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MAXIMAL TOTALLY GEODESIC SUBMANIFOLDS

AND INDEX OF SYMMETRIC SPACES

Jürgen Berndt & Carlos Olmos

Abstract

Let M be an irreducible Riemannian symmetric space. The
index i(M) of M is the minimal codimension of a totally geo-
desic submanifold of M . In [1] we proved that i(M) is bounded
from below by the rank rk(M) of M , that is, rk(M) ≤ i(M).
In this paper we classify all irreducible Riemannian symmetric
spaces M for which the equality holds, that is, rk(M) = i(M).
In this context we also obtain an explicit classification of all non-
semisimple maximal totally geodesic submanifolds in irreducible
Riemannian symmetric spaces of noncompact type and show that
they are closely related to irreducible symmetric R-spaces. We
also determine the index of some symmetric spaces and classify
the irreducible Riemannian symmetric spaces of noncompact type
with i(M) ∈ {4, 5, 6}.

1. Introduction

Let M be a connected Riemannian manifold and denote by S the set
of all connected totally geodesic submanifolds Σ of M with dim(Σ) <
dim(M). The index i(M) of M is defined by

i(M) = min{dim(M)− dim(Σ) | Σ ∈ S} = min{codim(Σ) | Σ ∈ S}.

This notion was introduced by Onishchik in [13] who also classified
the irreducible simply connected Riemannian symmetric spaces M with
i(M) ≤ 2.

In [1] we investigated i(M) for irreducible Riemannian symmetric
spaces M . We proved that the rank rk(M) of M is always less or
equal than the index of M and classified all irreducible Riemannian
symmetric spaces M with i(M) ≤ 3. The motivation for this paper
was to understand better the equality case rk(M) = i(M). The main
result of this paper is the classification of all irreducible Riemannian
symmetric spaces M with rk(M) = i(M).
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Theorem 1.1. Let M be an irreducible Riemannian symmetric space
of noncompact type. The equality rk(M) = i(M) holds if and only if M
is isometric to one of the following symmetric spaces:

(i) SLr+1(R)/SOr+1, r ≥ 1;
(ii) SOo

r,r+k/SOrSOr+k, r ≥ 1, k ≥ 0, (r, k) /∈ {(1, 0), (2, 0)}.

Duality between Riemannian symmetric spaces of noncompact type and
of compact type preserves totally geodesic submanifolds, and if M is
an irreducible Riemannian symmetric space of compact type and M̂
is its Riemannian universal covering space (which is also a Riemann-

ian symmetric space of compact type), then i(M) = i(M̂ ). Therefore
Theorem 1.1 leads, via duality and covering maps, to the classifica-
tion of irreducible Riemannian symmetric spaces of compact type with
rk(M) = i(M).

In order to compute the index explicitly we need to have a good un-
derstanding of maximal totally geodesic submanifolds. Every maximal
totally geodesic submanifold Σ in an irreducible Riemannian symmetric
space M of noncompact type is either semisimple or non-semisimple.
As part of our investigation we obtain an explicit classification for the
non-semisimple case and a conceptual characterization of such subman-
ifolds in terms of symmetric R-spaces. Denote by r the rank of M and
write M = G/K, where G is the connected identity component of the
isometry group I(M) of M and K = Gp is the isotropy group of G
at p ∈ M . Consider a set of simple roots Λ = {α1, . . . , αr} of a re-
stricted root space decomposition of the Lie algebra g of G and denote
by δ = δ1α1+ . . .+ δrαr the highest root. Let qi be the parabolic subal-
gebra of g which is determined by the root subsystem Φi = Λ\{αi} and
consider the Chevalley decomposition qi = li ⊕ ni of qi into a reductive
subalgebra li and a nilpotent subalgebra ni. Let Li be the connected
closed subgroup of G with Lie algebra li and denote by Fi the orbit of Li

containing p. Then Fi is a non-semisimple totally geodesic submanifold
of M which decomposes into Fi = R × Bi, where Bi is a semisimple
Riemannian symmetric space of noncompact type. The classification
and characterization of non-semisimple maximal totally geodesic sub-
manifolds in M is as follows:

Theorem 1.2. Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type and let Σ be a non-semisimple con-
nected complete totally geodesic submanifold of M . Then the following
statements are equivalent:

(i) Σ is a maximal totally geodesic submanifold of M ;
(ii) Σ is isometrically congruent to Fi = R×Bi and δi = 1;
(iii) The normal space νpΣ of Σ at p is the tangent space of a symmetric

R-space in TpM ;
(iv) The pair (M,Σ) is as in Table 3.
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An R-space is a real flag manifold and a symmetric R-space is a real
flag manifold which is also a symmetric space. R-spaces are projective
varieties and symmetric R-spaces were classified and investigated by
Kobayashi and Nagano in [9]. They arise as certain orbits of the isotropy
representation of semisimple Riemannian symmetric spaces.

This paper is organized as follows. In Section 2 we summarize ba-
sic material about Riemannian symmetric spaces of noncompact type,
their restricted root space decompositions and Dynkin diagrams, para-
bolic subalgebras, and their boundary components with respect to the
maximal Satake compactification.

In Section 3 we obtain some sufficient criteria for totally geodesic
submanifolds in Riemannian symmetric spaces of noncompact type to
be reflective. As is well-known, totally geodesic submanifolds are in
one-to-one correspondence with Lie triple systems. If the orthogonal
complement of a Lie triple system is also a Lie triple system, then the
Lie triple system and the corresponding totally geodesic submanifold
are said to be reflective. Geometrically, reflective submanifolds arise as
connected components of fixed point sets of isometric involutions. Re-
flective submanifolds in irreducible simply connected Riemannian sym-
metric spaces of compact type were classified by Leung in [10] and [11].
The concept of reflectivity turns out to be very useful in our context.
One of our main criteria is Proposition 3.4 which states that if the kernel
of the slice representation of a semisimple totally geodesic submanifold
Σ in an irreducible Riemannian symmetric space of noncompact type
has positive dimension, then Σ is reflective. This criterion then pro-
vides a lower bound for the codimension of Σ which we will use in index
calculations.

In Section 4 we will prove Theorem 1.2. The first step is to show
that any non-semisimple maximal totally geodesic submanifold in M is
congruent to one of the orbits Fi introduced above. The coefficient δi
of αi in the highest root δ then plays a crucial role for the next step. If
δi ≥ 2, we construct explicitly a larger Lie triple system containing the
Lie triple system corresponding to Fi. The situation for δi = 1 is much
more involved. With delicate arguments using Killing fields, Jacobi
fields, reflections and transvections we can show that Fi is maximal when
δi = 1. As an application of Theorem 1.2 we obtain that every maximal
totally geodesic submanifold of an irreducible Riemannian symmetric
space of noncompact type whose root system is of type (BCr), (E8),
(F4) or (G2) must be semisimple. Another application states that every
non-semisimple maximal totally geodesic submanifold of an irreducible
Riemannian symmetric space of noncompact type must be reflective.
As a third application we obtain that the index of SLr+1(R)/SOr+1 is
equal to its rank r.
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In Section 5 we prove that the two classes of symmetric spaces listed
in Theorem 1.1 satisfy the equality rk(M) = i(M). For this we explicitly
construct totally geodesic submanifolds Σ of M with codim(Σ) = rk(M)
using standard algebraic theory of symmetric spaces.

In Section 6 we prove Theorem 1.1. A crucial step is Proposition 6.2
which states that if M satisfies the equality rk(M) = i(M), then every
irreducible boundary component B of the maximal Satake compactifi-
cation of M satisfies rk(B) = i(B). As an application we obtain that
with the possible exception of E6

6/Sp4, E
7
7/SU8 and E8

8/SO16 there are
no other irreducible Riemannian symmetric spaces M of noncompact
type with rk(M) = i(M) than those discussed in Section 5. The excep-
tional symmetric space E6

6/Sp4 has the interesting property that each
of its irreducible boundary components B satisfies rk(B) = i(B). In
order to come to a conclusion for this exceptional symmetric space we
developed the criteria about reflective submanifolds in Section 3. Us-
ing these criteria we can show that E6

6/Sp4 does not satisfy the equal-
ity rk(M) = i(M). Since E6

6/Sp4 arises as a boundary component of
E7

7/SU8 and of E8
8/SO16 we can then conclude that these two symmetric

spaces do not satisfy the equality rk(M) = i(M) either.
In Section 7 we apply some of the results in Sections 3 and 4 to

calculate explicitly the index of some other symmetric spaces. We also
classify the irreducible Riemannian symmetric spaces of noncompact
type with i(M) ∈ {4, 5, 6}.

Acknowledgments. The article was written while the first author
visited the University of California, Irvine. He would like to thank
Professor Chuu-Lian Terng and the University for their kind support
and hospitality during the visit.

2. Riemannian symmetric spaces of noncompact type

We assume that the reader is familiar with the general theory of
Riemannian symmetric spaces as in [4] and summarize below some basic
facts and notations which are used in this paper.

Let M = G/K be an irreducible Riemannian symmetric space of
noncompact type, where G = Io(M) is the connected component of
the isometry group I(M) of M containing the identity transformation,
p ∈ M and K = Gp is the isotropy group of G at p. Then G is a
noncompact real semisimple Lie group and K is a maximal compact
subgroup of G. Let g = k⊕p be the corresponding Cartan decomposition
of g and denote by θ the corresponding Cartan involution on g. Let B be
the Killing form of g. Then 〈X,Y 〉 = −B(X, θY ) is a positive definite
inner product on g. The vector space p can be identified canonically
with the tangent space TpM of M a p. Since the Riemannian metric
on M is unique up to homothety, we can assume that the Riemannian
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metric on M coincides with the G-invariant Riemannian metric induced
by 〈·, ·〉.

We denote by r = rk(M) the rank of M . Let a be a maximal abelian
subspace of p and denote by a∗ the dual space of a. Note that dim(a) =
r. For α ∈ a∗ we define gα = {X ∈ g | [H,X] = α(H)X for all H ∈ a}.
If α �= 0 and gα �= {0}, then α is a restricted root and gα is a restricted
root space of g with respect to a. The positive integer mα = dim(gα)
is called the multiplicity of the root α. We denote by Ψ the set of
restricted roots with respect to a. The direct sum decomposition

g = g0 ⊕

(

⊕

α∈Ψ

gα

)

is the restricted root space decomposition of g with respect to a. The
eigenspace g0 decomposes into g0 = k0 ⊕ a, where k0 = Zk(a) is the
centralizer of a in k.

Let {α1, . . . , αr} = Λ ⊂ Ψ be a set of simple roots of Ψ. We de-
note by H1, . . . ,Hr ∈ a the dual basis of α1, . . . , αr ∈ a∗ defined by
αi(H

j) = δij for all i, j ∈ {1, . . . , r}, where δij = 0 for i �= j and
δij = 1 for i = j. Riemannian symmetric spaces of noncompact type
are uniquely determined by the Dynkin diagram of their restricted root
system together with the multiplicities of the simple roots. In Table 1
we list the Dynkin diagrams and root multiplicities for all irreducible
Riemannian symmetric spaces of noncompact type.

