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Maximal violation of Kirchhoff’s law in planar heterostructures

Lu Wang (��) ,1 F. Javier García de Abajo,1,2 and Georgia T. Papadakis 1,*

1ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
2ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain

(Received 18 February 2023; accepted 18 May 2023; published 7 June 2023)

Violating Kirchhoff’s law is generally achieved using patterned nonreciprocal materials, where a guided
or polaritonic mode that lies outside the light cone, often via gratings, is excited. Here, we describe how
nonreciprocity manifests itself in pattern-free heterostructures. We demonstrate that a resonant mode in a
dielectric spacer separating a nonreciprocal film from a back reflector suffices to maximally violate Kirchhoff’s
law, and identify the minimal dielectric requirements for such functionality, which are satisfied by currently
available materials.
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Global energy demands call for renewable energy produc-
tion at the terawatt scale and beyond [1]. Light-harvesting
renewable energy approaches, such as solar photovoltaic cells,
can reach a performance near thermodynamic limits if the
fundamental constraint of Kirchhoff’s law of thermal radia-
tion is broken [2,3]. Kirchhoff’s law states that a material’s
absorptivity α ought to equal its thermal emissivity e for every
frequency and direction. By violating Kirchhoff’s law, one
can efficiently redirect emitted photons from one energy con-
verter to another in a concatenated energy-conversion scheme,
leading to an ultimate energy conversion efficiency of 93%
(Landsberg’s limit) [4]. So far, several photovoltaic configu-
rations have been proposed, operating both in reflection [2]
and transmission geometries [5,6].

Fundamentally, breaking Kirchhoff’s law of thermal radi-
ation requires materials that break reciprocity. This is often
realized by applying an external magnetic field to magneto-
optical materials, such as InAs [7–9]. Nevertheless, high
(tesla-scale) external magnetic field strengths are typically
required [9–12], thus resulting in structures that are bulky,
expensive, and unsuited to large-scale manufacturing [13].
Hence, the first experimental realization of nonreciprocal
emission at mid-infrared (mid-IR) frequencies was reported
just last year [10]. In that paper, a guided resonant mode
was excited in the Voigt configuration via a grating. This
result followed several similar theoretical proposals [12] that
considered the excitation of a guided-mode resonance in order
to amplify the intrinsic nonreciprocal material response.

To alleviate the requirement of high-magnetic fields,
magnet-free nonreciprocal materials, namely Weyl semimet-
als (WSMs), have been recently explored [14–16]. This
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emerging class of quantum materials possesses unique topo-
logical properties, leading to magnetic-like effects even in the
absence of an external magnetic field [17,18]. Several Weyl
semimetals have been already experimentally identified, such
as WP2, Y2Ir2O7, HgCr2Se4, TaAs, and Co3Sn2S2 [19–23].
We focus on type-I WSMs due to their simplicity (i.e., only
one pair of Weyl nodes in momentum space). In addition,
the WSM-related experiments are generally performed at low
temperatures and WSM sample sizes are typically on the
nanometer scale [23,24]. These considerations can lead to
difficulties in nonreciprocal experiments. So far, Weyl ma-
terials have been considered by the photonics community as
candidates for nonreciprocal thermal emission in theoretical
proposals involving geometries such as gratings [6,14], pho-
tonic crystals [25], and prisms [26]. In the majority of works,
similar to previous studies with magneto-optical materials,
patterned structures are used, where a resonant guided mode
[6,10] or a polaritonic mode [14] is excited in the Voigt config-
uration [27]. Very recently, a broadband planar nonreciprocal
structure was proposed [28].

Both material classes, magneto-optical materials and Weyl
semimetals, are described via their dielectric permittivity ten-
sor. In the Voigt configuration [14], this tensor takes the form

εNR =
⎛
⎝

εd 0 εxz

0 εd 0
−εxz 0 εd

⎞
⎠, (1)

where εd ∈ C and εxz = iεa with εa ∈ R. For simplicity, we
assume that the diagonal tensor elements are all equal. The
nonzero imaginary εxz component results from an applied
magnetic field (Weyl nodes separation) in magneto-optical
materials (Weyl semimetals) along the y direction.

