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Abstract. – Thermodynamics teaches that if a system initially off-equilibrium is coupled to
work sources, the maximum work that it may yield is governed by its energy and entropy. For
finite systems this bound is usually not reachable. The maximum extractable work compatible
with quantum mechanics (“ergotropy”) is derived and expressed in terms of the density matrix
and the Hamiltonian. It is related to the property of majorization: more major states can
provide more work. Scenarios of work extraction that contrast the thermodynamic intuition
are discussed, e.g. a state with larger entropy than another may produce more work, while
correlations may increase or reduce the ergotropy.

The generality of the laws of thermodynamics for macroscopic bodies led to a long-lasting
effort to derive them from microphysics [1–4]. This program is by now completed. In contrast,
for finite systems, the application and even the formulation of the laws of thermodynamics
are still the subject of studies [5, 6]. The origin of qualitative differences between large and
finite systems was recognized long ago [7,8]. A quantum system submitted to time-dependent
external potentials that describe work sources undergoes a unitary transformation. During
such an evolution, the density matrix has constant eigenvalues, thus it cannot become Gibbsian
when starting from an arbitrary initial state. In contrast, most macroscopic systems have a
thermodynamic behavior: they evolve close to a Gibbs state under the effect of slowly varying
external potentials, keeping nearly constant entropy [8, 9]. This holds in general, although
their evolution is Hamiltonian at the microscopic level, owing to the large and smooth density
of states of the spectrum [8]. Accordingly, the responses of finite and of infinite systems to
external perturbations differ qualitatively [7]. As an example, processes were studied which
would be reversible in thermodynamics, but entail a specific irreversibility due to the finite
size of the involved system [10].

The problem we treat here is an old one in thermodynamics. It initiated its birth in 1824:
What is the maximal amount of work that can be extracted from a system S by means of an
external source of work acting cyclically in a thermally isolated process? And what are the
criteria for comparing different states with respect to their work-providing ability? We find
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answers to both questions, and show that for finite systems they qualitatively disagree with
the standard thermodynamical ones.

A specific case in which a finite system S behaves thermodynamically with regard to
its work production is well known. If S is initially prepared in a Gibbsian state, it cannot
produce work when coupled to a source of work through an external variable which returns
to its initial value [4, 9]. Such a state is thus called passive. We shall therefore be interested
in off-equilibrium initial states. A scenario for preparing such states is to take S consisting
of two non-interacting (or weakly interacting) subsystems, to set separately the two parts in
thermal contact with heat baths at different temperatures, and then to decouple them from
the baths. Subsequent coupling with a source of work may yield an amount of work that we
wish to evaluate.

The maximal work-extraction problem is thus posed in the following way [1, 2]. Consider
a system S which can exchange work with external macroscopic sources. This system is
thermally isolated but may involve energy exchanges between its parts. The evolution of its
density operator ρ(t) is then generated by a Hamiltonian H(t) = H + V (t), where the time-
dependence of V (t) accounts for work transfer. Following refs. [1, 2], we call cyclic a process
in which S, originally isolated, is coupled at the time t = 0 to external sources of work, and
decouples from them at the time τ . Thus, the driving variables of the sources are cyclic, and
the potential V (t) vanishes before t = 0 and after τ : V (0) = V (τ) = 0. However, S need not
return to its initial state at the time τ . The initial state ρ(0) = ρ0 and the Hamiltonian H
being given, we look for the maximum work W that may be extracted from S for arbitrary
V (t). According to the dynamics

i� ρ̇ = [H(t), ρ(t)], (1)

the work dW = tr[ρ(t) V̇ (t)]dt done on S is the expectation value [1–3]

W = tr[ρ(τ)H] − E(ρ0), E(ρ0) ≡ tr[ρ0 H] ≡ Ei . (2)

Among all final states ρ(τ) reached from ρ0 under the action of any potential V (t), we are
therefore looking for the one with lowest final energy Ef = tr[ρ(τ)H].

The standard answer [1,2] relies on the idea that the final state ρ(τ) is Gibbsian and that
its von Neumann entropy S = − tr ρ ln ρ cannot decrease between the times 0 and τ . The
maximum value of the work (2) is reached when the final state has the equilibrium form

ρ(τ) = ρeq =
e−βH

Z
, Z = tr e−βH , (3)

with β > 0 determined by the equality of the initial and final entropies: lnZ − β∂ lnZ/∂β =
− tr ρ0 ln ρ0. The largest amount of work extractable on average, W = max (−W ), is thus

Wth = E(ρ0) − TS(ρ0) + T lnZ, (4)

the familiar difference of free energy between initial and final state, both evaluated with the
final temperature T .

