formulas [9] and CTL∗ [14]. The urge to resolve this
matter originates from various fields. In a theoretical setting,
operational and logical styles of specifications were com-
bined in one unified framework [17], [6]. Several attempts
using tableau-based methods cannot be left unmentioned
[9], [10], and valuable knowledge about the complexity
of generalized synthesis was gained [1]. A different way
to tackle this problem is via (symbolic) model checking
[12], [7], [2], where some similarity to planning approaches
[4] exists. Another approach in the model checking area
[25] concerns the alteration-free fragment of the µ-calculus,
taking addition and removal of transitions into account.

The field of supervisory control [23] is by far the main
contributor to solutions in line with our approach [14], [15],
[28], [21], [1], [3], even maturing into various algorithms
(and realizations thereof) [22], [29]. In this paper we do
not take into account a number of specific aspects of
supervisory control theory, such as marker state reachability,
controllability and deadlock avoidance [23].

Our approach as presented in this paper differs in a
number of aspects from the results of the aforementioned au-
thors. Several authors apply synthesis only on requirements
stated as formulas, in conjunction with unrestricted system
behavior (see e.g. [16], [24]), thereby obtaining a transition
system that satisfies the stated requirements. Instead, we
apply synthesis on an existing discrete-event model accord-
ing to declarative requirements. Other papers use seemingly
more extended logics [8] but omit some key elements such
as a complete coverage of the ∨-operator. Other approaches
use a different formalism for the automaton before and after
synthesis [21] or present an approach that selects control
actions online [15]. A number of articles do not take into
account the maximality or maximal permissiveness of the
synthesized products, see for instance [14] and [15]. As a
further difference between this paper and earlier work, we
define synthesis upon non-deterministic transition systems,
while other authors explicitly require the input LTS to be
deterministic [12], [14], [16]. We also do not require the
LTS model to be non-terminating as in [12].

The remainder of this paper is set up as follows: In
Section II we give a number of preliminary definitions
concerning an LTS-like structure which is able to capture
inherent unfoldings as well as the corresponding behavioral

relations of similarity and bisimilarity on this structure. In
Section III we work towards an appropriate formal definition
of synthesis by considering specific situations and several
caveats we encountered while studying this matter. Section
IV provides the theoretical framework for synthesis which
is shown to be valid by two theorems in Section V. The
aforementioned maximality requirement is the subject of
Section VI and we conclude this paper by discussing future
improvements in terms of extensions of the logic.

II. DEFINITIONS

We assume the existence of a set of events E , a set of
atomic propositions P and a set of basic states X . We further
assume the existence of a labelling function L : X 7→ 2P

relating states to properties. We say that atomic proposition
p ∈ P holds in state x ∈ X if and only if p ∈ L(x). By
assuming these definitions at a global level, we are able to
bring much clarity in the definition of synthesis later on,
while not limiting the scope of this definition.

We use a non-standard definition to express structural
behavior. Instead of the commonly used labelled transition
system (LTS), we define a set K→ of transition structures in
Definition 1. This approach has the following advantages:

1) Elements k ∈ K→ represent an unfolded part of a
recursive transition structure, as well as a continuation
via a transition relation. The synthesis process builds
upon unfolding an LTS up to the applicable reach of a
HML-formula. This particular choice of K→ allows us
to embed the unfolding directly into this structure.

2) Modifications on transitions are expressed more conve-
niently using this definition via addition of elements
to a set. We found this approach to be much more
transparent compared to modifications on transition
relations.

The intuitive idea behind the following Definition 1 is that
it represents a partially unfolded LTS and continues via a
‘usual’ transition relation.

Definition 1. We define the set K→ for →⊆ X ×E ×X in
the following way. An element k ∈ K→ is either:

1) A single initial state x ∈ X , denoted by 〈x〉→.
2) A pair 〈x, T 〉→ where T ⊂ E × K→. It specifies the

initial state as well as a set of successive structures.
Note that this definition holds for syntactic inclusion
only. Therefore, definitions such as k = 〈x, {(e, k)}〉→
are invalid within this context.

Note that Definition 1 denotes the least set K→, having a
single initial state, which satisfies the properties in Definition
1. It is clear that Definition 1 is a generalization of the
commonly used LTS because 〈x〉→ is isomorphic to such
an LTS. We will use the following notations.

〈x, T 〉→
e−→ k ⇐⇒ (e, k) ∈ T

〈x〉→
e−→ 〈x′〉→ ⇐⇒ (x, e, x′) ∈→

2

Often we will use the generalized notation k e−→ k′ which
refers to one of these notations, depending on the form
of k. An example instance of Definition 1 is shown in
Figure 2. Note that this is just one particular representation
of the transition system in terms of K→ and that other
representations are possible as well.

Figure 2. An example instance of Definition 1, which represents an
unfolded structure k ∈ K→. In this case, unfolding is captured up to
depth 1, after which transitions are defined using the transition relation →.

We use the simulation preorder and bisimulation equiva-
lence to relate elements in K→ according to the following
definitions.

Definition 2. For k′ ∈ K , k ∈ K→, we say that k′ is
simulated by k (denoted by k′ � k) if there exists a relation
R ⊆ K ×K→ such that (k′, k) ∈ R and for all (m′,m) ∈
R we have:
• If x′, x are the respective initial states of m′,m, then for

all p ∈ P we have p ∈ L(x′) if and only if p ∈ L(x).
• For all m′ e−→ n′ there exists an n ∈ K→ such that
m

e−→ n and (n′, n) ∈ R.
We use k′ �R k to indicate that k′ � k as witnessed by R.
The notations and → are used specifically in Definition
2 to indicate that the two underlying transition relations for
k′ and k do not need to be the same.

The first clause of Definition 2 is non-standard in the
sense that it requires equality of the sets of satisfied basic
properties, instead of inclusion of these sets, as the reader
might expect. This reflects the synthesis semantics where
validity is enforced by removal of transitions, while state-
based properties are not adjusted.