The number of nonzero tensor elements in the description
of Eq. (1) makes the analytical description of nonreciprocal
materials in the aforementioned inhomogeneous nano- and
microstructures rather challenging. Here, in contrast to pre-
vious works relying heavily on numerical solvers, we derive
simple analytical equations that describe how nonreciprocity
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FIG. 1. Nonreciprocity in simple planar structures. We consider (a) a semi-infinite surface, (b) a NR film of thickness d1 on a back reflector,
and (c) a dielectric spacer separating a NR film from a back reflector. Color plots in (d)–(f) show the maximum nonreciprocity η within a wide
range of thicknesses d1 and d2 for each geometry as a function of the off-diagonal tensor element of the nonreciprocal material (εxz) and the an-
gle of incidence θ . Without loss of generality, we set εd = 9 + 0.3 i. The horizontal and vertical dashed lines indicate |εxz| = Re{εd}. For geom-
etry 3 and panels (c) and (f), we set ε2 = 2.25. (g) Optimum η value in the maps of panels (d)–(f) as a function of |εxz|. Solid curves represent re-
sults calculated with εd = 9 + 0.3 i, whereas the dashed curve corresponds to εd = −9 + 0.3 i for geometry 3 (see more details in Sec. S4.A in
SM [32]).

manifests itself in planar, pattern-free geometries. Previous
works using gratings have achieved nonreciprocity values of
η ∼ 0.4 [10] and η ∼ 0.9 [14] (see below for a detailed defi-
nition of η) with relatively large incidence angles. Our results
suggest that planar structures can maximally violate Kirch-
hoff’s law, approaching the limit η ∼ 1 for a wide range of
incidence angles. We show that the considered configurations
do not require the excitation of guided modes outside the light
cone. In contrast, the near-complete violation of Kirchhoff’s
law stems from wave interference as in conventional resonant
absorption devices [29]. Finally, we numerically identify the
minimum requirement for the off-diagonal permittivity tensor
element εxz to produce a maximal violation of Kirchhoff’s law,
and we classify currently available nonreciprocal materials in
terms of this parameter.

We start by considering three standard planar geometries
as shown in Fig. 1: A semi-infinite nonreciprocal medium
[panel (a)], a nonreciprocal layer on a back reflector [panel
(b)], and a dielectric spacer separating a nonreciprocal film
from a back reflector [panel (c)]. A violation of Kirchhoff’s
law suggests a difference between absorption and emis-
sion. For these nontransmissive geometries, ap(θ ) − ep(θ ) =
−[ap(−θ ) − ep(−θ )] ∈ {−1, 1}, where θ is the angle of inci-
dence relative to the surface normal. In a practical thermal
system, it should not matter whether +θ or −θ serves as
the emission/absorption side. As a result, the nonreciproc-
ity η can be simplified to η = |ap(θ ) − ep(−θ )| = |R(θ ) −
R(−θ )|, which is equivalent to |R(kx ) − R(−kx )| [9,30,31],
where the angle of incidence θ is shown in Figs. 1(a)–1(c),
and kx is the wave vector along x (for details see Sec. S2 in
Supplemental Material, SM [32]). The reflectance is defined
as R = |r|2, where r is the reflection coefficient. In particular,
in Fig. 1, the diagonal tensor element εd = 9 + 0.3 i is chosen
as an example.

The normal to the interfaces is aligned with the z axis. The
layers of air, nonreciprocal material, and lossless dielectric,
respectively, are labeled with subscripts 0–2. For example,
kz0 =

√
k2

0 − k2
x is the wave vector along z in the air. From

momentum conservation, kx remains the same in all the layers.
In the bulk of the nonreciprocal material, one obtains four

FIG. 2. Reflectance as a function of incidence angle θ for recip-
rocal (εxz = 0, dashed curves) and nonreciprocal (solid curves, εxz �=
0) structures. Geometry 1 (blue curves) and geometry 3 (red curves)
are chosen as examples. In particular, for geometry 3, the solid
(dashed) curve corresponds to thicknesses d1/λ0 = 0.10, d2/λ0 =
0.32 (d1/λ0 = 0.30, d2/λ0 = 0.11). In the red solid curve, a maxi-
mum nonreciprocity η = 0.96 is obtained at θ = ±43◦ (marked by
vertical dashed lines; see Fig. 3 for details).
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TABLE I. Parameter ranges for several available magneto-optical materials [see Eq. (1)] within the thermal emission wavelength range of
6−15 µm: InAs and GaAs under a magnetic field of 3 T, along with several Weyl semimetals in the absence of a magnetic field [marked with
✗ in the B(T) column]. Reported values correspond to room temperature unless otherwise stated.