Parabolic subalgebras (resp. subgroups) of real semisimple Lie al-
gebras (resp. Lie groups) play an important role for the geometry of
Riemannian symmetric spaces of noncompact type for which their is no
analogue in the compact case. We will now describe how to construct
all parabolic subalgebras of g. We denote by Ψ+ the set of positive roots
in Ψ with respect to the set Λ of simple roots. Let Φ be a subset of Λ.
We denote by ΨΦ the root subsystem of Ψ generated by Φ, that is, ΨΦ

is the intersection of Ψ and the linear span of Φ. We define a reductive
subalgebra lΦ and a nilpotent subalgebra nΦ of g by

lΦ = g0 ⊕

⎛

⎝

⊕

α∈ΨΦ

gα

⎞

⎠ and nΦ =
⊕

α∈Ψ+\Ψ+

Φ

gα.

It follows from properties of root spaces that [lΦ, nΦ] ⊂ nΦ and therefore

qΦ = lΦ ⊕ nΦ

is a subalgebra of g, the so-called parabolic subalgebra of g associated
with the subsystem Φ of Ψ. The decomposition qΦ = lΦ ⊕ nΦ is the
Chevalley decomposition of the parabolic subalgebra qΦ.

Every parabolic subalgebra of g is conjugate in g to qΦ for some
subset Φ of Λ. The set of conjugacy classes of parabolic subalgebras of
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Table 1. Dynkin diagrams and root multiplicities for
irreducible Riemannian symmetric spaces M of noncom-
pact type

Dynkin diagram M Multiplicities Comments

�������	 �������	 �������	 �������	
α1 α2 αr−1 αr

SOo
1,1+k/SO1+k k k ≥ 1

SLr+1(R)/SOr+1 1, 1, . . . , 1, 1 r ≥ 2
SLr+1(C)/SUr+1 2, 2, . . . , 2, 2 r ≥ 2
SU∗

2r+2/Spr+1 4, 4, . . . , 4, 4 r ≥ 2
E−26

6 /F4 8, 8

�������	 �������	 �������	 �������	 �������	
α1 α2 αr−2 αr−1 αr

�� SOo
r,r+k/SOrSOr+k 1, 1, . . . , 1, 1, k r ≥ 2, k ≥ 1

SO2r+1(C)/SO2r+1 2, 2, . . . , 2, 2, 2 r ≥ 2

�������	 �������	 �������	 �������	 �������	
α1 α2 αr−2 αr−1 αr

��

Spr(R)/Ur 1, 1, . . . , 1, 1, 1 r ≥ 3
SUr,r/S(UrUr) 2, 2, . . . , 2, 2, 1 r ≥ 3
Spr(C)/Spr 2, 2, . . . , 2, 2, 2 r ≥ 3
SO∗

4r/U2r 4, 4, . . . , 4, 4, 1 r ≥ 3
Spr,r/SprSpr 4, 4, . . . , 4, 4, 3 r ≥ 2
E−25

7 /E6U1 8, 8, 1

�������	 �������	 �������	 �������	
�������	

�������	
α1 α2 αr−3 αr−2

αr−1

αr

❤❤❤❤

❱❱
❱❱

SOo
r,r/SOrSOr 1, 1, . . . , 1, 1, 1, 1 r ≥ 4

SO2r(C)/SO2r 2, 2, . . . , 2, 2, 2, 2 r ≥ 4

�������	 �������	 �������	 �������	 �������	
������
α1 α2 αr−2 αr−1 (αr, 2αr)

�� ��

SUr,r+k/S(UrUr+k) 2, 2, . . . , 2, 2, (2k, 1) r ≥ 1, k ≥ 1
Spr,r+k/SprSpr+k 4, 4, . . . , 4, 4, (4k, 3) r ≥ 1, k ≥ 1
SO∗

4r+2/U2r+1 4, 4, . . . , 4, 4, (4, 1) r ≥ 2

E−14
6 /Spin10U1 6, (8, 1)

F−20
4 /Spin9 (8, 7)

�������	

�������	

�������	 �������	 �������	 �������	
α1

α2

α3 α4 α5 α6

E6
6/Sp4 1, 1, 1, 1, 1, 1

E6(C)/E6 2, 2, 2, 2, 2, 2

�������	

�������	

�������	 �������	 �������	 �������	 �������	
α1

α2

α3 α4 α5 α6 α7

E7
7/SU8 1, 1, 1, 1, 1, 1, 1

E7(C)/E7 2, 2, 2, 2, 2, 2, 2

�������	

�������	

�������	 �������	 �������	 �������	 �������	 �������	
α1

α2

α3 α4 α5 α6 α7 α8

E8
8/SO16 1, 1, 1, 1, 1, 1, 1, 1

E8(C)/E8 2, 2, 2, 2, 2, 2, 2, 2

�������	 �������	 �������	 �������	
α1 α2 α3 α4

��

F 4
4 /Sp3Sp1 1, 1, 1, 1

E2
6/SU6Sp1 1, 1, 2, 2

E−5
7 /SO12Sp1 1, 1, 4, 4

E−24
8 /E7Sp1 1, 1, 8, 8

F4(C)/F4 2, 2, 2, 2

�������	 �������	
α1 α2

❴�� G2
2/SO4 1, 1

G2(C)/G2 2, 2

g therefore has 2r elements. Two parabolic subalgebras qΦ1
and qΦ2

of
g are conjugate in the full automorphism group Aut(g) of g if and only
if there exists an automorphism F of the Dynkin diagram associated to
Λ with F (Φ1) = Φ2. If |Φ| = r − 1 then qΦ is said to be a maximal
parabolic subalgebra of g.

Let

aΦ =
⋂

α∈Φ

ker(α) ⊂ a
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be the split component of lΦ and denote by aΦ = a⊖ aΦ the orthogonal
complement of aΦ in a. The reductive subalgebra lΦ is the centralizer
(and the normalizer) of aΦ in g. The orthogonal complement mΦ =
lΦ ⊖ aΦ of aΦ in lΦ is a reductive subalgebra of g. The decomposition

qΦ = mΦ ⊕ aΦ ⊕ nΦ

is the Langlands decomposition of the parabolic subalgebra qΦ. We have
[mΦ, aΦ] = 0 and [mΦ, nΦ] ⊂ nΦ. Moreover, gΦ = [mΦ,mΦ] = [lΦ, lΦ] is
a semisimple subalgebra of g. The center zΦ of mΦ is contained in k0
and induces the direct sum decomposition mΦ = zΦ ⊕ gΦ and therefore,
since zΦ ⊂ k0, we see that gΦ ∩ k0 = k0 ⊖ zΦ.

For each α ∈ Ψ we define kα = k∩ (g−α⊕gα) and pα = p∩ (g−α⊕gα).
Then we have k−α = kα, p−α = pα and kα⊕pα = g−α⊕gα for all α ∈ Ψ.
From general root space properties it follows that

fΦ = lΦ∩p = a⊕

⎛

⎝

⊕

α∈ΨΦ

pα

⎞

⎠ and bΦ = mΦ∩p = gΦ∩p = aΦ⊕

⎛

⎝

⊕

α∈ΨΦ

pα

⎞

⎠

are Lie triple systems in p. We define a subalgebra kΦ of k by

kΦ = qΦ ∩ k = lΦ ∩ k = mΦ ∩ k = k0 ⊕

⎛

⎝

⊕

α∈ΨΦ

kα

⎞

⎠ .

Then we have [kΦ,mΦ] ⊂ mΦ, [kΦ, aΦ] = {0} and [kΦ, nΦ] ⊂ nΦ. More-
over, gΦ = (gΦ ∩ kΦ)⊕ bΦ is a Cartan decomposition of the semisimple
subalgebra gΦ of g and aΦ is a maximal abelian subspace of bΦ. If we

define (gΦ)0 = (gΦ ∩ k0) ⊕ aΦ, then gΦ = (gΦ)0 ⊕
(

⊕

α∈ΨΦ
gα

)

is the

restricted root space decomposition of gΦ with respect to aΦ and Φ is
the corresponding set of simple roots.

Let FΦ and BΦ be the connected complete totally geodesic submani-
fold ofM corresponding to the Lie triple systems fΦ and bΦ, respectively.
Then BΦ is a Riemannian symmetric space of noncompact type with
rk(BΦ) = |Φ|, also known as a boundary component in the maximal
Satake compactification of M (see [3]). Note that BΦ is irreducible if
and only if the Dynkin diagram corresponding to Φ is connected. The
totally geodesic submanifold FΦ is isometric to the Riemannian product
BΦ × R

r−|φ|, where R
r−|φ| is the totally geodesic Euclidean space in M

corresponding to the abelian Lie triple system aΦ. For i ∈ {1, . . . , r} we
define Φi = Λ \ {αi}, li = lΦi

, Fi = FΦi
, Bi = BΦi

, etcetera. Then we
have Fi = R×Bi.
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3. Reflective submanifolds

Let Σ′ be a connected totally geodesic submanifold of M . Since M
is homogeneous we can assume that p ∈ Σ′. Moreover, since every con-
nected totally geodesic submanifold of a Riemannian symmetric space is
contained in a connected complete totally geodesic submanifold, we can
also assume that Σ′ is complete. Since M is of noncompact type, Σ′ is
the Riemannian product of a (possibly 0-dimensional) Euclidean space
and a (possibly 0-dimensional) Riemannian symmetric space of noncom-
pact type. This implies in particular that Σ′ is simply connected.

The tangent space m′ = TpΣ
′ ⊂ TpM = p is a Lie triple system in

p and thus g′ = [m′,m′] ⊕ m′ ⊂ k ⊕ p = g is a subalgebra of g. Let G′

be the connected closed subgroup of G with Lie algebra g′. Then Σ′ is
the orbit G′ · p of the G′-action on M containing p. Thus we can write
Σ′ = G′/K ′, where K ′ = G′

p is the isotropy group of G′ at p. Since Σ′ is

simply connected, the isotropy group K ′ is connected. The Lie algebra
k′ of K ′ is given by k′ = [m′,m′]. Note that G′ is a normal subgroup of

GΣ′

= {g ∈ G | g(Σ′) = Σ′} and K ′ is a normal subgroup of (GΣ′

)p.
The following Slice Lemma was proved in [1] and will be used later.

We formulate it here for the noncompact case, but it is valid also for
the compact case.

Lemma 3.1. (Slice Lemma) Let M = G/K be an irreducible Rie-
mannian symmetric space of noncompact type with rk(M) ≥ 2, where
G = Io(M) and K = Gp is the isotropy group of G at p ∈ M . Let
g = k ⊕ p be the corresponding Cartan decomposition. Let Σ′ be a non-
flat totally geodesic submanifold of M such that p ∈ Σ′. Let G′ be the
connected closed subgroup of G with Lie algebra [m′,m′] ⊕ m′, where
TpΣ

′ = m′ ⊂ p = TpM , and K ′ = G′
p. Then the slice representation of

K ′ on νpΣ
′ is nontrivial.