Definition 3. For k′ ∈ K , k ∈ K→, we say that k′ and
k are related under bisimulation equivalence (denoted by
k′↔ k) if there exists a relation R ⊆ K × K→ such that
(k′, k) ∈ R and for all (m′,m) ∈ R we have:
• If x′, x are the respective initial states of m′,m, then for

all p ∈ P we have p ∈ L(x′) if and only if p ∈ L(x).
• For all m′ e−→ n′ there exists an n ∈ K→ such that
m

e−→ n and (n′, n) ∈ R.
• For all m e−→ n there exists an n′ ∈ K such that
m′

e−→ n′ and (n′, n) ∈ R.
We use k′↔R k to indicate that k′↔ k as witnessed by R.

Simulation is reflexive as witnessed by the identity re-
lation on K→ and transitive by composition of the two
underlying witness relations. Bisimilarity is reflexive and
transitive for the very same reasons but it is symmetric
by the inverted witness relation as well, and therefore an
equivalence. These are standard results (see e.g. [26]).

We define the following set of formulas. Note that this
definition adds the atomic proposition p ∈ P , as well as its
negation ¬p, to HML [13].

Definition 4. The set F is defined for p ∈ P and e ∈ E as
follows.

F ⇒ tt | ff | p | ¬p | F ∧ F | F ∨ F | [e]F | <e>F

The formulas tt and ff indicate truth and falsehood
respectively, while the formula p, for p ∈ P , can be used to
test whether atomic proposition p holds in a specific state.
Negation ¬p is defined for state-based properties only. The
meaning of the operators for conjunction ∧ and disjunction
∨ is as expected. The one-step-lookahead operator [e]f
tests whether f holds after every e-step while <e>f tests
for the existence of an e-step such that f holds. Negation
at the level of atomic propositions is sufficient to extend the
operator ¬ to the full set F , as shown in [13].

We express the validity of formulas in F in terms of K→
by defining a valuation function � as follows.

Definition 5. The predicate � over K→ × F is defined for
k ∈ K→, f, g ∈ F , e ∈ E , x ∈ X , p ∈ P and T ⊂ E ×K→
by the following deduction rules.

k � tt

p ∈ L(x)
〈x〉→ � p

p ∈ L(x)
〈x, T 〉→ � p

p 6∈ L(x)
〈x〉→ � ¬p

p 6∈ L(x)
〈x, T 〉→ � ¬p

k � f k � g
k � f ∧ g

k � f
k � f ∨ g

k � g
k � f ∨ g

∀k e−→ k′. k′ � f
k � [e]f

k
e−→ k′ k′ � f
k � <e>f

If k � f , then we say that k satisfies the formula f . Note
that the arrow notation such as in k

e−→ k′ refers to the
notation as introduced after Definition 1.

III. SYNTHESIS

In this section we work towards an appropriate definition
of synthesis, thereby illustrating the various constructions
involved, as well as several caveats we encountered. A
formal definition of synthesis will then follow in terms of
elements in the set K→.

We first take a closer look at synthesis for the various
elements in F . It is clear that synthesis of tt should be

3

neutral as this formula always evaluates to true and therefore
no modification of the underlying structure is required to
satisfy this formula. On the other hand, synthesis of the
formula ff should not yield any result because no possible
modification to the original structure exists in order to
satisfy this formula. The formulas p, for p ∈ P , are always
evaluated and synthesized with respect to a single state
x ∈ X . If p ∈ L(x), then the synthesis should be the
same as if the formula were tt , where no modification of
the underlying structure is required. On the other hand, if
p 6∈ L(x), then the formula should be treated as if it were
ff and synthesis should result in void or emptiness. Note
that assigning the atomic proposition p to x if p 6∈ L(x) is
not desired, as this would add information to the transition
structure, thereby invalidating the synthesis semantics, as
indicated before. The inverse procedure is followed for the
state-based negation ¬p. If p 6∈ L(x), then no modification
needs to be applied to satisfy the formula ¬p. However, if
p ∈ L(x) then the formula ¬p cannot be satisfied for x and
therefore synthesis should be empty.

We now consider the operators [e]f and <e>f first
because any non-trivial example regarding the operators
∧ and ∨ makes use of either [e]f or <e>f . For the
operator [e]f for f ∈ F we apply synthesis recursively
in each e-step for the formula f . If such synthesis cannot
be performed, for instance if f ≡ ff , then we remove
the corresponding e-step. On the other hand, if synthesis
is successful, the e-step is retained and the transition system
is modified recursively after the e-step in order to satisfy f .
For the operator <e>f for f ∈ F , we attempt to synthesize
f in each e-step. If none of these attempts is successful,
synthesis of the operator <e>f should be empty. Otherwise,
synthesis proceeds recursively after this one e-step while the
rest of the transitions are left in place unmodified. Note that,
analogous to the synthesis for [e]f , the synthesis for <e>f
might result in multiple solutions if f can be synthesized in
multiple ways after the e-step. Synthesis for the formula
[e]p is illustrated in Figure 3a) while synthesis for the
formula <e>[e]p is shown in Figure 3b).

{p}

e

e

3a) [e]p
{p}

e

e
e

3b) <e>[e]p

Figure 3. Two straightforward examples showing synthesis of the formulas
[e]p and <e>[e]p, for atomic proposition p ∈ P . Dotted lines and states
are part of the original transition system but were removed during synthesis.

We now proceed by considering the operators ∧ and ∨. In
Figures 4a)-4c) it is shown how multiple valid adaptations
might exist which all satisfy [e]p ∨ [e]q. However, these
solutions cannot be combined in any meaningful way in a
single transition system. Without further information, these

solutions are essentially incomparable and therefore it is
unclear whether one should be preferred over the other. This
should result in a definition of synthesis that includes mul-
tiple valid modifications to the original structure. Therefore,
we will define the synthesis function in the next section as
having the signature K→×F 7→ 2K→ . Note that this remark
also has its drawback on the definition of synthesis for the
operators [e]f and <e>f . As multiple valid adaptations
might exist for f after an e-step, each solution should result
in a new instance where the e-step is combined with a
synthesis result for f .

{q}
e

e
{p}

4b) [e]p \/ [e]q4a) original

{q}
e

e
{p}

{q}
e

e
{p}

4c) [e]p \/ [e]q

Figure 4. Synthesis for the operator ∨ might result in multiple valid
adaptations which are essentially incomparable. Therefore, synthesis is
defined in such a way that it results in a set of synthesized products.