Material Re{εd} Im{εd} |εxz| B (T)

Eu2IrO7 [14,18] –25–5 2 4–20 ✗

Co3Sn2S2 (20 K) [23,24] 20–40 20–40 25–45 ✗

WSM standard (0 K) [36] –10–40 5–30 5–25 ✗

InAs [10] 3.6–10.9 2.1 × 10−2–3.4 × 10−1 7.5 × 10−2–1.2 3
GaAs [37] 6.6–7.8 7.5 × 10−3–1.2 × 10−1 1.0 × 10−2–1.7 × 10−1 3

solutions for kz, where two correspond to s-polarized fields
and two to p-polarized fields (see Sec. S1 in SM [32]).

With the choice of the permittivity tensor of Eq. (1),
s- and p-polarized electric fields are decoupled. In ad-
dition, the s-polarized fields do not experience any non-
reciprocal response (see Sec. S1 in SM [32]). Thus,
we focus here on p-polarized fields defined as E(r, t ) =
2Re{(Ex, 0, Ez ) exp [i(k · r − ωt )]} in the air, where k =
(kx, 0, kz ). It is then convenient to define εv = εd − |εxz|2/εd ,
such that the z component of the wave vector in the nonrecip-

rocal material is written as kz1 =
√

εvk2
0 − k2

x .
First, we treat the problem fully analytically and derive the

reflection coefficient for geometry 1 (see Secs. S1 and S3 in
SM [32]),

r = kz0εv − kz1 + kxεxz/εd

kz0εv + kz1 − kxεxz/εd
. (2)

It is clear from Eq. (2) that R(kx ) ≡ |r(kx )|2 �= R(−kx ), even
for the semi-infinite interface formed by the air and nonre-
ciprocal material. Thus, this geometry in principle suffices
to induce a nonreciprocal effect without spatial patterning
or coupling to surface or guided modes. We note that by
setting the denominator of Eq. (2) to zero, we obtain the sur-
face plasmon dispersion relation kz0εv + kz1 − kxεxz/εd = 0
[14,33,34], whereas by setting εxz = 0, Eq. (2) reduces to
the standard (reciprocal) Fresnel reflection coefficient for p

polarization. In Fig. 1(d), we show that there is an optimal
value of εxz for maximal violation of Kirchhoff’s law. Note
that a larger εa does not necessarily lead to stronger nonre-
ciprocity. In fact, for very large εxz, R(kx ) and R(−kx ) both
approach unity, and thus, the nonreciprocity η = |R(kx ) −
R(−kx )| vanishes. The same conclusion holds in geometries
2 and 3 (i.e., η → 0 when |εxz| → ∞), although the values
of |εxz| explored in Fig. 1(f) are not large enough to clearly
observe this trend.

The reflection coefficient for geometry 2 is given by

r = εxz kx + iεd kz1/τ1 − (
εd k2

0 − k2
x

)
/kz0

εxz kx + iεd kz1/τ1 + (
εd k2

0 − k2
x

)
/kz0

(3)

with τ1 = tan(kz1d1) and d1 is the thickness of the nonrecip-
rocal material. Figure 1(e) indicates that the nonreciprocity
η differs significantly from that of geometry 1. Furthermore,
geometry 2 lacks tunability, because the absorption and phase
of the reflected fields solely depend on the thickness of the
nonreciprocal material slab.

To enhance the tunability in the design of the heterostruc-
ture, we insert a lossless dielectric layer with thickness d2

below the nonreciprocal material, as shown by Fig. 1(c). This
extra layer introduces an additional degree of freedom in
optimizing the nonreciprocal thermal emitter, via imposing
a tunable phase to the reflected fields. Thus, due to interfer-
ence, the reflected fields, as well as the parameter η, are both
strongly dependent on d2. We analyze geometry 3 through the
expression

r = − (iεxzτ2kz2 − ε2kx )(kx + εxzkz0)/εd + kz1(τ2kz2 − iε2kz0)/τ1 + (
ε2k2

0 + iεdτ2kz2kz0
)

(iεxzτ2kz2 − ε2kx )(kx − εxzkz0)/εd + kz1(τ2kz2 + iε2kz0)/τ1 + (
ε2k2

0 − iεdτ2kz2kz0
) (4)

with τ2 = tan(kz2d2). We note that Eq. (4) converges to Eq. (3)
when setting d2 = 0, and this in turn to Eq. (2) by taking
the limit d1 → ∞. Further, we note that η vanishes if θ = 0
or if εxz = 0, as expected. Additionally, η = 0 when Im{εd}
is zero (see Sec. S4 in SM [32]). This is also expecte be-
cause a lack of optical loss prohibits thermal emission from
the fluctuation-dissipation theorem [35]. As a rule of thumb,
maximal violation of Kirchhoff’s law (η ∼ 1) can be obtained
via the condition |Re{εd}| � |εxz|, provided that |εxz| is not too
large as discussed above.