Finite systems. The above derivation involves two arguments which call for some discus-
sion. Following thermodynamical intuition, we have first stated that the entropy cannot de-
crease. In fact, the von Neumann entropy S(ρ) (fine-grained entropy) remains constant during
the evolution (1). If S is macroscopic, it is the coarse-grained entropy which can increase. Any-
how, this point is harmless, since the bound (4) corresponds to constant-entropy processes of
the total system. We also implicitly assumed that S may be brought into an equilibrium state
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ρeq by means of some evolution (1). For macroscopic systems this is usually allowed since dis-
sipative processes within S may occur while it evolves under the influence of the coupling V (t).

For finite systems, the sole action of V (t) is in general not sufficient to allow reaching at
the time τ a Gibbsian state of the form (3). Indeed, not only is the entropy S(ρ) conserved
during the evolution generated by (1), but so are all the eigenvalues of ρ [7,8]. In contrast to
thermodynamic systems, finite systems keep memory of their initial state and do not involve
any relaxation mechanism. One may therefore expect that the maximal amount of work W
extracted from S is generally smaller than Wth.

More precisely, the evolution (1) of ρ is unitary, so that ρ(τ) = U ρ0 U
†. We look for

the minimum of the final energy Ef = trU ρ0 U
†H over all unitary operators U . We can

parameterize the variations δU of U as δU = XU , where X is an arbitrary infinitesimal
anti-Hermitian operator. Hence, we find δEf = tr(XUρ0U

†H − Uρ0U
†XH) = trX[ρ(τ),H].

The stationarity of Ef thus implies that ρ(τ) should commute with H and have the same
eigenvalues as ρ0, a condition which replaces (3). Let the spectral resolutions of ρ0 and H be

ρ0 =
∑
j≥1

rj

∣∣rj

〉〈
rj

∣∣, H =
∑
k≥1

εk|εk〉〈εk|, r1 ≥ r2 ≥ · · · , ε1 ≤ ε2 ≤ · · · , (5)

where we ordered the eigenvalues. The minimum of Ef is then
∑

j rjεj , which has a simple
physical interpretation: the largest occupation fraction r1 finally occupies the lowest level, the
one-but-largest occupies the one-but-lowest, etc. It is reached for

ρ(τ) =
∑

j

rj

∣∣εj

〉〈
εj

∣∣, (6)

which is stationary since it commutes with H. This result is consistent with the extension
for finite systems of the second law in Thomson’s formulation [4,9]: the two conditions which
characterize the state ρ(τ) (commutation with H and ordering (5)) are the ones which ensure
that this state is passive: no further work can be extracted from S after time τ by means
of cyclic processes. Note that, if the spectrum of H involves degeneracies which have no
counterpart in ρ0, the final state ρ(τ) is not unique (in contrast to ρeq associated with Wth).

Altogether, the maximum of the amount of work (2) that can be extracted from S, on
average in similar experiments, is

W =
∑
j,k

rjεk

(|〈rj |εk〉|2 − δjk

)
. (7)

For W, which depends only on the initial state and Hamiltonian, we coin the name ergotropy
(έργoτρoπεiα: work transformation, from έργoν: work; τρoπή: transformation, turn; in
analogy with Clausius’ entropy, έντρoπεiα, in-transformation). By construction, we have
Wth ≥ W ≥ 0. The ergotropy W vanishes if ρ0 is passive. It equals the thermodynamical
upper bound Wth only if there exist two numbers β and Z such that the eigenvalues (5) of ρ0

and H satisfy ln rj = −βεj− lnZ, so as to allow ρ(τ) = Uρ0U
† to reach a Gibbsian form (3) in

spite of the lack of thermalization mechanism. Noticeable examples include: i) a pure initial
state of S; ii) two-level systems; iii) harmonic oscillators in case ρ0 is a Gaussian state, since
both the sequences εk and ln rj are then equidistant.