The operator ∧ introduces new complications. As shown
in Figures 5a)-5d), multiple applications of the synthesis for
each conjunct might be required to obtain a synthesis result
that satisfies both formulas. The original transition system
as shown in 5a), is modified in order to satisfy the formula
<e>[e]q∧[e]<e>p. The end result, as shown in Figure 5d),
is obtained via the intermediate steps 5b) and 5c). Synthesis
of <e>[e]q is applied to the original in 5a), resulting in
5b). Consequently, we apply synthesis for [e]<e>p in 5b),
resulting in 5c). In the last step, synthesis for <e>[e]q in 5c)
results in 5d), which already satisfies the second conjunct.
Observe that a stable point in the alternating application of
synthesis has now been reached, and the entire conjunctive
formula has become valid. We generalize this process in the
next section, where synthesis for conjunction will be defined
as a fixpoint definition that alternatingly applies synthesis
for both conjuncts. Termination of this fixpoint is satisfied
if synthesis for both conjuncts results in the same structure.
As synthesis either leaves the structure unmodified or results
in a strictly lower number of transitions, this fixpoint is
guaranteed to terminate, and might give an empty result set
if required. Note that two possible intermediate results exist
after the first synthesis step for the formula <e>[e]q on the
model in Figure 5a), but only one is shown for clarity.

Two important general aspects of synthesis need to be
taken into account before we can proceed with a formal
definition of synthesis: unfolding and maximality, or maxi-
mal permissiveness. As stated before, we require products of
synthesis to be maximal in the sense that the least number
of modifications is applied in order to satisfy the given
formula. Maximality is reflected in two ways in the synthesis
process: 1) If possible, synthesis should be defined to be

4

e

e
e

e

e

e
{q}

{p}

{p,q}

5a) original 5b) <e>[e]q

e

e e

e

e

e
{q}

{p}

{p,q}

5c) [e]<e>p

e

e
e

e

e

e
{q}

{p}

{p,q}

5d) <e>[e]q

e

e e

e

e

e
{q}

{p}

{p,q}

Figure 5. Synthesis for the operator ∧ is realized via alternating application
of synthesis for both conjuncts. Figure 5a) shows the original transition
system and 5d) the final result after synthesis for <e>[e]q ∧ [e]<e>p,
via intermediate steps 5b) and 5c). The result in 5d) remains neutral for
the synthesis of both conjuncts and thereby marks the final step in the
alternating synthesis procedure.

maximal for each operator, 2) The set of synthesis products
should contain a maximal solution. The first property is
illustrated in Figures 6a)-6c) where a non-maximal as well as
a maximal solution is given for the formula [e]p. Synthesis
for the operator [e], as defined formally in the next section,
therefore excludes results such as in 6c).

{p}

e
e {p}

e

6a) original

{p}

e
e {p}

e

6b) [e]p

{p}

e
e {p}

e

6c) [e]p (non-maximal)

Figure 6. Synthesis of the formula [e]p is applied to the original model
in 6a), resulting in the modification shown in 6b). Figure 6c) shows a non-
maximal and therefore invalid solution.

Regarding the second property, it should be noted that
non-maximal solutions cannot always be avoided. As shown
in Figures 7a)-7c), the set of synthesis results for the formula
[e]p ∨ [e](p ∧ q), contains a non-maximal solution that
cannot be excluded due to the nature of the synthesis for
disjunction, where each operand is considered separately.
However, in Section VI we will show that a maximal
outcome, up to all deterministic simulants which satisfy the
given formula, is always contained in the synthesized set.

The second general aspect is related to unfolding, a topic
with severe implications that has been mentioned before, and
justifies the definition of a non-standard transition structure.
Unfolding is induced by the fact that states may play

{p}
e

e
{p,q}

7b) [e]p7a) original

{p}
e

e
{p,q}

{p}
e

e
{p,q}

7c) [e](p /\ q)

Figure 7. Synthesis of the formula [e]p ∨ [e](p ∧ q) contains a non-
maximal solution due to the nature of the synthesis of disjunction, where
each operand is considered separately and results are merged into a set of
synthesis products

multiple roles in various stages of synthesis, for instance if
loops are involved. This is illustrated in Figure 8a), where an
obvious solution might seem to remove the loop in the initial
state in order to satisfy the formula [e]p. However, this
would violate the maximality requirement because not all
possible behavior is retained. We therefore unfold the model
for as far as the applicable reach of [e]p, which is one
step, in this case. The result shown in Figure 8b) indicates a
one-step unfolded structure, where a transition can be safely
removed, while preserving maximality. In the next section,
we will show how a bisimilar unfolded transition system can
be obtained for any given depth.

e
{p}

e

e

e

{p}
e

e

e

8a) original 8b) [e]p

e
{p}

e

e

e

Figure 8. Before synthesis is applied, the transition structure is unfolded up
to the applicable reach of the synthesized formula. This allows transitions
to be removed safely, while retaining maximality.

IV. OPERATIONAL DEFINITION

A predicate unf which can be used to test for unfolded-
ness is used in several proofs and defined as follows.

Definition 6. The set unf ⊆ K→×N is defined for x ∈ X ,
T ⊂ E × K→ and n ∈ N by the following definition:

unf (〈x〉→, n) ⇐⇒ n = 0
unf (〈x, T 〉→, 0) ⇐⇒ true
unf (〈x, T 〉→, n+ 1) ⇐⇒ ∀(e, k) ∈ T. unf (k, n)

We define an appropriate norm on formulas that will be
used in accordance with the notion of unfoldedness. Before
synthesis is applied to a transition structure, unfolding is
applied for as far as the following norm indicates.

5

Definition 7. We define size : F 7→ N for p ∈ P , e ∈ E
and f, f1, f2 ∈ F in the following way.

size(tt) = 0
size(ff) = 0
size(p) = 0
size(¬p) = 0
size(f1 ∧ f2) = max (size(f1), size(f2))
size(f1 ∨ f2) = max (size(f1), size(f2))
size([e]f) = 1 + size(f)
size(<e>f) = 1 + size(f)

For 〈x〉→ ∈ K→ it was already mentioned that this
structure is isomorphic to an LTS in the traditional sense. We
now show how a bisimilar structure exists that is unfolded
for any given depth. Within the greater picture, this is the
first step in the synthesis process.