In general, the orthogonal complement m′′ of a Lie triple system m′ in
p is not a Lie triple system. If m′′ is a Lie triple system, then m′ is said to
be a reflective Lie triple system and Σ′ is said to be a reflective subman-
ifold of M . The notion comes from the fact that the geodesic reflection
of M in Σ′ is a well-defined global isometry of M if and only if both m′

and m′′ are Lie triple systems. Reflective submanifolds therefore always
come in pairs Σ′ and Σ′′ corresponding to the two reflective Lie triple
systems m′ and m′′. In this situation we write Σ′′ = G′′/K ′′, where G′′ is
the connected closed subgroup of G with Lie algebra g′′ = [m′′,m′′]⊕m′′

and K ′′ = G′′
p is the connected closed subgroup of K with Lie algebra

k′′ = [m′′,m′′]. The reflective submanifolds of irreducible simply con-
nected Riemannian symmetric spaces of compact type were classified
by Leung ([10],[11]). Using duality one obtains the classification of
reflective submanifolds in irreducible Riemannian symmetric spaces of
noncompact type.
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Let R denote the Riemannian curvature tensor of M . As Σ′ is totally
geodesic in M , the restriction of R to Σ′ coincides with the Riemannian
curvature tensor of Σ′. We will regard, via the isotropy representation
at p, K ′ ⊂ K ⊂ SO(TpM). Note that k and k′ are generated by the
curvature transformations Rx,y ∈ so(TpM) with x, y ∈ TpM and x, y ∈

TpΣ
′, respectively. The curvature operator R̃ : Λ2(TpM) → Λ2(TpM)

is negative semidefinite. This implies, as is well-known, that K ′ acts
almost effectively on TpΣ

′.
Let ρ : K ′ → SO(νpΣ

′), k → dpk|νpΣ′ be the slice representation

of K ′ on the normal space νpΣ
′ of Σ′ at p and denote by ker(ρ) the

kernel of ρ. Let χ : K ′′ → SO(TpΣ
′′), k → dpk|TpΣ′′ be the isotropy

representation of K ′′ on the tangent space TpΣ
′′.

Lemma 3.2. Let M = G/K be an irreducible Riemannian symmetric
space of noncompact type, Σ′ = G′/K ′ be a reflective submanifold of M
and Σ′′ = G′′/K ′′ be the reflective submanifold of M with TpΣ

′′ = νpΣ
′.

Then:

(i) ρ(K ′) is a normal subgroup of χ(K ′′).
(ii) The subspace (νpΣ

′)o = {ξ ∈ νpΣ
′ | ρ(k′)ξ = ξ for all k′ ∈ K ′} of

νpΣ
′ = TpΣ

′′ is χ(K ′′)-invariant and Σ′′ = Σ′′
o × Σ′′

1 (Riemannian
product), where Σ′′

o is the totally geodesic submanifold of Σ′′ with
TpΣ

′′
o = (νpΣ

′)o. Moreover, if rk(M) ≥ 2, then Σ′′
o is flat.

Proof. As previously observed, K ′ is a normal subgroup of (GΣ′

)p.

Observe also that K ′′ ⊂ (GΣ′

)p and that ρ(K ′) ⊂ χ(K ′′) (for the last
inclusion see the paragraph below Lemma 2.1 in [1]). Then ρ(K ′) =
ρ(k′′K ′(k′′)−1) = χ(k′′)ρ(K ′)(χ(k′′))−1 for all k′′ ∈ K ′′ and thus ρ(K ′)
is a normal subgroup of χ(K ′′). Thus the subspace (νpΣ

′)o of TpΣ
′′ is

χ(K ′′)-invariant and hence also invariant under the holonomy group of
Σ′′ at p. Since Σ′′ is simply connected, the de Rham decomposition
theorem for Riemannian manifolds implies that Σ′′ decomposes as a
Riemannian product into Σ′′ = Σ′′

o×Σ′′
1, where Σ

′′
o is the totally geodesic

submanifold of Σ′′ with TpΣ
′′
o = (νpΣ

′)o.
We write Σ′′

o = G′′
o/K

′′
o , where G′′

o is the connected closed subgroup
of G with Lie algebra g′′o = [TpΣ

′′
o , TpΣ

′′
o ]⊕ TpΣ

′′
o and K ′′

o is the isotropy
group of G′′

o at p. Let x1, x2 ∈ TpΣ
′′
o = (νpΣ

′)o. For all y ∈ TpΣ
′′
1 we have

Rx1,x2
y = 0 since Σ′′ = Σ′′

o × Σ′′
1 is a Riemannian product and totally

geodesic in M . Clearly, TpΣ
′′
1 is K ′′

o -invariant and hence TpΣ
′ is also

K ′′
o -invariant. If x′, y′ ∈ TpΣ

′, then 〈Rx1,x2
x′, y′〉 = 〈Rx′,y′x1, x2〉 = 0,

since x1, x2 ∈ (νpΣ
′)o are fixed under the slice representation of K ′.

Since νpΣ
′′
o = TpΣ

′′
1 ⊕ TpΣ

′ and k′′o is linearly spanned by the curvature
endomorphisms of pairs of elements in TpΣ

′′
o , we conclude that the slice

representation of K ′′
o on νpΣ

′′
o is trivial. It follows from the Slice Lemma

3.1 that Σ′′
o is flat if rk(M) ≥ 2. This finishes the proof of part (ii).

q.e.d.
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Corollary 3.3. Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type with rk(M) ≥ 2 and let Σ be a totally
geodesic submanifold of M which decomposes into a Riemannian prod-
uct Σ = Σ0 × Σ1 with a Euclidean factor Σ0 and a semisimple factor
Σ1 with dim(Σ0) > 0 and dim(Σ1) > 0. Then Σ1 is not a reflective
submanifold of M .

Proof. Assume that Σ1 is a reflective submanifold of M . We will
apply Lemma 3.2 with Σ′ = Σ1. In the notation of Lemma 3.2, we have
TpΣ0 ⊂ (νpΣ

′)o and therefore Σ0 is contained in the flat factor Σ′′
o of

Σ′′. This implies that Rx0,x′′ = 0 for all x0 ∈ TpΣ0 and x′′ ∈ TpΣ
′′. We

obviously also have Rx0,x1
= 0 for all x0 ∈ TpΣ0 and x1 ∈ TpΣ1 = TpΣ

′.
Since TpM = TpΣ

′⊕TpΣ
′′ this implies Rx0,· = 0 for all x0 ∈ TpΣ0, which

is a contradiction. q.e.d.

The next result provides a useful sufficient criterion for a semisimple
totally geodesic submanifold of an irreducible Riemannian symmetric
space to be reflective.

Proposition 3.4. Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type with rk(M) ≥ 2 and let Σ = G′/K ′

be a semisimple totally geodesic submanifold of M . Assume that the
kernel ker(ρ) of the slice representation ρ : K ′ → SO(νpΣ) has positive
dimension. Then we have

νpΣ = {ξ ∈ TpM | ρ(k)ξ = ξ for all k ∈ ker(ρ)o}

and, in particular, Σ is a reflective submanifold of M .

Proof. The subspace V = {ξ ∈ TpΣ | dpk(ξ) = ξ for all k ∈ ker(ρ)o}
of TpΣ is K ′-invariant since ker(ρ)o is a normal subgroup of K ′.

We first assume that V = TpΣ. Since ker(ρ)o acts trivially on νpΣ
we conclude that ker(ρ)o and hence K ′ acts trivially on TpM , which is
a contradiction.

Next, we assume that V is a nontrivial proper K ′-invariant subspace
of TpΣ. Then Σ decomposes as a Riemannian product Σ = Σ1 × Σ2,
where V = TpΣ1. If we write, as usual, Σi = Gi/Ki, then K ′ = K1×K2

(almost direct product). Let hi be the orthogonal projection of the Lie
algebra of ker(ρ) into ki and let Hi be the connected subgroup of Ki

with Lie algebra hi. Then H1 acts trivially on V = TpΣ1 since both
ker(ρ)o and H2 act trivially on V. Since K1 acts almost effectively on
TpΣ1 and H1 is connected, it follows that H1 is trivial. Thus we have
shown that ker(ρ)o ⊂ K2.

Note that {ξ ∈ TpM | ρ(k)ξ = ξ for all k ∈ ker(ρ)o} = V ⊕ νpΣ =
νpΣ2. This shows that Σ2 is a reflective submanifold of M . Let Σ3 =
G3/K3 be the reflective submanifold ofM with TpΣ3 = νpΣ2. We denote
by ρi : Ki → SO(νpΣi) the slice representation of Ki on the normal
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space νpΣi and by χi : Ki → SO(TpΣi) the isotropy representation of
Ki, i ∈ {1, 2, 3}.

From Lemma 3.2(i) we see that ρ2(K2) is a normal subgroup of
χ3(K3). Let W be the set of fixed vectors of ρ2(K2) in νpΣ2 = TpΣ3 =
V ⊕ νpΣ = TpΣ1 ⊕ νpΣ. Since K2 acts trivially on TpΣ1 one has that
TpΣ1 ⊂ W. From Lemma 3.2(ii) we know that W is the tangent space
of a Euclidean factor of Σ3. This is a contradiction since Σ1 is contained
in this Euclidean factor, however, Σ1 is not flat as Σ is semisimple. It
follows that V = {0}, which proves the assertion. q.e.d.

The following consequence of Proposition 3.4 states that totally geo-
desic submanifolds of sufficiently small codimension in irreducible Rie-
mannian symmetric spaces are reflective.

Corollary 3.5. Let M be an n-dimensional irreducible Riemannian
symmetric space of noncompact type with r = rk(M) ≥ 2 and let Σ be a
semisimple connected complete totally geodesic submanifold of M with
codim(Σ) = d. If

1

2
d(d+ 1) + rk(Σ) < n,

then Σ is a reflective submanifold of M . In particular, if

d(d+ 1) < 2(n − r),

then Σ is a reflective submanifold of M .

Proof. As usual, we write Σ = G′/K ′. If dim(K ′) > dim(SO(νpΣ)) =
1
2d(d− 1), then the kernel of the slice representation ρ : K ′ → SO(νpΣ)
must have positive dimension and therefore Σ is a reflective submanifold
of M by Proposition 3.4. A principal K ′-orbit on Σ has dimension
n − d − rk(Σ) and thus dim(K ′) ≥ n − d − rk(Σ). Consequently, if
1
2d(d−1) < n−d− rk(Σ), then Σ is a reflective submanifold of M . The

inequality 1
2d(d−1) < n−d−rk(Σ) is equivalent to 1

2d(d+1)+rk(Σ) < n.
The last statement follows from the fact that rk(Σ) ≤ rk(M) = r. q.e.d.