A nonreciprocity enhancement is observed over a broad
range of incidence angles and off-diagonal permittivity val-
ues, as shown in Fig. 1(f). In Fig. 1(g), we demonstrate
explicitly the dependence of η on |εxz| via selecting the max-
imum among all incidence angles in panels (d)–(f). We find
that, for geometry 3, η approaches unity for considerably
smaller values of |εxz| as compared to geometries 1 and 2.
Thus, in practice, due to the typically small values of |εxz| that
are available, for example in magneto-optical materials (see
Table I), the three-layer geometry 3 is favorable. In Fig. 2,

L022051-3



WANG, GARCÍA DE ABAJO, AND PAPADAKIS PHYSICAL REVIEW RESEARCH 5, L022051 (2023)

we show the reflectance as a function of incidence angle for
reciprocal and nonreciprocal instances of geometries 1 and 3,
respectively. We conclude that the nonreciprocity is signifi-
cantly enhanced through the addition of a dielectric spacer of
optical thickness d2/λ2 < 1. Besides, a nonzero εxz leads to
asymmetric reflection with respect to the incident angle θ for
both geometries. In geometry 3, the nonreciprocity exhibits an
asymmetric resonant response as a function of θ , which leads
to stronger nonreciprocal effects in the optimal selection of
|εxz| with respect to geometry 1, as shown in Fig. 1(g).

Based on the analytical expressions in Eqs. (2)–(4) for
the reflection coefficient in the presence of nonreciprocity
for the planar geometries 1–3, we can derive design rules for
nonreciprocal thermal emitters. In particular, in Fig. 1(g), we
demonstrate that geometry 3 requires a smaller value of |εxz|
for achieving the same level of nonreciprocal response (η).
Thus, henceforth, we focus on geometry 3 and evaluate in
more detail Eq. (4).

We obtain results using the transfer-matrix method
[38–41] (see Sec. S1 in SM [32]). Since the nonreciproc-
ity η is a periodic function of d1 and d2 [Eq. (4)],
we consider d1/λ1 and d2/λ2 in the range 0 − 3, as
this range contains the sought-after maxima of η, where
λ1 = max(Re{λ0/

√
εv}, Im{λ0/

√
εv}), λ2 = λ0/

√
ε2. Fur-

thermore, we consider ranges of εd and |εxz| that correspond to
known magneto-optical materials and Weyl semimetals within
the thermal wavelength region of 6−15 µm at room tempera-
ture, as shown in Table I. The blackbody radiation at room
temperature (300 K) is peaked around 10 µm. As a result, we
choose to focus on the spectral range 6−15 µm, which con-
tains the main part of the room temperature radiation (thermal
radiation). The Co3Sn2S2 (20 K) and WSM standard (0 K) are
representative values for experimental and theoretical results,
respectively [23,24,36].

In particular, we choose the calculation parameter ranges
Im{εd} ∈ {0.3, 3, 30}, Re{εd} ∈ [−35, 35], and Im {εxz} ∈
[0, 40]. We note that, although only positive values of Im {εxz}
are discussed here, negative Im {εxz} values are automatically
accounted for because this is equivalent to rotating εNR in
Eq. (1) by 180◦ around the z axis, which leads to invariant
results by simultaneously flipping the signs of εxz and kx. A
value ε2 = 2.25 is chosen because it corresponds to a refrac-
tive index of 1.5, which represents well transparent dielectric
materials such as quartz and glass. Other values of ε2 can be
chosen, which will not influence the conclusion of this paper.
However, the corresponding optimal thicknesses will vary
accordingly (see Figs. S7 and S8 in SM [32]). We note that the
nonreciprocity is peaked at an intermediate value of εa, point-
ing towards the involvement of resonant modes assisting the
nonreciprocal response at specific values of such parameter.