Lemma 1. For each k ∈ K→ and n ∈ N there exists a
k′ ∈ K→ such that k′↔ k and unf (k′, n).

Proof: We prove this property by induction on n,
thereby generalizing over k. If n = 0, then obviously k↔k
and unf (k, 0). We continue by distinguishing between the
two forms of k. Suppose that k = 〈x〉→. Then there exists a
set {(e1, x1), . . . , (em, xm)} such that for each 1 ≤ i ≤ m
we have 〈x〉→

ei−→ 〈xi〉→. We may apply the induction
hypothesis in each 〈xi〉→ to obtain a ki such that unf (ki, n)
and 〈xi〉→↔Ri

ki. Let T = {(e1, k1), . . . , (em, km)}. Then
by Definition 6 we have unf (〈x, T 〉→, n+1) and 〈x, T 〉→↔
〈x〉→ as witnessed by: ∪1≤i≤mRi ∪ {(〈x, T 〉, 〈x〉)}. If
k = 〈x, T 〉→, then T = {(e1, k1), . . . , (em, km)}. By the
induction hypothesis for each ki, this results in a k′i such that
unf (k′i, n) and ki↔ k′i. Let T ′ = {(e1, k′i), . . . , (em, k′m)}
then unf (〈x, T ′〉→, n+ 1) and 〈x, T 〉→↔ 〈x, T ′〉→.

We define the synthesis function C : K→ × F 7→ 2K→

inductively as a relation via deduction rules. Note that the
function C is defined in such a way that it expects the
first argument k ∈ K→ to be unfolded to at least depth
size(f). Since the synthesis function C does not modify
the underlying transition relation, we may omit this relation
in the following definition of C and write 〈x〉 and 〈x, T 〉
instead of 〈x〉→ and 〈x, T 〉→.

Definition 8. Let k ∈ K→ and f ∈ F in the following rules.

k ∈ C(k, tt)
[1]

p ∈ L(x)
〈x〉 ∈ C(〈x〉, p)

[2]

p ∈ L(x)
〈x, T 〉 ∈ C(〈x, T 〉, p)

[3]
p 6∈ L(x)

〈x〉 ∈ C(〈x〉,¬p)
[4]

p 6∈ L(x)
〈x, T 〉 ∈ C(〈x, T 〉,¬p)

[5]
m ∈ C(k, f) m ∈ C(k, g)

m ∈ C(k, f ∧ g)
[6]

k′ ∈ C(k, f) m ∈ C(k′, g ∧ f)
m ∈ C(k, f ∧ g)

[7]
m ∈ C(k, f)

m ∈ C(k, f ∨ g)
[8]

m ∈ C(k, g)
m ∈ C(k, f ∨ g)

[9]
〈x, ∅〉 ∈ C(〈x, ∅〉,[e]f)

[10]

〈x, T ′〉 ∈ C(〈x, T 〉,[e]f) e 6= e′

〈x, {(e′, k)} ∪ T ′〉 ∈ C(〈x, {(e′, k)} ∪ T 〉,[e]f)
[11]

〈x, T ′〉 ∈ C(〈x, T 〉,[e]f) C(k, f) = ∅
〈x, T ′〉 ∈ C(〈x, {(e, k)} ∪ T 〉,[e]f)

[12]

〈x, T ′〉 ∈ C(〈x, T 〉,[e]f) m ∈ C(k, f)
〈x, {(e,m)} ∪ T ′〉 ∈ C(〈x, {(e, k)} ∪ T 〉,[e]f)

[13]

m ∈ C(k, f)
〈x, {(e,m)} ∪ T 〉 ∈ C(〈x, {(e, k)} ∪ T 〉,<e>f)

[14]

We briefly discuss the deduction rules for C in Definition
8. Synthesis is neutral for tt as this formula is always
satisfied (rule 1). Synthesis for an atomic proposition p
results in the same structure if p is valid in the initial
state (i.e. p ∈ L(x)), as shown in rules 2 and 3. Synthesis
for the negated atomic proposition ¬p results in the same
structure if p 6∈ L(x), as can be observed in rules 4 and
5. The rules 6 and 7 define a fixpoint construction for the
synthesis of a conjunction. The condition for termination as
described in rule 6 applies when synthesis of both conjuncts
results in the same structure. Otherwise, both conjuncts are
synthesized alternatingly as shown in rule 7. The rules 8 and
9 for disjunction are relatively straightforward: an element
of the synthesized set is a result of the synthesis for one of
the disjuncts. The operator [e]f is covered in rules 10-13
which are defined inductively on the set T . Rule 10 describes
the basic case for this induction where no transitions to
underlying structures are present and no modifications are
required. Rule 11 details how an e′ 6= e transition is left
in place for the operator [e]f , as this transition does not
influence the satisfiability of an [e]f formula. Rule 12
removes an e-transition for the operator [e]f if no synthesis
candidate can be found for the corresponding transition. The
last rule 13 for [e]f ensures that the original structure after
an e-step is replaced by an appropriate synthesis product.
Finally, we define a single rule 14 for the synthesis of the
formula <e>f . A single witness for a proper e-transition is
added to the original structure, which is left unmodified for
the rest of it. Note that we do not need to consider synthesis
for 〈x〉→ ∈ K→ for the operators [e]f and <e>f because
that would invalidate the implicit unfoldedness condition.

V. VALIDITY OF OUR APPROACH

We prove two theorems regarding the validity of the
definition of synthesis. In Theorem 1 we show that every
synthesis result satisfies the synthesized formula. Theorem 2
details how every synthesis result is related via simulation to
the original structure. Two additional lemmas are important
with regard to the next section on maximality. Lemma 2
shows that synthesis preserves unfoldedness and Lemma 3
details how synthesis does not modify a transition structure

6

if it already satisfies the required formula.

Theorem 1. For f ∈ F and k,m ∈ K→ we have m ∈
C(k, f) implies that m � f .