4. Non-semisimple maximal totally geodesic submanifolds

Let Σ be a connected totally geodesic submanifold of M . We may
assume that Σ is complete and p ∈ Σ. Every connected complete to-
tally geodesic submanifold of a Riemannian symmetric space is again
a Riemannian symmetric space. In this paper, when we consider a to-
tally geodesic submanifold Σ of M , we always assume that p ∈ Σ and
that Σ is connected and complete. Since M is of noncompact type, it
follows that Σ is isometric to the Riemannian product Σ0 × Σ1, where
Σ0 is a (possibly 0-dimensional) Euclidean space and Σ1 is a (possibly
0-dimensional) Riemannian symmetric space of noncompact type.
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The next result relates non-semisimple maximal totally geodesic sub-
manifolds of M to the reductive factors in the Chevalley decompositions
of the maximal parabolic subalgebras of g.

Proposition 4.1. Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type and let Σ be a non-semisimple maximal
totally geodesic submanifold of M . Then Σ is congruent to Fi = R×Bi

for some i ∈ {i, . . . , r}.

Proof. Let a be a maximal abelian subspace of p with TpΣ0 ⊂ a and
consider the restricted root space decomposition of g induced by a. We
define Υ = {αi ∈ Λ | αi(TpΣ0) = 0} ⊂ Λ. Assume that Υ = Λ, which
means that αi(TpΣ0) = 0 for all αi ∈ Λ. This implies TpΣ0 = {0} and
therefore Σ = Σ1 is semisimple, which is a contradiction. Thus we have
|Υ| < |Λ| = r and therefore there exists i ∈ {1, . . . , r} such that Υ ⊂ Φi.
Then we get

TpΣ ⊂ Zp(TpΣ0) = {X ∈ p | [X,Y ] = 0 for all Y ∈ TpΣ0}

⊂ Zg(TpΣ0) = {X ∈ g | [X,Y ] = 0 for all Y ∈ TpΣ0}

= g0 ⊕

⎛

⎝

⊕

α∈Ψ,α(TpΣ0)={0}

gα

⎞

⎠ = lΥ ⊂ li,

which implies TpΣ ⊂ li∩ p = fi and therefore Σ ⊂ Fi = R×Bi. If Σ is a
maximal totally geodesic submanifold of M we must have Σ = Fi, since
Fi is a totally geodesic submanifold of M which is strictly contained in
M . q.e.d.

The remaining problem is to clarify which of the totally geodesic
submanifolds Fi are maximal. The solution of this problem is related
to symmetric R-spaces. Let M = G/K be an irreducible Riemannian
symmetric space of noncompact type and consider the isotropy repre-
sentation

χ : K → TpM = p, v → dpk(v) = Ad(k)v.

For every 0 �= v ∈ p the orbit

K · v = {Ad(k)v | k ∈ K} ⊂ p

is called an R-space (or real flag manifold). One can show that the
normal space νv(K · v) of K · v at v is equal to

νv(K · v) = Zp(v) = {w ∈ p | [v,w] = 0},

where Zp(v) is the centralizer of v in p. It follows from the Jacobi
identity that Zp(v) is a Lie triple system. Thus, for every 0 �= v ∈ p,
there exists a connected complete totally geodesic submanifold Σv of M
with TpΣ

v = νv(K · v). Since every v ∈ p is contained in a maximal
abelian subspace of p we can assume that v ∈ a. Then we have lΦ =
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Table 2. Highest roots δ of root systems (R)

(R) Highest root δ = δ1α1 + . . . + δrαr Comments

(Ar) α1 + . . . + αr r ≥ 1
(Br) α1 + 2α2 + . . .+ 2αr r ≥ 2
(Cr) 2α1 + . . .+ 2αr−1 + αr r ≥ 3
(Dr) α1 + 2α2 + . . .+ 2αr−2 + αr−1 + αr r ≥ 4
(BCr) 2α1 + . . .+ 2αr r ≥ 1
(E6) α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6

(E7) 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7

(E8) 2α1+3α2+4α3+6α4+5α5+4α6+3α7+2α8

(F4) 2α1 + 3α2 + 4α3 + 2α4

(G2) 3α1 + 2α2

Zg(v) with Φ = {αi ∈ Λ | αi(v) = 0}, which implies fΦ = Zp(v) =
νv(K · v) and therefore FΦ = Σv.

A special situation occurs when the orbitK·v is a symmetric space. In
this situation the orbit K · v is called an irreducible symmetric R-space.
The irreducibility here refers to the irreducibility of the symmetric space
G/K and not to the orbit. An irreducible symmetric R-space can be re-
ducible as a Riemannian manifold. The irreducible symmetric R-spaces
were classified by Kobayashi and Nagano in [9]. Their classification can
be read off from the Dynkin diagrams and highest roots of the symmet-
ric spaces G/K. In Table 1 we already listed the Dynkin diagrams. In
Table 2 we list the corresponding highest roots δ = δ1α1 + . . . + δrαr.

Kobayashi and Nagano proved that an R-space K · v is symmetric if
and only if v = H i and δi = 1. From Tables 1 and 2 one can easily get
the classification of irreducible symmetric R-spaces. We can now state
the main result of this section:

Theorem 4.2. Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type and let Σ be a non-semisimple con-
nected complete totally geodesic submanifold of M . Then the following
statements are equivalent:

(i) Σ is a maximal totally geodesic submanifold of M ;
(ii) Σ is isometrically congruent to Fi = R×Bi and δi = 1;
(iii) νpΣ is the tangent space of a symmetric R-space in TpM ;
(iv) The pair (M,Σ) is as in Table 3.

Proof. The equivalence of (ii) and (iv) is a straightforward compu-
tation using Tables 1 and 2. Kobayashi and Nagano proved that an
R-space K · v is symmetric if and only if v = H i and δi = 1. In
this situation we have νHi(K · H i) = Zp(H

i) = fi = TpFi and hence
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Table 3. Non-semisimple maximal totally geodesic sub-
manifolds Σ = R×B of irreducible Riemannian symmet-
ric spaces M of noncompact type

M B codim(Σ) Comments

SLr+1(R)/SOr+1 SLi(R)/SOi×SLr+1−i(R)/SOr+1−i i(r+1− i) r ≥ 2, 1 ≤ i ≤ [ r2 ]
SLr+1(C)/SUr+1 SLi(C)/SUi×SUr+1−i(C)/SUr+1−i 2i(r+1−i) r ≥ 2, 1 ≤ i ≤ [ r2 ]
SU∗

2r+2/Spr+1 SU∗
2i/Spi × SU∗

2(r+1−i)/Spr+1−i 4i(r+1−i) r ≥ 2, 1 ≤ i ≤ [ r2 ]

E−26
6 /F4 RH9 16

SOo
r,r+k/SOrSOr+k SOo

r−1,r−1+k/SOr−1SOr−1+k 2r − 2 + k r ≥ 2, k ≥ 1

SO2r+1(C)/SO2r+1 SO2r−1(C)/SO2r−1 4r − 2 r ≥ 2

Spr(R)/Ur SLr(R)/SOr
1
2r(r + 1) r ≥ 3

SUr,r/S(UrUr) SLr(C)/SUr r2 r ≥ 3
Spr(C)/Spr SLr(C)/SUr r(r + 1) r ≥ 3
SO∗

4r/U2r SU∗
2r/Spr r(2r − 1) r ≥ 3

Spr,r/SprSpr SU∗
2r/Spr r(2r + 1) r ≥ 2

E−25
7 /E6U1 E−26

6 /F4 27

SOo
r,r/SOrSOr SOo

r−1,r−1/SOr−1SOr−1 2(r − 1) r ≥ 4

SLr(R)/SOr
1
2r(r − 1) r ≥ 4

SO2r(C)/SO2r SO2(r−1)(C)/SO2(r−1) 4(r − 1) r ≥ 4
SLr(C)/SUr r(r − 1) r ≥ 4

E6
6/Sp4 SOo

5,5/SO5SO5 16
E7

7/SU8 E6
6/Sp4 27

E6(C)/E6 SO10(C)/SO10 32
E7(C)/E7 E6(C)/E6 54

νpFi = THi(K · H i). This gives the equivalence of (ii) and (iii). We
shall now prove the equivalence of (i) and (ii).

We first assume that Σ is a maximal totally geodesic submanifold of
M . From Proposition 4.1 we know that, up to conjugacy, Σ = Fi for
some i ∈ {1, . . . , r}. Assume that δi ≥ 2 and let t be a prime number
with t ≤ δi. Then define the semisimple subalgebra hi,t of g by

hi,t = g0 ⊕

⎛

⎝

⊕

α∈Ψ,α(Hi)≡0(mod t)

gα

⎞

⎠ .

Since

li = g0 ⊕

⎛

⎝

⊕

α∈Ψ,α(Hi)=0

gα

⎞

⎠

and δi ≥ t we see that li is strictly contained in hi,t. It follows that
the Lie triple system li ∩ p = fi is strictly contained in the Lie triple
system hi,t∩p. This is a contradiction since, by assumption, TpΣ = fi is
a maximal Lie triple system. Consequently we must have δi = 1. This
finishes the proof for “(i) ⇒ (ii)”.

Conversely, let us assume that Σ = Fi for some i ∈ {1, . . . , r} and
that δi = 1. We denote by Si the symmetric R-space K ·H i ⊂ p = TpM .
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Then we have α(H i) ∈ {−1, 0,+1} for all α ∈ Ψ and therefore ad(H i)2

induces a vector space decomposition g = g0 ⊕ g1 of g, where

g0 = li = g0 ⊕

⎛

⎝

⊕

α∈Ψ,α(Hi)=0

gα

⎞

⎠ and g1 =
⊕

α∈Ψ,α(Hi)=±1

gα.

The map X0 + X1 → X0 − X1 defines an involutive automorphism of
g = g0 ⊕ g1. We denote by si : p → p the induced isomorphism on p.
Then we have si(X) = −X for all X ∈ THiSi = g1∩p = ⊕α∈Ψ,α(Hi)=1pα

and si(X) = X for all X ∈ νHiSi = g0 ∩ p = fi = R × bi = Zp(H
i).

The isomorphism si is the orthogonal reflection of p in the normal space
νHiSi and its restriction to Si leaves Si invariant and hence induces an
involutive isometry on Si for which H i is an isolated fixed point. This
shows that Si is a symmetric R-space and that Si is an extrinsically
symmetric submanifold of the Euclidean space TpM = p with si as the
extrinsic symmetry.

Since [gν , gμ] ⊂ g(ν+μ)(mod 2), we see that νHiSi = g0 ∩ p and THiSi =
g1∩ p are Lie triple systems. It follows that both the tangent space and
the normal space of the symmetric R-space Si at H i are reflective Lie
triple systems.

Let V �= p be a Lie triple system in p with fi ⊂ V and let Σ′ be
the connected complete totally geodesic submanifold of M with TpΣ

′ =
V. Then we have Σ′ = G′/K ′, where G′ and K ′ is the connected
closed subgroup of G with Lie algebra g′ = [V,V] ⊕ V and k′ = [V,V],
respectively.