To understand the origin of the strong nonreciprocal re-
sponse of geometry 3, in Fig. 3, we present the field profiles
supported in this geometry for minimal and maximal violation
of Kirchhoff’s law, corresponding to η = 0.05 and η = 0.96,
respectively. These values of nonreciprocity are represented
in Fig. 1(f) by two blue dots. The parameter η is a periodic
function of d1/λ0 and d2/λ0. In Fig. 3 we consider values
of d1/λ0 (vertical axes) varying from 0 to 0.4, including the
first maximum of η. In particular, Figs. 3(a) and 3(b) show
results for εxz = 12 i, d2/λ0 = 0.32, and θ = ±43◦, where +

(a) (b)

(c) (d)

FIG. 3. Field profiles corresponding to the conditions marked
by blue dots in Fig. 1(f) (geometry 3 with εd = 9 + 0.3 i). We plot
the x-field amplitude as a function of the normalized distance z/λ0

relative to the air/NR interface (horizontal axes) and normalized NR
film thickness d1/λ0 (vertical axes). Thin white solid vertical lines
indicate the interfaces in the planar structures. The white transparent
arrow represents the field incidence direction. Panels (a) and (b) cor-
respond to a nonreciprocity η = 0.96 with incidence angle θ = ±43◦

and a dielectric spacer thickness d2/λ0 = 0.32. The vertical dashed
line corresponds to the exact thickness selection in Fig. 2. Panels (c)
and (d) correspond to η = 0.05 with θ = ±14◦ and d2/λ0 = 0.34.

and − correspond to kx > 0 and kx < 0, respectively. Fig-
ures 3(c) and 3(d) show field profiles calculated for εxz = 4 i,
d2/λ0 = 0.34, and θ = ±14◦. As clearly shown in Fig. 3, a
maximal violation of Kirchhoff’s law occurs when the field
intensity is maximum inside the dielectric spacer. In other
words, η ∼ 1 is associated with a resonant mode inside the
dielectric spacer, excited when light is incident from one side
(−kx), while it is suppressed when incident from the other
side (+kx). Since the transmission and reflection coefficients
for +kx and −kx are not the same at WSM’s interfaces, the
maximum constructive/destructive interference condition for
the entire heterostructure for +kx and −kx sides cannot be sat-
isfied at the same time, leading to different overall reflection,
(i.e., nonreciprocity).

Last, we analyze how material losses affect nonreciprocity
by exploring three different values of Im{εd} ∈ {0.3, 3, 30},
which span the entire parameter range in Table I, correspond-
ing to realistic materials. In Fig. 4, we compute η when Re{εd}
and εxz are varied. The parameter ranges of standard magneto-
optical materials (GaAs and InAs) are shown in panel (a),
whereas material properties representing Weyl semimetals
Eu2IrO7 and Co3Sn2S2 are shown in panels (b) and (c), re-
spectively. For large Im{εd}, the maximum of nonreciprocity
tends to shift closer to θ ∼ 90◦ (i.e., grazing incidence, see
Fig. S4 in SM [32]). The white contours in these figures rep-
resent the range of values of each labeled material as reported
in recent literature [10,23,24,37]. From these figures, we have
identified the degree of nonreciprocal response that each con-
sidered material can reach, upon optimizing d1 and d2.
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(a)

(b) (c)

FIG. 4. Maximum nonreciprocity η for geometry 3 [Fig. 1(c)]
as a function of the absolute value of the off-diagonal permittivity
|εxz| and the real part of the diagonal permittivity Re{εd}. Each data
point is taken as the maximum value obtained when exploring the
parameter space in d1, d2, and θ defined in the main text. In particular,
we show two examples of materials within the explored range of
parameters [marked by the blue dots in panels (a) and (b)], whose
dependence on d1, d2, and θ in explored in Fig. S5 in SM [32].

In conclusion, we have shown that, even in a planar,
pattern-free heterostructure, one can maximally violate Kirch-
hoff’s law of thermal radiation. This can occur without the
excitation of guided or polaritonic modes that lie outside the
light cone. We described analytically how the off-diagonal
tensor element in the permittivity of a nonreciprocal material
(εxz) manifests itself in the reflection from a planar struc-
ture. Based on our theory, we show that the requirement for
large values of εxz is relaxed in a three-layered geometry
consisting of a nonreciprocal material on a dielectric spacer
on a back reflector, whereas in a semi-infinite nonrecipro-
cal material, a large value of εxz does not necessarily lead
to stronger nonreciprocity. Our theory is general and ap-
plies to both magneto-optical materials and Weyl semimetals,
which we have classified in our paper in terms of nonrecip-
rocal thermal emission performance. Our analysis may serve
to identify design rules for simpler nonreciprocal thermal
emitters.
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