Proof: The proof is by induction towards the construc-
tion of m ∈ C(k, f), via the deduction rules in Definition
8. If m ∈ C(k, tt), then obviously m � tt . If m ∈ C(k, p),
for some p ∈ P , then m and k have the same initial
state resulting in m � p. If m ∈ C(k,¬p), then again we
observe that m and k have the same initial state and therefore
m � ¬p. For f ≡ f1 ∧ f2 we have the following analysis:
If m ∈ C(k, f1) and m ∈ C(k, f2), then m � f1 ∧ f2 by
induction. For k′ ∈ C(k, f1) and m ∈ C(k′, f2 ∧ f1), by
induction and commutativity of the validity of ∧ we have
that m � f1 ∧ f2. If f ≡ f1 ∨ f2, then we again have
two cases. When m ∈ C(k, f1) then m � f1 ∨ f2, and if
m ∈ C(k, f2) then m � f1∨f2, both by induction. We have
four cases corresponding to the rules 10-13 for f ≡ [e]f ′.
By induction 〈x, ∅〉→ � [e]f ′ and 〈x, {(e′, k)} ∪ T ′〉→ �
[e]f ′ for each e 6= e′ if 〈x, T ′〉→ � [e]f ′. Rule 12 does
not alter the structure of m ∈ C(k,[e]f) and therefore
preserves validity. If 〈x, T ′〉→ � [e]f and m � f for
m ∈ C(k, f), then we have 〈x, {(e,m)} ∪ T ′〉→ � [e]f .
The last case is where f ≡ <e>f ′. If we have m ∈ C(k, f ′)
and therefore m � f ′, then by induction we certainly have
that 〈x, {(e,m)} ∪ T ′〉→ � <e>f ′.

Theorem 2. For f ∈ F and k,m ∈ K→ we have m ∈
C(k, f) implies m � k.

Proof: We use the same proof strategy as in Theorem
1: induction towards the construction of m ∈ C(k, f). Note
that we only give a proof sketch here because no actual simu-
lation relation is constructed. The cases for rules 1-6,8-10 are
solved by reflexivity of simulation while rule 7 is covered by
induction and transitivity of simulation. The four remaining
cases consider the rules 11-14. For rule 11, we may assume
〈x, T ′〉→ � 〈x, T 〉→ as our induction hypothesis. This
directly leads to 〈x, {(e′, k)}∪T ′〉→ � 〈x, {(e′, k)}∪T 〉→.
For rule 12 we have 〈x, T ′〉→ � 〈x, T 〉→ by induction
and therefore 〈x, T ′〉→ � 〈x, {(e, k)} ∪ T 〉→. For the
case corresponding to rule 13 we have as our induction
hypothesis: 〈x, T ′〉→ � 〈x, T 〉→ and additionally m � k
for m ∈ C(k, f). This leads to 〈x, {(e,m)} ∪ T ′〉→ �
〈x, {(e, k)} ∪ T 〉→. We conclude this proof by an analysis
of the last rule 14 for which we have m ∈ C(k, f) and
therefore m � k as induction hypothesis. Clearly this leads
to 〈x, {(e,m))} ∪ T ′〉→ � 〈x, {(e, k)} ∪ T 〉→.

Lemma 2. For each f ∈ F , n ∈ N and k,m ∈ K→ such
that m ∈ C(k, f) and unf (k, n) we have unf (m,n).

Proof: Like in the previous two proofs in this sec-
tion, we apply induction towards the construction of m ∈
C(k, f). The four non-straightforward cases are the rules 11-
14. The first case is resolved under the induction hypothesis

unf (〈x, T 〉→, n) ⇒ unf (〈x, T ′〉→, n). Clearly the premise
unf (〈x, {(e′, k)} ∪ T ′〉→, n) leads to unf (〈x, {(e′, k)} ∪
T, 〉→, n). Rule 12 does not modify the m ∈ C(k,[e]f) and
therefore preserves unfoldedness. For rule 13 we have two
induction hypotheses: unf (m,n) and unf (〈x, T 〉→, n) ⇒
unf (〈x, T ′〉→, n). Based on the premise unf (〈x, {(e, k)} ∪
T 〉→, n) we may immediately draw the conclusion that
unf (〈x, {(e,m)} ∪ T ′〉→, n). For the last case concerning
rule 14 we have unf (〈x, T 〉→, n), unf (m,n) and therefore
unf (〈x, {(e,m)} ∪ T 〉→, n) by induction.

Lemma 3. If k � f for k ∈ K→ and f ∈ F such that
unf (k, size(f)) then k ∈ C(k, f).

Proof: We show this property by structural induction
on f . If f ≡ tt , then k ∈ C(k, f) according to rule 1. If
f ≡ p or f ≡ ¬p, for p ∈ P , then we may apply rules
2-5, depending on the form of k, to obtain k ∈ C(k, f).
For the case f ≡ f1 ∧ f2 we have k ∈ C(k, f1) and
k ∈ C(k, f2) by induction. The induction premises of
unf (k, size(f1)) and unf (k, size(f2)) are easily resolved
because unf (k, size(f1∧f2)) (see Definition 7). Application
of rule 6 then gives k ∈ C(k, f1 ∧ f2). The case for
f ≡ f1 ∨ f2 is solved in a similar way by induction and
application of the respective rules 8 and 9. If f ≡ [e]f ′,
then we know that k is of the form 〈x, T 〉→ because other-
wise the unfoldedness condition unf (k, 1+ size(f ′)) would
be violated. We proceed by induction on the number of
elements in T . If T = ∅, then 〈x, ∅〉→ ∈ C(〈x, ∅〉→,[e]f ′)
by rule 10. Let T = {(e′, k′)} ∪ T ′. Then we apply rule 11
if e 6= e′. If e = e′, then k′ � f ′ and we may apply rule 13.
The last case for f is when f ≡ <e>f ′. Since k � <e>f ′

and k is of the form 〈x, T 〉→, there exists an (e, k′) ∈ T
with k′ � f ′. The result follows by induction and 14.

VI. MAXIMALITY

As indicated before, it is desirable for products of syn-
thesis to be modified to the least extent in order to achieve
a maximal solution. This is especially required if further
analysis is to be applied to the model, for instance if liveness
is investigated. We refer to this property as maximality and it
is formulated as Theorem 3. Due to the specific formulation
of the deduction rules in Definition 8, we were able to show
this property for all deterministic simulants. Maximality
with respect to all non-deterministic simulants cannot be
obtained for the set of deduction rules given in Definition 8
as shown by the counterexample in Figure 9. In Figure 9a)
a non-deterministic simulant of the original LTS in Figure
9b) is shown to be unrelated (in terms of simulation) to
both synthesis products for the formula [a]([b]p ∨ [b]q)
shown in Figures 9c) and 9d). As indicated by this coun-
terexample, maximal synthesis up to all non-deterministic
simulants remains an open question. We therefore focus on
deterministic simulants according to the following definition
of determinism.