Since rk(M) ≥ 2, the semisimple factor bi of fi is non-trivial and
therefore V is a non-abelian subspace of p. Since THiSi is a Lie triple
system, V ∩ THiSi is a Lie triple system as well. Let N be the con-
nected component containing H i of the intersection Σ′ ∩ Si. It is clear
from the construction that N is a smooth submanifold of Si in an open
neighborhood of H i.

We identify X ∈ g with the Killing field q → X.q = d
dt |t=0

(t →

Exp(tX)(q)) on M . The orthogonal projection X̄ of X|Σ′ to TΣ′ is a
Killing field on the totally geodesic submanifold Σ′ which lies in the
transvection algebra of Σ′ (see the paragraph below Lemma 2.1 in [1]).
Note that X̄.p = 0 if X ∈ k. Then, if X ∈ k, there exists X ′ ∈ k′

such that Z|Σ′ is always perpendicular to Σ′, where Z = X −X ′. This

implies that Z.V ⊂ V
⊥. In fact, let γu be the geodesic in M with initial

condition γ′u(0) = u ∈ V. The Jacobi field Z.γu(t) is perpendicular
to Tγu(t)Σ

′ and therefore its covariant derivative (Z.γu)
′(t) must be so.

Hence (Z.γu)
′(0) = Z.u ∈ V

⊥. So, if X ∈ k, we have X.u = X ′.u+ Z.u
and thus Tu(K · u) ⊂ Tu(K

′ · u) ⊕ V
⊥ for all u ∈ V. This implies

Tu(K · u) = Tu(K
′ · u) ⊕ V

⊥ (orthogonal direct sum) and νu(K
′ · u) =

νu(K · u) for all u ∈ Si, since νHiSi ⊂ V.
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As we have previously observed, N is a submanifold of Si in an open
neighborhood of H i. Since K ′ ·H i ⊂ V and K ′ ⊂ K we obtain K ′ ·H i ⊂
N and K ′ ·N = N . From the previous paragraph we conclude that N
coincides with K ′ · H i around H i, since both submanifolds of Si have
the same dimension. Moreover, since V is K ′-invariant, V contains the
normal space νwSi = νw(K · w) for all w ∈ K ′ · H i. This implies in
particular that N is totally geodesic in Si at all points w ∈ K ′ · H i.
Thus N is a submanifold around any w ∈ K ′ · H i and N coincides,
around w, with this orbit. Therefore K ′ · H i is an open subset of N .
Since K ′ ·H i is compact and N is Hausdorff, the orbit K ′ ·H i is a closed
subset of N . Since N is connected this implies that N = K ′ · H i is a
totally geodesic submanifold of Si.

Let us consider the extrinsic symmetry si at H i of the extrinsically
symmetric submanifold Si of TpM . Since si leaves Si, V and {H i}
invariant, it also leaves invariant the connected component N = K ′ ·H i

of Si∩V containingH i. Hence si restricted to V is an extrinsic symmetry
of N ⊂ V at H i. This proves that N is an extrinsically symmetric
submanifold of V.

Note that the extrinsic symmetry si has the property si(V) = V and
therefore siK

′s−1
i = K ′.

We want to prove that N = {H i}, or equivalently, that V = νHiSi.
Assume that this is not true. Let W ⊂ V be the linear span of N =
K ′ · H i. Then W is the tangent space to a (symmetric) Riemannian
factor of Σ′, since it is K ′-invariant. The subspace W cannot have an
abelian part sinceN = K ′·H i is full inW. Also, sinceK acts irreducibly
on TpM , K must act effectively on the symmetric orbit Si. The group
K is generated by the so-called geometric transvections sx ◦ sy, where
x, y ∈ Si and sx denotes the extrinsic symmetry at x. In fact, the
connected group K cannot be bigger than the group of transvections of
the symmetric space Si since Si is compact, and so any Killing field on
Si is bounded and hence belongs to the Lie algebra of the transvection
group.

Let K ′′ be the connected closed subgroup of K ′ with Lie algebra
k′′ = [W,W] ⊕ W. Note that K ′ · H i = K ′′ · H i. Moreover, K ′′ acts
almost effectively on N . In fact, K ′′ acts almost effectively on W (see
Section 2 of [1]) and if k′′ ∈ K ′′ acts trivially on N it must act trivially
on its linear span. We also have K ′ = K ′′ × K̄ (almost direct product),
where K̄ is the connected closed subgroup of K ′ with Lie algebra k̄ =
[W⊥ ∩ V,W⊥ ∩ V]⊕ (W⊥ ∩ V).

As we have seen above, N = K ′′ ·H i is a symmetric submanifold of Si

and thus K ′′ must be generated by {sx′ ◦ sy′} with x′, y′ ∈ K ′ ·H i. The
following observation is crucial: sx′ ◦sy′ is the identity on the orthogonal

complement of W. In fact, sx′ is the identity on W
⊥ ∩ V, since this

subspace is contained in νx′Si. Moreover, sx′ is minus the identity on
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V
⊥, which is tangent to Si at x

′. The same is true if one replaces x′ by
y′ and so sx′ ◦ sy′ is the identity on V

⊥⊕ (W⊥∩V) = W
⊥. This implies

that K ′′ acts trivially on W
⊥, which contradicts the Slice Lemma 3.1.

Then V = νHiSi which implies that νHiSi = TpΣ is maximal. Thus we
have proved that Σ is a maximal totally geodesic submanifold of M .
This finishes the proof of “(ii) ⇒ (i)”. q.e.d.

From Theorem 4.2 and Table 2 we obtain

Corollary 4.3. Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type. If the restricted root system of M is
of type (BCr), (E8), (F4) or (G2), then every maximal totally geodesic
submanifold of M is semisimple.

We have seen in the proof of Theorem 4.2 that νpFi is a Lie triple
system when δi = 1, which implies that TpFi is a reflective Lie triple
system when δi = 1. From Theorem 4.2 we can therefore conclude:

Corollary 4.4. Let M = G/K be an irreducible Riemannian sym-
metric space of noncompact type and let Σ be a non-semisimple maximal
totally geodesic submanifold of M . Then Σ is a reflective submanifold
of M .

We remark that the analogous statement for the semisimple case does
not hold. For example, SL3(R)/SO3 is a semisimple maximal totally
geodesic submanifold of G2

2/SO4 which is not reflective.
We recall from [1] the following result:

Theorem 4.5. Let M be an irreducible Riemannian symmetric space.
Then

rk(M) ≤ i(M).

From Table 3 we obtain that the codimension of the totally geodesic
submanifold Σ = R × SLr(R)/SOr in M = SLr+1(R)/SOr+1 is equal
to r = rk(M), which implies i(M) ≤ rk(M). Using Theorem 4.5 we
thus conclude:

Corollary 4.6. For M = SLr+1(R)/SOr+1 we have rk(M) = r =
i(M).

5. Examples of symmetric spaces with rk(M) = i(M)

We first consider the symmetric space M = SLr+1(R)/SOr+1 for
r ≥ 1 and present a more explicit version of Corollary 4.6. This sym-
metric space has rk(M) = r and dim(M) = 1

2r(r+3). For r = 1 we get

the real hyperbolic plane RH2. Thus, if Σ is a geodesic in M , we have
codim(Σ) = 1 = rk(M). For r ≥ 2 we consider the Cartan decomposi-
tion g = k⊕p of the Lie algebra g = slr+1(R) of G = SLr+1(R) which is
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induced by the Lie algebra k = sor+1 of K = SOr+1. The vector space
p is given by

p = {A ∈ slr+1(R) | A
T = A}.

We now define

m =

{

A =

(

−tr(B) 0
0 B

)

∈ p

∣

∣

∣

∣

B ∈ glr(R), BT = B

}

.

Then we have

[[m,m],m] =

{

A =

(

0 0
0 B

)

∈ p

∣

∣

∣

∣

B ∈ slr(R), BT = B

}

⊂ m,

which shows that m is a Lie triple system in p. We have dim(m) =
1
2r(r+1) and hence dim(p)−dim(m) = 1

2r(r+3)− 1
2r(r+1) = r. Thus the

connected complete totally geodesic submanifold Σ of M corresponding
to the Lie triple system m, which is isometric to R × SLr(R)/SOr,
satisfies codim(Σ) = r = rk(M). From Theorem 4.5 we can therefore
conclude that the index of SLr+1(R)/SOr+1 is equal to the rank of
SLr+1(R)/SOr+1. We remark that R × SLr(R)/SOr is tangent to the
normal space of a Veronese embedding of the real projective space RP r

into p (see e.g. Lemma 8.1 in [12]).
Next, we consider the symmetric space M = SOo

r,r+k/SOrSOr+k

with r ≥ 1, k ≥ 0 and (r, k) /∈ {(1, 0), (2, 0)}. This symmetric space
has rk(M) = r and dim(M) = r(r + k). For (r, k) = (1, 0) we have
dim(M) = 1 and so M is not of noncompact type. For (r, k) = (2, 0) we
have the symmetric spaceM = SOo

2,2/SO2SO2 which is isometric to the
Riemannian product of two real hyperbolic planes and therefore not ir-
reducible. Note that SOo

1,2/SO2 = SL2(R)/SO2 and SOo
3,3/SO3SO3 =

SL4(R)/SO4.
For r = 1 we get the (k + 1)-dimensional real hyperbolic space

M = RHk+1 = SOo
1,1+k/SO1+k. This space contains a totally geodesic

hypersurface Σ = RHk and therefore rk(M) = 1 = i(M).
Now assume that r ≥ 2 and consider the Cartan decomposition g =

k⊕ p of the Lie algebra g = sor,r+k of G = SOo
r,r+k which is induced by

the Lie algebra k = sor ⊕ sor+k of K = SOrSOr+k. The vector space p

is given by

p =

{

A ∈ sor,r+k

∣

∣

∣

∣

A =

(

0 B
BT 0

)

, B ∈ Mr,r+k(R)

}

,

where Mr,r+k(R) denotes the vector space of r × (r + k)-matrices with
real coefficients. We define a linear subspace m of p by

m =

{

A =

(

0 B
BT 0

)

∈ p

∣

∣

∣

∣

B =
(

C 0
)

, C ∈ Mr,r+k−1(R)

}

.

A straightforward calculation shows that [[m,m],m] ⊂ m, that is, m is
a Lie triple system in p. We have dim(m) = r(r + k − 1) and hence
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dim(p) − dim(m) = r(r + k) − r(r + k − 1) = r. Thus the connected
complete totally geodesic submanifold Σ of M corresponding to the Lie
triple system m, which is isometric to SOo

r,r+k−1/SOrSOr+k−1, satisfies

codim(Σ) = r = rk(M). From Theorem 4.5 it follows that the index of
SOo

r,r+k/SOrSOr+k is equal to r.
Altogether we have now proved the “if”-part of Theorem 1.1:

Proposition 5.1. Let M be one of the following Riemannian sym-
metric spaces of noncompact type:

(i) SLr+1(R)/SOr+1, r ≥ 1;
(ii) SOo

r,r+k/SOrSOr+k, r ≥ 1, k ≥ 0, (r, k) /∈ {(1, 0), (2, 0)}.