For macroscopic systems the difference Wth − W is typically relatively small, since the
final state (6) may lie close to an equilibrium state if τ is large; the spectra of ln ρ0 and H are
dense, and a linear relation between them is approximately satisfied in the relevant region.
However, for finite systems Wth −W can be significant.
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It remains to show that the bound W can actually be reached by coupling S with some
source of work that realizes a cyclic process. We thus want to find a time τ and an interaction
V (t) which vanishes at t = 0 and at t = τ , so that, when added to the Hamiltonian H, V (t)
leads from the initial state ρ0 to ρ(τ) defined in (6). An evolution operator which realizes this
goal is

U =
∑

j

∣∣εj

〉〈
rj

∣∣. (8)

A Hamiltonian H + V (t) generates in the interaction representation an evolution operator UI

which satisfies
i�

dUI(t)
dt

= eiHt/� V (t) e−iHt/� UI(t), (9)

with UI(0) = 1. We define UI(τ) ≡ eiHτ/� U = e−iΛτ/�, where Λ is obtained by diagonaliza-
tion. We choose for UI(t) the simple form UI(t) = e−iΛϕ(t)/�, where ϕ(0) = ϕ̇(0) = ϕ̇(τ) = 0
and ϕ(τ) = τ . Then the potential V (t) = ϕ̇(t)e−iHt/� Λ eiHt/� describes according to (9)
a source of work that extracts during the time τ the work (7) from S. This potential is far
from unique.

In case that not only ρ(τ) but also the initial state is stationary, [ρ0,H] = 0, we can choose
the same eigenbases for ρ0 and H, but (5) implies that |r1〉, |r2〉, . . . in (5) are deduced from
|ε1〉, |ε2〉, . . . by some permutation. Then the matrix |〈rj |εk〉|2 in (7) is a permutation matrix.
For instance, if the lowest two levels ε1 < ε2 have initially the inverted populations r2 < r1,
respectively, so that |r1〉 = |ε2〉 and |r2〉 = |ε1〉, we may easily implement the transformation
U , a permutation that interchanges r1 and r2, either in a rapid or in a quasistatic regime.

The expression (8) of ergotropy is the central result of this paper. It presents unexpected
qualitative differences with its macroscopic counterpart (4). In the following we discuss them,
relying on illustrative examples.

Comparison of activities. We wish to compare two states ρ0 and σ0 of a system S as
regards the maximum work that they may provide. To make such a comparison meaningful,
we assume the initial energies to be the same, E(ρ0) = E(σ0). If S is macroscopic and can
reach equilibrium at the end of the process, Wth depends only on the entropy S of the initial
state, and it decreases when S increases, since −dWth/dS is the temperature of the final
state. However, the situation is different for finite systems. Consider, for instance, a three-
level system with eigenenergies ε1,3 = ∓1, ε2 = 0. The eigenstates of ρ0 and σ0 are taken
as |r1,3〉 = |s1,3〉 = (|ε1〉 ∓ |ε3〉)/

√
2, |r2〉 = |s2〉 = |ε2〉, so that E(ρ0) = E(σ0) = 0. If their

eigenvalues are {rj} = {0.90, 0.08, 0.02} and {sj} = {0.91, 0.05, 0.04}, the entropy S(ρ0) �
0.375 exceeds S(σ0) � 0.364. Accordingly, the thermodynamic bound Wth(ρ0) � 0.882 for
the work is smaller than Wth(σ0) � 0.887. Nevertheless, the ergotropy W(ρ0) = 0.88 of
ρ0 is larger than the ergotropy W(σ0) = 0.87 of σ0. The actually reachable bounds are, as
expected, lower than the corresponding Wth’s, but they are reversed in order: the entropically
more disordered state ρ0 may provide more work.

Thus, the entropy criterion fails for comparing the ergotropies. The theory of majoriza-
tion [11], that we briefly recall now, provides a criterion which may be helpful in connection
with ergotropy. In quantum-statistical mechanics [4,12] a density operator ρ is said to majorize
σ if their eigenvalues rj and sj , set in the decreasing order (5), satisfy

k∑
j=1

rj ≥
k∑

j=1

sj , for any k ≥ 1. (10)

This property, denoted as ρ � σ, is transitive (ρ � σ and σ � τ imply ρ � τ). It characterizes
order, but in a stronger way than entropy since ρ � σ implies not only S(ρ) ≤ S(σ), but
also tr f(ρ) ≤ tr f(σ) for any concave function f(x). Pure states majorize all states, while
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in a Hilbert space of dimension n all states majorize ρ = 1̂/n. If we have both ρ � σ and
σ � ρ, then ρ and σ are unitarily equivalent. However, the order defined by majorization is
incomplete since, for n ≥ 3, pairs of states ρ and σ exist of which neither majorizes the other.