7

9a) simulant

a

a

b

b

{p}

{q}

a
b

b

{p}

{q}

9b) original

9c) [a]([b]p \/ [b] q) 9d) [a]([b]p \/ [b] q)

a
b

b

{p}

{q}

a
b

b

{p}

{q}

Figure 9. Counterexample indicating synthesis results which are non-
maximal for non-deterministic simulants The original in 9b) has a non-
deterministic simulant shown in 9a) which is not related via simulation to
the synthesis results in 9c) and 9d) for the formula [a]([b]p ∨ [b]q).

Definition 9. We define the predicate det ⊂ K→ for each
x ∈ X and T ⊂ E × K→ as follows.

det(〈x, T 〉→) ⇐⇒
[∀(e, k), (e, k′) ∈ T. k = k′]∧
[∀(e, k) ∈ T. det(k)]

det(〈x〉→) ⇐⇒

[
∀x e−→ x′.∀x e−→ x′′.

x′ = x′′]∧[
∀x e−→ x′. det(〈x〉→)

]
In the maximality proof as shown below in Theorem 3,

we need an appropriate norm to ensure termination of the
fixpoint for conjunction.

Definition 10. We define count : K→ 7→ N to compute the
number of transitions of a k ∈ K→ in the following way for
x ∈ X and T ⊂ E × K→:

count(〈x〉→) = 0

count(〈x, T 〉→) = | T | +
∑

(e,k)∈T

count(k)

where | T | is the number of elements in T .
Note that we do not count beyond the unfolded part of any

k ∈ K→ because only the unfolded part is modified by the
function C. The following Lemma 4 ensures that C results
in either an unmodified structure or one with a decreased
count value.

Lemma 4. For each f ∈ F and k,m ∈ K→ we have
that m ∈ C(k, f) implies either k = m or count(m) <
count(k).

Proof: We again apply induction towards the construc-
tion of m ∈ C(k, f). For rules 1-10, this property follows
directly. We consider the remaining rules.

11 If 〈x, T ′〉→ = 〈x, T 〉→ or count(〈x, T ′〉→) <
count(〈x, T 〉→), then this directly leads to 〈x, {(e′, k)}∪
T ′〉→ = 〈x, {(e′, k)} ∪ T 〉→ or count(〈x, {(e′, k)} ∪
T ′〉→) < count(〈x, {(e′, k)} ∪ T 〉→).

12 If 〈x, T ′〉→ = 〈x, T 〉→ or count(〈x, T ′〉→) <
count(〈x, T 〉→), then in both cases we have
count(〈x, T ′〉→) < count(〈x, {(e, k)} ∪ T 〉→.

13 Here we have 〈x, T ′〉→ = 〈x, T 〉→ or
count(〈x, T ′〉→) < count(〈x, T 〉→) as well as m = k
or count(m) < count(k). The combination of the
respective first disjuncts of these induction hypotheses
leads to 〈x, {(e,m)} ∪ T ′〉→ = 〈x, {(e, k)} ∪ T 〉→,
while all other combinations of disjuncts lead to
count(〈x, {(e,m)} ∪ T ′〉→) < count(〈x, {(e, k)} ∪ T).

14 If k = m or count(m) < count(k), then we have
either 〈x, {(e,m)} ∪ T 〉→ = 〈x, {(e, k)} ∪ T 〉→ or
count(〈x, {(e,m)} ∪ T 〉→) < count(〈x, {(e, k)} ∪
T 〉→).

The maximality result follows below in Theorem 3. If k′

is a deterministic simulant of k and k is unfolded up to the
applicable reach of a formula f , then synthesis produces at
least one result m such that k′ � m. Note that this result
indicates Pareto-optimality [5].

Theorem 3. For each f ∈ F , k′ ∈ K and k ∈ K→ with
k′ � f , k′ � k, unf (k, size(f)) and det(k′) there exists an
m ∈ C(k, f) such that k′ � m.

Proof: This property is shown by structural induction
on f . The first case to consider is when f ≡ tt , in which case
we may choose m = k as a witness. Clearly, k ∈ C(k, tt)
according to rule 1 in Definition 8 while k′ � k was already
assumed. We may omit the case for f ≡ ff because k′ 6� ff
and continue with the case for f ≡ p, for some p ∈ P . Let
x be the initial state of k. As k′ � p we have p ∈ L(x)
by simulation (see Definition 2). We therefore have m = k
as a valid witness according to rules 2 and 3 while k′ � k
was already assumed. We may follow precisely the same
reasoning for f ≡ ¬p. Since k′ � ¬p and k′ � k, we have
k � ¬p, and m = k as a valid witness by rules 4 and 5.

The proof for f ≡ f1 ∧ f2 is less trivial. Assume that
k′ � f1 ∧ f2 for a k′ � k such that unf (k, size(f1 ∧ f2))
and det(k′). We have the following induction hypotheses:

∀k′, k. k′ � k ∧ k′ � f1 ∧ unf (k, size(f1)) ∧ det(k′)⇒
∃m ∈ C(k, f1) ∧ k′ � m (IHf1)

∀k′, k. k′ � k ∧ k′ � f2 ∧ unf (k, size(f2)) ∧ det(k′)⇒
∃m ∈ C(k, f2) ∧ k′ � m (IHf2)

As k′ � f1 ∧ f2, we clearly have k′ � f1 and k′ � f2. By
observation of Definition 6 it is clear that unf (k, size(f1))
as well as unf (k, size(f2)). We proceed by induction on
count(k). If count(k) = 0, then we apply IHf1 and IHf2
to obtain m1 ∈ C(k, f1) and m2 ∈ C(k, f2) such that