Then rk(M) = r = i(M).

6. The classification

The following result was proved in [1] and will be used later.

Theorem 6.1. Let M be an irreducible Riemannian symmetric space,
Σ be a connected totally geodesic submanifold of M and p ∈ Σ. Then
there exists a maximal abelian subspace a of p such that a is transversal
to TpΣ, that is, a ∩ TpΣ = {0}.

Let M = G/K be an irreducible Riemannian symmetric space of
noncompact type and assume that i(M) = r = rk(M). Then there
exists a connected complete totally geodesic submanifold Σ of M with
p ∈ Σ such that codim(Σ) = r. According to Theorem 6.1 there exists a
maximal abelian subspace a of p such that a is transversal to TpΣ. Let Ψ
be the set of restricted roots with respect to a and Λ = {α1, . . . , αr} be a
set of simple roots for Ψ. The next result provides a necessary criterion
for an irreducible Riemannian symmetric space M with rk(M) ≥ 2 to
satisfy the equality rk(M) = i(M).

Proposition 6.2. (Boundary Reduction) Let M be an irreducible
Riemannian symmetric space of noncompact type with rk(M) ≥ 2 and
assume that the equality rk(M) = i(M) holds. Then every irreducible
boundary component BΦ of M satisfies rk(BΦ) = i(BΦ).

Proof. Let ΣΦ be the connected complete totally geodesic subman-
ifold of FΦ corresponding to the Lie triple system TpΣ ∩ TpFΦ. Since
TpM = TpΣ⊕ a (direct sum) and a ⊂ TpFΦ, we have TpFΦ = TpΣΦ ⊕ a

(direct sum). Thus the codimension of ΣΦ in FΦ is equal to dim a =
r = rk(M) = rk(FΦ).

The orthogonal projection (TpΣΦ)TpBΦ
of the Lie triple system TpΣΦ

onto TpBΦ is a Lie triple system. Let Σ′
Φ be the connected complete to-

tally geodesic submanifold of BΦ corresponding to the Lie triple system
(TpΣΦ)TpBΦ

. Since TpFΦ = TpΣΦ ⊕ a = TpBΦ ⊕ aΦ (direct sum) and

a = aΦ⊕aΦ, we have TpBΦ = TpΣ
′
Φ⊕aΦ (direct sum), which implies that
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the codimension of Σ′
Φ in BΦ is equal to dim(aΦ) = dim(a)−dim(aΦ) =

r − (r − |Φ|) = |Φ| = rk(BΦ). This implies i(BΦ) ≤ rk(BΦ). However,
since BΦ is irreducible, we also have rk(BΦ) ≤ i(BΦ) by Theorem 4.5.
Altogether this implies rk(BΦ) = i(BΦ). q.e.d.

We recall the following result from [1]:

Theorem 6.3. (Symmetric spaces with index ≤ 3) Let M be an
irreducible Riemannian symmetric space of noncompact type.

(1) i(M) = 1 if and only if M is isometric to
(i) the real hyperbolic space RHk+1 = SOo

1,1+k/SO1+k, k ≥ 1.

(2) i(M) = 2 if and only if M is isometric to one of the following
spaces:
(i) the complex hyperbolic space CHk+1 = SU1,1+k/S(U1U1+k), k ≥

1;
(ii) the Grassmannian SOo

2,2+k/SO2SO2+k, k ≥ 1;

(iii) the symmetric space SL3(R)/SO3.
(3) i(M) = 3 if and only if M is isometric to one of the following

spaces:
(i) the Grassmannian SOo

3,3+k/SO3SO3+k, k ≥ 1;

(ii) the symmetric space G2
2/SO4;

(iii) the symmetric space SL3(C)/SU3;
(iv) the symmetric space SL4(R)/SO4.

The Riemannian symmetric spaces of noncompact type with rk(M) =
1 = i(M) are precisely the real hyperbolic spaces SOo

1,1+k/SO1+k, k ≥
1. The irreducible Riemannian symmetric spaces of noncompact type
with rk(M) ≥ 2 whose rank one boundary components are all real
hyperbolic spaces are precisely those for which the restricted root system
is reduced, that is, is not of type (BCr). From Proposition 6.2 we
therefore obtain:

Corollary 6.4. (Rank One Boundary Reduction) Let M be
an irreducible Riemannian symmetric space of noncompact type with
rk(M) ≥ 2 and assume that rk(M) = i(M). Then the restricted root
system of M is not of type (BCr).

According to Theorem 6.3, the Riemannian symmetric spaces of non-
compact type with rk(M) = 2 = i(M) are precisely SOo

2,2+k/SO2SO2+k,

k ≥ 1, and SL3(R)/SO3. The corresponding Dynkin diagrams with
multiplicities are

�������	 �������	

1 k
�� and �������	 �������	

1 1
.

We can easily extract from Table 1 the Dynkin diagrams of rank ≥ 3
with multiplicities for which every connected subdiagram of rank 2 is
one of the above:
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�������	 �������	 �������	 �������	

1 1 1 1
, �������	 �������	 �������	 �������	 �������	

1 1 1 1 k
�� , �������	 �������	 �������	 �������	 �������	

1 1 1 1 1
�� ,

�������	 �������	 �������	 �������	
�������	

�������	
1 1 1 1

1

1

❤❤❤❤

❱❱
❱❱ , �������	

�������	

�������	 �������	 �������	 �������	

1

1

1 1 1 1
, �������	

�������	

�������	 �������	 �������	 �������	 �������	

1

1

1 1 1 1 1
,

�������	

�������	

�������	 �������	 �������	 �������	 �������	 �������	

1

1

1 1 1 1 1 1
, �������	 �������	 �������	 �������	

1 1 1 1
�� .

From Proposition 6.2 we thus obtain:

Corollary 6.5. (Rank Two Boundary Reduction) Let M be
an irreducible Riemannian symmetric space of noncompact type with
rk(M) ≥ 3 and assume that rk(M) = i(M). Then M must be among
the following spaces:

(1) SLr+1(R)/SOr+1, r ≥ 3;
(2) SOo

r,r+k/SOrSOr+k, r ≥ 3, k ≥ 0;

(3) Spr(R)/Ur, r ≥ 3;
(4) E6

6/Sp4;
(5) E7

7/SU8;
(6) E8

8/SO16;
(7) F 4

4 /Sp3Sp1.

We know from Proposition 5.1 that the symmetric spaces in (1) and
(2) satisfy the equality rk(M) = i(M). In order to prove Theorem 1.1 it
remains to show that the symmetric spaces (3)-(7) in Corollary 6.5 do
not satisfy the equality rk(M) = i(M). For Spr(R)/Ur and F 4

4 /Sp3Sp1
we can apply rank three boundary reduction:

Corollary 6.6. The symmetric spaces M = Spr(R)/Ur (r ≥ 3) and
M = F 4

4 /Sp3Sp1 do not satisfy the equality rk(M) = i(M).

Proof. The corresponding Dynkin diagrams with multiplicities are

�������	 �������	 �������	 �������	 �������	

1 1 1 1 1
�� , �������	 �������	 �������	 �������	

1 1 1 1
��

We see from Theorem 6.3 that the boundary component BΦ = Sp3(R)/
U3 corresponding to the rank three subdiagram

�������	 �������	 �������	

1 1 1
��

does not satisfy the equality rk(BΦ) = i(BΦ). The statement thus
follows from Proposition 6.2. q.e.d.

The situation for the exceptional symmetric space E6
6/Sp4 is quite

interesting as the following result shows.

Proposition 6.7. Every irreducible boundary component BΦ of M =
E6

6/Sp4 satisfies rk(BΦ) = i(BΦ). However, M does not satify the
equality rk(M) = i(M).
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Proof. We list the different types of irreducible boundary components
of M by cardinality of Φ.

(1) |Φ| = 1: BΦ = SL2(R)/SO2;
(2) |Φ| = 2: BΦ = SL3(R)/SO3;
(3) |Φ| = 3: BΦ = SL4(R)/SO4;
(4) |Φ| = 4: BΦ = SL5(R)/SO5 and BΦ = SOo

4,4/SO4SO4;

(5) |Φ| = 5: BΦ = SL6(R)/SO6 and BΦ = SOo
5,5/SO5SO5.

As we have shown in Proposition 5.1, each of these boundary compo-
nents satisfies rk(BΦ) = i(BΦ).

We have n = dim(M) = 42 and r = rk(M) = 6. Assume that
there exists a maximal totally geodesic submanifold Σ of M with d =
codim(Σ) = 6. We first assume that Σ is semisimple. Then the inequal-
ity in Corollary 3.5 is satisfied and thus Σ is a reflective submanifold of
M . As usual, we write Σ = G′/K ′, where G′ is the connected closed
subgroup of E6

6 with Lie algebra g′ = [TpΣ, TpΣ] ⊕ TpΣ and K ′ = G′
p.

Note that K ′ is connected since Σ is simply connected. Let s ∈ I(M) be
the geodesic reflection of M in Σ and define τ : E6

6 → E6
6 , g → sgs−1.

It is clear that G′, and hence also K ′, is contained in the fixed point
set of τ . Since s commutes with the geodesic symmetry of M at p, we
have τ(Sp4) = Sp4. Let H be the connected component of the fixed
point set of τ|Sp4 containing the identity transformation of Sp4. Note

that K ′ ⊂ H. Then Sp4/H is a (simply connected) Riemannian sym-
metric space of compact type. However, as we observed in the proof of
Corollary 3.5, we have dim(K ′) ≥ dim(Σ) − rk(M) = 30 and therefore
dim(Sp4/H) ≤ dim(Sp4/K

′) ≤ 6. Since there is no Riemannian sym-
metric space of Sp4 of dimension ≤ 6 we conclude that there is no reflec-
tive submanifold Σ of M with codim(Σ) = 6. [Note: This fact can also
be seen directly from Leung’s classification of reflective submanifolds.
However, we prefer to give a conceptual proof here.] Therefore Σ cannot
be semisimple. If Σ is non-semisimple, then Σ = R×SOo

5,5/SO5SO5 by

Table 3 and hence codim(Σ) = 16, which is a contradiction. Altogether
we can now conclude that there is no totally geodesic submanifold in
M with codim(M) = 6. This implies rk(M) < i(M). q.e.d.

As a consequence of Proposition 6.7 we can now settle the two re-
maining cases.

Corollary 6.8. The symmetric spaces M = E7
7/SU8 and M =

E8
8/SO16 do not satisfy the equality rk(M) = i(M).

Proof. We see from Table 1 that the Dynkin diagram with multi-
plicities for E6

6/Sp4 can be embedded into the Dynkin diagrams with
multiplicities for E7

7/SU8 and E8
8/SO16. This means that E6

6/Sp4 is an
irreducible boundary component of both E7

7/SU8 and E8
8/SO16. From

Proposition 6.2 and Proposition 6.7 we can conclude that both M =
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E7
7/SU8 and M = E8

8/SO16 do not satisfy the equality rk(M) = i(M).
q.e.d.