Returning to the comparison of the activities of ρ0 and σ0 with E(ρ0) = E(σ0), we find
after summation by parts the ergotropy difference δW ≡ W(ρ0) −W(σ0) as

δW =
∑
j≥1

(
sj − rj

)
εj =

∑
k≥1

(
εk+1 − εk

) k∑
j=1

(
rj − sj

)
. (11)

Hence a sufficient condition for ρ0 to be more active than σ0 is ρ0 � σ0 (S(ρ0) ≤ S(σ0) alone
is neither necessary nor sufficient). There exists a wide class of non-unitary evolutions [12]
which lead from a state ρ0 to σ0 such that ρ0 � σ0. If ρ0 and σ0 have the same energy, we have
W(ρ0) ≤ W(σ0). For instance, the diagonal part ρ̄0 =

∑
k |εk〉 〈εk|ρ0|εk〉 〈εk| of ρ0 has the

same energy as ρ0 itself, but W(ρ0) ≥ W(ρ̄0) since ρ0 � ρ̄0 [11]. Thus the subset of states that
majorize one another constitute a domain where standard thermodynamic wisdom applies,
even though the classical bound need not be attainable. In order to find opposite behaviors in
the comparison of ergotropies and of free energies (or entropies), we have to search for cases
when ρ0 �≺ σ0 and ρ0 �� σ0. All pairs of inequalities W(ρ0) ≷ W(σ0) and S(ρ0) ≷ S(σ0) may
then occur, as illustrated by examples given above and below.

Auxiliary system. If S is supplemented with an auxiliary system Ω with Hamiltonian HΩ

and initial state ω0, the overall Hamiltonian H + HΩ + V (t), where V (t) couples S + Ω with
external sources, generates a unitary transformation in the product Hilbert space, which is
more general than for work sources coupled separately to S and Ω. The initial state ρ0 ⊗ω0 is
uncorrelated and the evolution conserves its (factorized) eigenvalues. The ergotropy satisfies
W(ρ0 ⊗ω0) ≥ W(ρ0) +W(ω0), the same inequality as for Wth. Consider, however, again two
states ρ0 and σ0 with the same energy. If they are macroscopic and satisfy Wth(ρ0) > Wth(σ0),
this ordering of activities is not changed by the introduction of the auxiliary system, since the
additivity of entropy for the initial states implies Wth(ρ0 ⊗ω0) > Wth(σ0 ⊗ω0). But for finite
systems the order of ergotropies can be reversed. As a first example, consider for S the same
three-level system as above, with eigenvalues of ρ0 and σ0 now equal to {rj} = {0.8, 0.1, 0.1}
and {sj} = {0.5, 0.5, 0}. For Ω we take a two-level system with eigenenergies 0 and ∆ > 0,
initially in a pure state. Although ρ0 �� σ0, we have both S(ρ0) � 0.639 < S(σ0) � 0.693
and W(ρ0) = 0.7 > W(σ0) = 0.5. However, coupling with Ω, which does not change the
entropies, reverses the inequality for the ergotropies if ∆ < 1/4, since (for ∆ < 1) W(ρ0 ⊗
ω0)−W(σ0 ⊗ω0) = 0.4 ∆−0.1. For ∆ = 0, the auxiliary system Ω does not contribute to the
energy balance but nevertheless raises W owing to the possibility of different final ordering.

The opposite situation is also possible, provided S has at least four levels. Consider,
for instance, a system S with eigenenergies ε1,4 = ∓1, ε2,3 = ∓(1 − x), with 0 < x < 1.
As eigenstates of ρ0 and σ0 we take |r1,4〉 = |s1,4〉 = (|ε1〉 ± |ε4〉)/

√
2, |r2,3〉 = |s2,3〉 =

(|ε2〉 ± |ε3〉)/
√

2, which ensures E(ρ0) = E(σ0) = 0, and as eigenvalues

{
rj

}
=

1
(1 + w)2

{
w(w + 3),

1 − w

2
,

1 − w

2
, 0

}
, (12)

{
sj

}
=

1
(1 + w)2

{
2w, 2w, w(1 − w)2, (1 − w)3

}
, (13)

which are ordered according to (5), provided 1 > w > 1/2. The fact that ρ0 �� σ0 and
σ0 �� ρ0 allows to violate the thermodynamical ordering, since we have simultaneously S(ρ0) <
S(σ0) and W(ρ0) < W(σ0) for sufficiently small x, as seen from (1 + w)2 [W(σ0) −W(ρ0)] =
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(1 − w)(2w − 1) − xw(1 + 2w − w2). Take Ω as a two-level system; its only relevant feature
will be the eigenvalues {w, 1 − w} of its initial state ω0. Provided 1/4 < w2 < 1/2, eqs. (10)
for k = 1, 2, . . . , 8 are satisfied and hence ρ0 ⊗ ω0 � σ0 ⊗ ω0. This implies W(ρ0 ⊗ ω0) >
W(σ0⊗ω0): Ω restores for the ergotropies the order inferred from the thermodynamic relation
S(ρ0) − S(σ0) = S(ρ0 ⊗ ω0) − S(σ0 ⊗ ω0) < 0.