8

k′ � m1 and k′ � m2. For this case, Lemma 4 directly
gives k = m1 = m2 because otherwise count(m1) < 0
or count(m2) < 0. Since we now have k ∈ C(k, f1) and
k ∈ C(k, f2), application of rule 6 gives k ∈ C(k, f1 ∧ f2).
Since k′ � k, this closes the case for count(k) = 0. We
have the following induction hypothesis:

∀p. count(p) < count(k) ∧ unf (p, size(f1 ∧ f2))∧
k′ � p⇒ ∃m ∈ C(p, f1 ∧ f2) ∧ k′ � m

We clearly need to work towards an application of rule 7. By
application of IHf1 and IHf2 we obtain an m1 ∈ C(k, f1)
and m2 ∈ C(m1, f2). Following Lemma 4, we distinguish
between several cases. If k = m1 = m2, then we imme-
diately have k ∈ C(k, f1 ∧ f2) as illustrated previously
for count(k) = 0. If k ∈ C(k, f1) and m2 ∈ C(k, f2)
for count(m2) < count(k), then we may apply the in-
duction hypothesis for count(k) on m2. The induction
premise unf (m2, size(f1 ∧ f2)) is satisfied by Lemma 2.
By induction m ∈ C(m2, f1 ∧ f2) and k′ � m2, and by
applying rule 7 twice this gives us m ∈ C(k, f1 ∧ f2).
The remaining case to consider is when m1 ∈ C(k, f1) and
m2 ∈ C(m1, f2) such that count(m1) < count(k). Clearly
we have count(m2) < count(k) by Lemma 4. Application
of the induction hypothesis for count(k) and using rule 7
twice gives an m ∈ C(k, f1 ∧ f2) such that k′ � m.

For f ≡ f1 ∨ f2 we only consider the case for k′ � f1
as the situation for k′ � f2 is very similar. By induction
and because unf (k, size(f1)) we have an m ∈ C(k, f1)
such that k′ � m. Application of rule 8 immediately gives
m ∈ C(k, f1 ∨ f2).

If f ≡ [e]f ′ such that k′ � k, k′ � [e]f ′,
unf (k, 1 + size(f ′)) and det(k′) we have the following
induction hypothesis:

∀k′, k. k′ � k ∧ k′ � f ′ ∧ unf (k, size(f ′)) ∧ det(k′)⇒
∃m ∈ C(k, f ′) ∧ k′ � m

As unf (k, 1 + size(f ′)) we only need to consider k =
〈x, T 〉→. We construct the set U as the least set according
to the following definitions.
• If (e′, p) ∈ T for e′ 6= e, then (e′, p) ∈ U .
• If (e, p) ∈ T and C(p, f ′) = ∅, then (e, p) 6∈ U .
• If (e, p) ∈ T and k′

e−→ k′′ such that k′′ � p, then
we apply the induction hypothesis for f ′ to obtain an
m ∈ C(p, f ′) such that k′′ � m. For this case we have
(e,m) ∈ U .

• If (e, p) ∈ T with no corresponding simulant in k′, then
we may choose an arbitrary m ∈ C(p, f ′) for which
we add (e,m) ∈ U .

It is clear that k′ � 〈x, U〉→. What remains to be shown
is whether 〈x, U〉→ ∈ C(〈x, T 〉→,[e]f ′). We show this
property by induction towards the number of elements in
T . Clearly 〈x, ∅〉→ ∈ C(〈x, ∅〉→,[e]f ′) according to rule
10. Let 〈x, T ′〉→ ∈ C(〈x, T 〉→,[e]f ′) such that U =
{(e′, p)} ∪ T ′. If e′ 6= e, then 〈x, U〉→ ∈ C(〈x, {(e′, p)} ∪

T 〉→,[e]f ′) by rule 11. If e′ = e, then we either apply rule
12, if C(p, f ′) = ∅, to obtain 〈x, U〉→ ∈ C(〈x, {(e, p)} ∪
T,[e]f ′), or rule 13, in case C(p, f ′) 6= ∅.

If f ≡ <e>f ′ such that k′ � k, k′ � <e>f ′,
unf (k, 1 + size(f ′)) and det(k′) we have the following
induction hypothesis:

∀k′, k. k′ � k ∧ k′ � f ′ ∧ unf (k, size(f ′)) ∧ det(k′)⇒
∃m ∈ C(k, f ′) ∧ k′ � m

Since unf (k, 1 + size(f ′)) it is clear that k = 〈x, T 〉→
according to Definition 6. Since k′ � <e>f ′ there exists
a k′′ ∈ K such that k′ e−→ k′′ and k′′ � f ′. Since k′ � k
there exists a p ∈ K such that (e, p) ∈ T and k′′ � p.
Clearly we have det(k′′) and unf (p, size(f ′)) so we apply
the induction hypothesis, resulting in an m ∈ C(p, f ′) such
that k′′ � m. Take T ′ = (T\{(e, p)})∪ {(e,m)}. We show
that 〈x, T 〉→ ∈ C(k,<e>f ′) and k′ � 〈x, T ′〉→. As there
exists a U ⊆ E × K such that T ′ = {(e,m)} ∪ U and
T = {(e, p)} ∪ U we can apply rule 14 on 〈x, {(e,m)} ∪
U〉→ ∈ C(〈x, {(e, p)} ∪ U〉→,[e]f ′). What remains to be
shown is whether k′ � 〈x, T ′〉→. As k′ � 〈x, T 〉→ and
k′

e−→ k′′ is the only e-step in k′ (because of det(k′)) we
clearly have k′ � 〈x, T ′〉→ because k′′ � m.

VII. CONCLUSIONS

In this paper we studied the synthesis on Kripke-
structures with labelled transitions, with respect to formulas
in Hennessy-Milner Logic. A bisimilarity preserving trans-
formation has been defined to transform an LTS into an
equivalent recursive structure that is able to capture inherent
unfolding. Upon this structure, operational rules define mod-
ifications in order to satisfy a given HML-formula. Results
in the synthesized set are shown to be valid in terms of
satisfiability and simulation by the original input LTS. A
maximal solution for all deterministic simulants is contained
within this set. Various examples show that this problem
is far from trivial and most operators in HML require a
dedicated approach.