Theorem 1.1 now follows from Proposition 5.1, Corollary 6.5, Corol-
lary 6.6, Proposition 6.7 and Corollary 6.8. We also obtain the following
interesting characterization of the exceptional symmetric space E6

6/Sp4:

Proposition 6.9. The exceptional symmetric space E6
6/Sp4 is the

only irreducible Riemannian symmetric space M of noncompact type
with rk(M) ≥ 3 for which every irreducible boundary component B
satisfies rk(B) = i(B) but the manifold itself does not satisfy rk(M) =
i(M).

7. Further applications

In this section we will calculate i(M) for a few irreducible Riemannian
symmetric spaces M of noncompact type using the methods we devel-
oped in this paper and Leung’s classification of reflective submanifolds.
We first recall some known results to put our results into context.

The totally geodesic submanifolds of Riemannian symmetric spaces
M of noncompact type with rk(M) = 1 were classified by Wolf in [14].
We use the following notations: RHk+1 = SOo

1,1+k/SO1+k denotes the

(k+1)-dimensional real hyperbolic space, CHk+1 = SU1,1+k/S(U1U1+k)

denotes the (k + 1)-dimensional complex hyperbolic space, HHk+1 =
Sp1,1+k/Sp1Sp1+k denotes the (k + 1)-dimensional quaternionic hyper-

bolic space, and OH2 = F−20
4 /Spin9 denotes the Cayley hyperbolic

plane. Here, k ≥ 1. The totally geodesic submanifolds of irreducible
Riemannian symmetric spaces M of noncompact type with rk(M) = 2
were classified by Klein in [5], [6], [7] and [8]. From Wolf’s and Klein’s
classifications we obtain i(M) for all irreducible Riemannian symmetric
spaces M of noncompact type with rk(M) ≤ 2. Some of the indices for
rk(M) = 2 were calculated by Onishchik in [13]. We summarize all this
in Table 4.

Let M be a connected Riemannian manifold and denote by Sr the set
of all connected reflective submanifolds Σ of M with dim(Σ) < dim(M).
The reflective index ir(M) of M is defined by

ir(M) = min{dim(M)− dim(Σ) | Σ ∈ Sr} = min{codim(Σ) | Σ ∈ Sr}.

It is clear that i(M) ≤ ir(M) and thus ir(M) is an upper bound for
i(M). Leung classified in [10] and [11] the reflective submanifolds of
irreducible simply connected Riemannian symmetric spaces of compact
type. Using duality this allows us to calculate ir(M) explicitly for all
irreducible Riemannian symmetric spaces M of noncompact type. We
list the reflective indices ir(M) for all M with rk(M) ≥ 3 in Table 5.
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Table 4. The index i(M) for irreducible Riemann-
ian symmetric spaces M of noncompact type with
rk(M) ≤ 2 and totally geodesic submanifolds Σ of M
with codim(Σ) = i(M)

M Σ dim(M) i(M) Comments

RHk+1
RHk k + 1 1 k ≥ 1

CHk+1
CHk (and RH2 for k = 1) 2(k+1) 2 k ≥ 1

HHk+1
HHk (and CH2 for k = 1) 4(k+1) 4 k ≥ 1

OH2
OH1, HH2 16 8

SL3(R)/SO3 R× RH2 5 2
SOo

2,2+k/SO2SO2+k SOo
2,1+k/SO2SO1+k 2(k+2) 2 k ≥ 1

SL3(C)/SU3 SL3(R)/SO3 8 3
G2

2/SO4 SL3(R)/SO3 8 3
SO5(C)/SO5 SO4(C)/SO4, SO

o
2,3/SO2SO3 10 4

SU2,2+k/S(U2U2+k) SU2,1+k/S(U2U1+k) 4(k+2) 4 k ≥ 1
SU∗

6 /Sp3 SL3(C)/SU3, HH2 14 6
G2(C)/G2 G2

2/SO4, SL3(C)/SU3 14 6
Sp2,2/Sp2Sp2 Sp2(C)/Sp2 16 6
SO∗

10/U5 SO∗
8/U4, SU2,3/S(U2U3) 20 8

Sp2,2+k/Sp2Sp2+k Sp2,1+k/Sp2Sp1+k 8(k+2) 8 k ≥ 1
E−26

6 /F4 OH2 26 10

E−14
6 /Spin10U1 SO∗

10/U5 32 12

As an application of Corollaries 3.5 and 4.4 we will now calculate
the index of a few symmetric spaces. Let Σ be a maximal totally ge-
odesic submanifold of an n-dimensional irreducible Riemannian sym-
metric space M of noncompact type with r = rk(M) ≥ 2 such that
i(M) = codim(Σ). If Σ is non-semisimple, then Σ is a reflective sub-
manifold by Corollary 4.4. If Σ is semisimple and d = codim(Σ)
satisfies d(d + 1) < 2(n − r), then Σ is a reflective submanifold of
M by Corollary 3.5. It follows that if codim(Σ) ≤ ir(M) − 1 and
(ir(M)− 1)ir(M) < 2(n − r), then Σ is a reflective submanifold. Alto-
gether this implies the following

Proposition 7.1. Let M be an irreducible Riemannian symmetric
space of noncompact type with rk(M) ≥ 2. If

(ir(M)− 1)ir(M) < 2(dim(M)− rk(M)),

then i(M) = ir(M).

The inequality in Proposition 7.1 can be checked explicitly for each
symmetric space M in Table 5:

Corollary 7.2. The following Riemannian symmetric spaces M of
noncompact type with rk(M) ≥ 3 satisfy the inequality in Proposition
7.1 and therefore satisfy the equality i(M) = ir(M):
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(i) SLr+1(R)/SOr+1, r ≥ 3;
(ii) SL4(C)/SU4;
(iii) SOo

r,r+k/SOrSOr+k, r ≥ 3, k ≥ 1;

(iv) SO2r+1(C)/SO2r+1, r ≥ 3;
(v) Spr(R)/Ur, 3 ≤ r ≤ 4;
(vi) SOo

r,r/SOrSOr, r ≥ 4;
(vii) SO2r(C)/SO2r, r ≥ 4;
(viii) SUr,r+k/S(UrUr+k), r ≥ 3, k ≥ 1;
(ix) Spr,r+k/SprSpr+k, 3 ≤ r ≤ k.

We inserted this result into the last column of Table 5.
We can also use these methods to determine all irreducible Riemann-

ian symmetric spaces M of noncompact type with i(M) = 4.

Table 5. The reflective index ir(M) for irreducible Rie-
mannian symmetric spaces M of noncompact type with
rk(M) ≥ 3 and reflective submanifolds Σ of M with
codim(Σ) = ir(M)

M Σ dim(M) ir(M) Comments i(M) = ir(M)?

SLr+1(R)/SOr+1 R× SLr(R)/SOr
1
2r(r + 3) r r ≥ 3 yes

SL4(C)/SU4 Sp2(C)/Sp2 15 5 yes
SLr+1(C)/SUr+1 R× SLr(C)/SUr r(r + 2) 2r r ≥ 4 ?
SU∗

2r+2/Spr+1 R× SU∗
2r/Spr r(2r + 3) 4r r ≥ 3 ?

SOo
r,r+k/SOrSOr+k SOo

r,r+k−1/SOrSOr+k−1 r(r + k) r r ≥ 3, k ≥ 1 yes

SO2r+1(C)/SO2r+1 SO2r(C)/SO2r r(2r + 1) 2r r ≥ 3 yes

Spr(R)/Ur RH2 × Spr−1(R)/Ur−1 r(r + 1) 2r−2 r ≥ 3 yes for r ≤ 5,
otherwise ?

SUr,r/S(UrUr) SUr−1,r/S(Ur−1Ur) 2r2 2r r ≥ 3 yes
Spr(C)/Spr RH3×Spr−1(C)/Spr−1 r(2r + 1) 4r−4 r ≥ 3 ?
SO∗

4r/U2r SO∗
4r−2/U2r−1 2r(2r−1) 4r−2 r ≥ 3 ?

Spr,r/SprSpr Spr−1,r/Spr−1Spr 4r2 4r r ≥ 3 ?

E−25
7 /E6U1 E−14

6 /Spin10U1 54 22 ?

SOo
r,r/SOrSOr SOo

r−1,r/SOr−1SOr r2 r r ≥ 4 yes
SO2r(C)/SO2r SO2r−1(C)/SO2r−1 r(2r − 1) 2r−1 r ≥ 4 yes

SUr,r+k/S(UrUr+k) SUr,r+k−1/S(UrUr+k−1) 2r(r + k) 2r r ≥ 3, k ≥ 1 yes
Spr,r+k/SprSpr+k Spr,r+k−1/SprSpr+k−1 4r(r + k) 4r r ≥ 3, k ≥ 1 yes for r−1 ≤ k,

otherwise ?
SO∗

4r+2/U2r+1 SO∗
4r/U2r 2r(2r+1) 4r r ≥ 3 ?

E6
6/Sp4 F 4

4 /Sp3Sp1 42 14 ?
E6(C)/E6 F4(C)/F4 78 26 ?

E7
7/SU8 R× E6

6/Sp4 70 27 ?
E7(C)/E7 R× E6(C)/E6 133 54 ?

E8
8/SO16 RH2 × E7

7/SU8 128 56 ?
E8(C)/E8 RH3 × E7(C)/E7 248 112 ?

F 4
4 /Sp3Sp1 SOo

4,5/SO4SO5 28 8 yes
E2

6/SU6Sp1 F 4
4 /Sp3Sp1 40 12 ?

E−5
7 /SO12Sp1 E2

6/SU6Sp1 64 24 ?
E−24

8 /E7Sp1 E−5
7 /SO12Sp1 112 48 ?

F4(C)/F4 SO9(C)/SO9 52 16 ?
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Theorem 7.3. (Symmetric spaces with index four) Let M be
an irreducible Riemannian symmetric space of noncompact type. Then
i(M) = 4 if and only if M is isometric to one of the following symmetric
spaces:

(i) HHk+1 = Sp1,1+k/Sp1Spk, k ≥ 1;
(ii) SU2,2+k/S(U2U2+k), k ≥ 1;
(iii) SOo

4,4+k/SO4SO4+k, k ≥ 0;

(iv) SO5(C)/SO5;
(v) Sp3(R)/U3;
(vi) SL5(R)/SO5.