All these contradictions between the predictions of thermodynamics and the behavior
of finite systems do not occur for the subset of states that may ordered in the sense of
majorization: then ρ0 � σ0 implies both S(ρ0) ≤ S(σ0) and W(ρ0) ≥ W(σ0) and W(ρ0⊗ω0) ≥
W(σ0 ⊗ ω0) for an arbitrary ω0.

Correlations. In the above examples the initial state of S + Ω was uncorrelated, but not
the final state, because evolution permutes its eigenvectors although its eigenvalues remain
factorized. Thus, contrary to thermodynamic intuition, the maximum work can be achieved
owing to creation of correlations.

Conversely, if the initial state Q0 of S + Ω is correlated, thermodynamics predicts that the
available work is increased, due to the subadditivity of entropy, S(Q0) ≤ S(ρ0)+S(σ0), where
ρ0 = trΩ Q0 and σ0 = trS Q0 are the marginal states of S and Ω, respectively. However, for
finite quantum systems, we have to compare the ergotropies W(Q0) and W(ρ0 ⊗ σ0). Take
for S a system with three energy levels εi, i = 1, 2, 3 and for Ω a two-level system k = 1, 2
with energy levels 0, ε such that 0 < ε < ε2 − ε1, ε < ε3 − ε2, and for S + Ω a stationary
initial state Q0. Denoting the common eigenstates of H + HΩ and Q0 as |i, k〉, we assume
that the eigenvalues qik of Q0 are ordered as q11 > q12 > q21 > q22 > q31 > q32. Then Q0

is both correlated and passive. Suppressing correlations leads to a factorized state ρ0 ⊗ ω0

with the same energy, and eigenvalues ri =
∑2

k=1 qik for ρ0 and pk =
∑3

i=1 qik for ω0. The
ordering of the set {ripk} may now differ from that of {qik}; for instance, if q11 is close to
one and all other qik’s are small with the same order of magnitude, we have r2p2 < r3p1,
and W(ρ0 ⊗ ω0) = (ε3 − ε2 − ε)(r3p1 − r2p2) > 0. Suppressing the correlations has thus let
the system S + Ω become active. Altogether, the order carried by correlations, although it
manifests itself directly in the entropy, may allow both increase or decrease of ergotropy.

Conclusion. Maximal work extraction is one of the basic problems of thermodynamics
and has applications in various processes of energy conversion [1,2,6]. In macroscopic physics,
the answer (4) is governed by the non-decrease of entropy. We have shown that finite devices
are less efficient in this respect: any evolution of a thermally (but not mechanically) isolated
quantum system must leave unchanged not only this entropy, but all the eigenvalues of the
density operator, which prevents in most situations the thermodynamic bound from being
attainable. We have given a general explicit expression (7) for the “ergotropy”, the quantity
which, for finite systems, replaces the free energy: it is the upper bound of the work that a
finite system S in a non-equilibrium initial state ρ0 may yield (on average) if it is coupled to
external sources of work undergoing a cyclic transformation. Many interaction Hamiltonians
V (t) allow to reach this bound.

The proper measure of order for comparing the abilities of work production of finite sys-
tems is thus ergotropy and not free energy. Several consequences of this result contradict
thermodynamic intuition. Consider, for instance, a state σ0 of S having the same energy as
ρ0 and lower entropy. Thermodynamics suggests that more work might be extracted from σ0

than from ρ0, and moreover that the presence of an auxiliary system Ω, in a state ω0 initially
uncorrelated with S, preserves this property. Such statements can be violated in finite quan-
tum systems. However, even for finite systems, there is a subset of states that majorize one
another, where predictions of thermodynamics are qualitatively correct.

These various features have been illustrated above by simple examples. It is expected that
they should be observed in realistic experiments involving few level systems such as atoms
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(quantum optics, quantum chemistry) or spins (quantum electronics, quantum control), for
which the evaluation of the ergotropy (8) is straightforward. In the latter case, the sources of
work are external magnetic fields, which can easily be modulated. We also expect that our
results will find direct applications for quantum heat engines [13] and quantum ratchets [14].
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