Hennessy-Milner Logic is limited in its ability to specify
all types of requirements. Therefore, we will seek to extend
this logic in future work by studying the synthesis problem
for additional operators. Notably, an invariant operator that
can be used to test whether a property holds for every state
might be useful to investigate. It should be noted that due
to the nature of the unfolding approach as presented in
this paper, it might be troublesome to extend the synthesis
function C in its current form in such a way that it
can handle an invariant operator. Therefore, a new insight
will be required to handle formulas under invariance. A
different aspect is related to controllability. Earlier work on
synthesis divides the set of actions into a controllable and
uncontrollable part. We plan to include this distinction in
future work on synthesis. We will also attempt to solve the

9

open problem concerning a maximal synthesis up to non-
deterministic simulation.

REFERENCES

[1] M. Antoniotti and B. Mishra. The supervisor synthesis
problem for unrestricted CTL is NP-complete. Technical
Report TR-95-062, International Computer Science Institute,
Berkeley, 1995.

[2] E. Asarin, O. Maler, and A. Pnueli. Symbolic controller
synthesis for discrete and timed systems. In Hybrid Systems,
pages 1–20. Springer, 1994.

[3] M. Barveau, F. Kabanza, and R. St.-Denis. A method for the
synthesis of controllers to handle safety, liveness, and real-
time constraints. IEEE Transactions on Automatic Control,
43(11):1543–1559, 1998.

[4] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso.
MBP: a model based planner. In Proceedings of the IJCAI01
Workshop on Planning under Uncertainty and Incomplete
Information, pages 54–71. Springer, 2001.

[5] C. Cassandras and S. Lafortune. Introduction to Discrete
Event Systems. Springer, 2006.

[6] A. Church. Logic, arithmetic, and automata. In Proceedings
of the International Congress of Mathematicians, pages 23–
35. Mittag-Leffler, 1963.

[7] A. Cimatti, M. Roveri, and P. Bertoli. Searching powerset
automata by combining explicit-state and symbolic model
checking. In Proceedings of the 7th International Conference
on Tools and Algorithms for the Construction and Analysis
of Systems, pages 313–327. Springer, 2001.

[8] E. Clarke and A. Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In
Logics of Programs, pages 52–71. Springer, 1982.

[9] A.R. Deshpande and P. Varaiya. Semantic tableau for control
of PLTL formulae. In Proceedings of the 35th IEEE Con-
ference on Decision and Control, pages 2243–2248. Elsevier,
1996.

[10] A. Emerson. Automata, tableaux, and temporal logics. In
Logics of Programs, pages 79–88. Springer, 1985.

[11] S. Forschelen, J. De Mortel-Fronczak, R. Su, J.E. Rooda,
et al. Application of supervisory control theory to theme
park vehicles. In Discrete Event Systems, pages 293–299.
Springer, 2010.

[12] A. Gromyko, M. Pistore, and P. Traverso. A tool for controller
synthesis via symbolic model checking. In 8th International
Workshop on Discrete Event Systems, pages 475–476. Kluwer,
2006.

[13] M. Hennessy and R. Milner. Algebraic laws for nondetermin-
ism and concurrency. Journal of the ACM, 32(1):137–161,
1985.

[14] S. Jiang and R. Kumar. Supervisory control of discrete
event systems with CTL* temporal logic specifications. SIAM
Journal of Control and Optimization, 44(6):2079–2103, 2006.

[15] R. Kumar, S. Jiang, C. Zhou, and W. Qiu. Polynomial synthe-
sis of supervisor for partially observed discrete-event systems
by allowing nondeterminism in control. IEEE Transactions
on Automatic Control, 50(4):463–475, 2005.

[16] O. Kupferman and M. Vardi. µ-calculus synthesis. In
Proceedings of the 25th International Symposium on Math-
ematical Foundations of Computer Science, pages 497–507.
Springer, 2000.

[17] G. Lüttgen and W. Vogler. Safe reasoning with logic LTS. In
Software Seminar, pages 376–387. Springer, 2009.

[18] J. Markovski, D. van Beek, R. Theunissen, K. Jacobs, and
J. Rooda. A state-based framework for supervisory con-
trol synthesis and verification. In Proceedings of the 49th
IEEE Conference on Decision and Control, pages 3481–3486.
IEEE, 2010.

[19] M. Müller-Olm, D. Schmidt, and B. Steffen. Model-checking:
A tutorial introduction. Static Analysis, pages 848–848, 1999.

[20] D. Nadales Agut, D. van Beek, and J. Rooda. Syntax and
semantics of the compositional interchange format for hybrid
systems. The Journal of Logic and Algebraic Programming,
82(1):1–52, 2013.

[21] J. Ostroff. Synthesis of controllers for real-time discrete event
systems. In Proceedings of the 28th IEEE Conference on
Decision and Control, 1989., pages 138–144. IEEE, 1989.

[22] K. Åkesson, M. Fabian, H. Flordal, and A. Vahidi. Supremica
– a tool for verification and synthesis of discrete event super-
visors. In Proceedings of the 11th Mediterranean Conference
on Control and Automation, pages 83–104. IEEE, 2003.

[23] P. Ramadge and W. Wonham. Supervisory control of a
class of discrete event processes. SIAM Journal on Control
Optimimization, 25(1):206–230, 1987.

[24] K.T. Seow, M Gai, and T.L. Lim. A temporal logic specifica-
tion interface for automata-theoretic finitary control synthesis.
In Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, pages 565–571. IEEE, 2005.

[25] O. Sokolsky and S. Smolka. Incremental model checking
in the modal mu-calculus. In Computer Aided Verification,
pages 351–363. Springer, 1994.

[26] R.J. van Glabbeek. The linear time branching time spectrum
II. In International Conference on Concurrency Theory, pages
66–81. Springer, 1993.

[27] M. Vardi. An automata-theoretic approach to linear temporal
logic. In Proceedings of the VIII Banff Higher order work-
shop conference on Logics for concurrency, pages 238–266.
Springer, 1996.

[28] H. Wong-Toi and D. Dill. Synthesizing processes and
schedulers from temporal specifications. In Computer Aided
Verification, pages 272–281. Springer, 1991.

[29] Z. Zhang and W. Wonham. STCT: An efficient algorithm
for supervisory control design. In Symposium on supervisory
control of discrete event systems, pages 249–258. Springer,
2001.

10