Proof. From Tables 4 and 5 and Corollary 7.2 we see that every sym-
metric space listed in Theorem 7.3 satisfies i(M) = 4. Conversely, let
M be an irreducible Riemannian symmetric space of noncompact type
with i(M) = 4 and let Σ be a maximal totally geodesic submanifold of
M with d = codim(Σ) = 4. If rk(M) ≤ 2 we obtain from Table 4 that
M is one of the spaces in (i), (ii) and (iv). Assume that rk(M) ≥ 3.
If Σ is non-semisimple, then Σ is reflective by Corollary 4.4. If Σ is
semisimple and dim(M)− rk(M) ≥ 11, then Σ is reflective by Corollary
3.5. Thus we have ir(M) = i(M) = 4 if dim(M) − rk(M) ≥ 11 and
we can use Table 5 to see that M is isometric to a space in (iii). The
symmetric spaces M with rk(M) ≥ 3 and dim(M) − rk(M) < 11 are
SL4(R)/SO4 and SOo

3,4/SO3SO4 (which both have index 3 by Theo-

rem 6.3), Sp3(R)/U3 and SL5(R)/SO5 (which both have index 4 by
Corollary 7.2). This concludes the proof of Theorem 7.3 q.e.d.

The analogous argument does not work for index five. For example,
M = SU3,3/S(U3U3) has ir(M) = 6, but for d = 5 the inequality
d(d+1) < 2(dim(M)− rk(M)) is not satisfied, so we can only conclude
i(M) ∈ {5, 6} with our results so far. However, using the classification in
[2] of cohomogeneity one actions on irreducible Riemannian symmetric
spaces of noncompact type, we can improve the inequality in Corollary
3.5 when codim(Σ) ≥ 5:

Proposition 7.4. Let M be an n-dimensional irreducible Riemann-
ian symmetric space of noncompact type with r = rk(M) ≥ 2 and let Σ
be a semisimple connected complete totally geodesic submanifold of M
with codim(Σ) = d ≥ 5. If

d(d− 1) < 2(n − r − 1),

then Σ is a reflective submanifold of M .

Proof. As usual, we write Σ = G′/K ′ and identify SOd with SO(νpΣ).
Since d ≥ 5 and any connected subgroup of SOd is totally geodesic in
SOd, we see from Corollary 7.2 that the minimal codimension of a con-
nected subgroup of SOd is equal to d− 1, which is exactly the codimen-
sion of SOd−1. A principal K ′-orbit on Σ has dimension n− d− rk(Σ),
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which implies dim(K ′) ≥ n − d − rk(Σ) ≥ n − d − r. Consequently,
if 1

2(d − 1)(d − 2) < n − d − r, then dim(K ′) > 1
2(d − 1)(d − 2) =

dim(SOd−1). The inequality 1
2(d − 1)(d − 2) < n − d − r is equivalent

to d(d − 1) < 2(n − r − 1). If the kernel ker(ρ) of the slice representa-
tion ρ : K ′ → SO(νpΣ) has positive dimension, then Σ is a reflective
submanifold by Proposition 3.4. If dim(ker(ρ)) = 0, then we must have
k′ = sod and the action of K ′ on the unit sphere in νpΣ is transitive.
This implies that Σ is a totally geodesic singular orbit of a cohomogene-
ity one action on M . It was proved in [2] that with five exceptions any
such orbit is reflective. Three of the five exceptions do not satisfy the
assumption d ≥ 5. The remaining two exceptions are Σ = GC

2 /G2 in
M = SO7(C)/SO7 and Σ = SL3(C)/SU3 in M = GC

2 /G2, and both do
not satisfy the inequality d(d − 1) < 2(n − r − 1). It follows that Σ is
reflective. q.e.d.

Note that the assumption d ≥ 5 in Proposition 7.4 is essential. For
example, Σ = G2

2/SO4 is a semisimple totally geodesic submanifold
of M = SOo

3,4/SO3SO4 with d = codim(Σ) = 4. The inequality in
Proposition 7.4 is satisfied, but Σ is non-reflective. For d = 3 the totally
geodesic submanifold Σ = SL3(R)/SO3 in M = G2

2/SO4 provides a
counterexample.

From Proposition 7.4 we obtain:

Corollary 7.5. Let M be an irreducible Riemannian symmetric space
of noncompact type and let Σ be a semisimple connected complete totally
geodesic submanifold of M with codim(Σ) ≥ 5. If codim(Σ) = rk(M),
then Σ is a reflective submanifold of M .

Proof. For d = codim(Σ) = rk(M) = r the inequality in Proposition
7.4 becomes r2 + r < 2n− 2. It is clear that n = dim(M) ≥ 1

2#(R)+ r,
where (R) denotes the restricted root system of M . For every root
system occuring here we have r2 + r ≤ #(R), with equality if and only
if (R) = (Ar). Altogether this implies r2+r ≤ #(R) ≤ 2n−2r < 2n−2
and hence Σ is reflective by Proposition 7.4. q.e.d.

From Proposition 7.4 we also obtain:

Corollary 7.6. Let M be an irreducible Riemannian symmetric space
of noncompact type with rk(M) ≥ 2, i(M) ≥ 5 and ir(M) ≥ 6. If

(ir(M)− 2)(ir(M)− 1) < 2(dim(M)− rk(M)− 1),

then i(M) = ir(M).

Proof. Let Σ be a maximal totally geodesic submanifold of M such
that d = codim(Σ) = i(M) ≥ 5. We put n = dim(M) and r = rk(M). If
Σ is non-semisimple, then Σ is a reflective submanifold by Corollary 4.4
and hence d ≥ ir(M). If Σ is semisimple and d < ir(M), then d(d−1) <
2(n − r − 1) by assumption and thus Σ is a reflective submanifold by
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Corollary 7.4, which is a contradiction to d < ir(M). It follows that
d ≥ ir(M) and therefore i(M) = ir(M). q.e.d.

We can use Corollary 7.6 to calculate a few more indices for symmetric
spaces which cannot be obtained via the inequality in Proposition 7.1
and are therefore not listed in Corollary 7.2:

Corollary 7.7. The following symmetric spaces satisfy i(M) = ir(M):

(i) Sp5(R)/U5;
(ii) SUr,r/S(UrUr), r ≥ 3;
(iii) Spr,r+k/SprSpr+k, k + 1 = r ≥ 3;
(iv) F 4

4 /Sp3Sp1.

Proof. Let M be one of the symmetric spaces in (i)-(iv). It is clear
that rk(M) ≥ 2. From Theorems 6.3 and 7.3 we see that i(M) ≥ 5 and
from Table 5 we see that ir(M) ≥ 6. It is a straightforward calculation
to show that M satisfies the inequality in Corollary 7.6, which then
implies i(M) = ir(M). q.e.d.

We inserted this result into the last column of Table 5.
We can now also settle the classifications for i(M) = 5 and i(M) = 6.

Theorem 7.8. (Symmetric spaces with index five) Let M be
an irreducible Riemannian symmetric space of noncompact type. Then
i(M) = 5 if and only if M is isometric to one of the following symmetric
spaces:

(i) SOo
5,5+k/SO5SO5+k, k ≥ 0;

(ii) SL4(C)/SU4;
(iii) SL6(R)/SO6.

Proof. From Corollary 7.2 and Table 5 we see that every symmetric
space listed in Theorem 7.8 satisfies i(M) = 5. Conversely, let M be
an irreducible Riemannian symmetric space of noncompact type with
i(M) = 5 and let Σ be a maximal totally geodesic submanifold of M
with d = codim(Σ) = 5. From Table 4 we obtain rk(M) ≥ 3. If Σ is
non-semisimple, then Σ is reflective by Corollary 4.4. If Σ is semisimple
and dim(M) − rk(M) > 11, then Σ is reflective by Proposition 7.4.
Thus we have ir(M) = i(M) = 5 if dim(M) − rk(M) > 11 and we
can use Table 5 to see that M is isometric to one of the spaces in (i)-
(iii). If dim(M)− rk(M) < 11 we saw in the proof of Theorem 7.3 that
i(M) ∈ {3, 4}. There is no symmetric space M with rk(M) ≥ 3 and
dim(M)− rk(M) = 11. This concludes the proof of Theorem 7.8.

q.e.d.

Theorem 7.9. (Symmetric spaces with index six) Let M be
an irreducible Riemannian symmetric space of noncompact type. Then
i(M) = 6 if and only if M is isometric to one of the following symmetric
spaces:
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(i) SOo
6,6+k/SO6SO6+k, k ≥ 0;

(ii) SU3,3+k/S(U3U3+k), k ≥ 0;
(iii) SU∗

6 /Sp3;
(iv) GC

2 /G2;
(v) Sp2,2/Sp2Sp2;
(vi) Sp4(R)/U4;
(vii) SO7(C)/SO7;
(viii) SL7(R)/SO7.

Proof. From Tables 4 and 5 we see that every symmetric space listed
in Theorem 7.9 satisfies i(M) = 6. Conversely, let M be an irreducible
Riemannian symmetric space of noncompact type with i(M) = 6 and let
Σ be a maximal totally geodesic submanifold ofM with d = codim(Σ) =
6. If rk(M) ∈ {1, 2} we see from Table 4 that M is one of the spaces in
(iii)-(v). We assume that rk(M) ≥ 3. If Σ is non-semisimple, then Σ is
reflective by Corollary 4.4. If Σ is semisimple and dim(M) − rk(M) >
16, then Σ is reflective by Proposition 7.4. Thus we have ir(M) =
i(M) = 6 if dim(M) − rk(M) > 16 and we can use Table 5 to see
that M is isometric to one of the spaces in (i), (ii), (vii) and (viii). If
dim(M)− rk(M) < 12 we saw in the proof of Theorem 7.8 that i(M) ∈
{3, 4}. The symmetric spaces M with rk(M) ≥ 3 and 12 ≤ dim(M) −
rk(M) ≤ 16 are SOo

3,5/SO3SO5 and SOo
3,6/SO3SO6 (which both have

index 3 by Theorem 6.3), SOo
4,4/SO4SO4 and SOo

4,5/SO4SO5 (which

both have index 4 by Theorem 7.3), SL6(R)/SO6 and SL4(C)/SU4

(which both have index 5 by Theorem 7.8), Sp4(R)/U4 (which has index
6 by Corollary 7.2 and Table 5), SU3,3/S(U3U3) (which has index 6 by
Corollary 7.7 and Table 5). This concludes the proof of Theorem 7.8.

q.e.d.

We cannot continue beyond i(M) = 6 with our methods. For exam-
ple, the symmetric space M = Sp3(C)/Sp3 satisfies dim(M) = 21 and
rk(M) = 3. Thus the inequality d(d−1) < 2(dim(M)−rk(M)−1) = 34
in Proposition 7.4 is satisfied if and only if d ≤ 6. However, from Table
5 we know that ir(M) = 8. Thus we must have i(M) ∈ {7, 8}. We
cannot exclude the possiblity i(M) = 7 here.

It is worthwhile to point out that the only irreducible Riemannian
symmetric space M with i(M) < ir(M) known to us is M = G2

2/SO4.
This leads us to the

Conjecture. Let M be an irreducible Riemannian symmetric space
of noncompact type and M �= G2

2/SO4. Then i(M) = ir(M).

We verified the conjecture in this paper for several symmetric spaces
and for all symmetric spaces with i(M) ≤ 6 or dim(M) ≤ 20. In the last
column of Table 5 we summarize the current status of this conjecture.
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