
IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. 36, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  MAY 1988 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA693 

Maximally Decimated Perfect-Reconstruction FIR 

Filter Banks with Pairwise Mirror-Image Analysis 

(and Synthesis) Frequency Responses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract-New structures are presented for the perfect-reconstruc- 

tion QMF bank, based on lossless building blocks. These structures 
ensure that the frequency responses of the analysis (and synthesis) fil- 
ters have pairwise symmetry with respect to ~ / 2 ,  and require fewer 
parameters than recently reported structures (also based on lossless 
building blocks). The design-time based on the new structures is cor- 
respondingly much less than the earlier methods which did not incor- 
porate such symmetry. 

I. INTRODUCTION 

UADRATURE mirror filters (in short, QMF) are 
used in a number of communication applications such 

as subband coders for speech signals [1]-[3], and fre- 
quency domain speech scramblers [4]. Fig. 1 shows a typ- 
ical M-channel maximally decimated parallel QMF bank 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHk(z) and Fk(z), 0 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk I M zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1, are analysis 
and synthesis filters, respectively (we consider only finite 
impulse response (FIR) filters in this paper). The basic 
purpose and operation of the filters Hk(z), Fk(z) can be 
found in a number of references [1]-[3], [7]-[8], [11]- 
[ 141. Usually, the reconstructed signal 2 ( n  ) suffers from 
aliasing, amplitude, and phase distortions [5]. It is some- 
times desirable to eliminate all these distortions, so that 
a(n) = c x ( n  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno); such a system is called a perfect 
reconstruction system (PRS). 

The theory of perfect reconstruction when M is a power 
of two is well known [5], [6]. The design method is based 
on spectral factorization of an FIR halfband filter. The 
elegant choices of Ho(z ) ,  H , ( z ) ,  F,-Jz), and F , ( z )  in [5] 
and [6] cancel aliasing and yield a perfect reconstruction 
system. Some methods for perfect reconstruction for ar- 
bitrary M have been reported recently [7], [ l l ] .  The 
method in [7] has the property that the analysis and syn- 
thesis filters have equal lengths, and provide a paraunitary 
(or lossless) Alias Component (AC) matrix. Such AC ma- 
trices can be obtained by generating the analysis filters 
based on a class of FIR lattice structures with orthogonal 
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Fig. 1. The M-channel maximally decimated parallel QMF bank. 

building blocks. With the lattice structures given in [7], 
the relations among the analysis filters are not explicitly 
describable, Le., they are not related in an obvious way. 
The object of this paper is to describe perfect reconstruc- 
tion structures for arbitrary M in which the analysis filters 
Hk ( z  ) have pairwise symmetry of frequency responses 
about n / 2 .  To be precise, we consider analysis banks of 
the form 

for 0 I k I M - 1 and where r is a positive integer large 
enough to ensure the causality of HM-l -k(z). An analy- 
sis bank satisfying (1) will be called a “pairwise sym- 
metric analysis bank” in this paper. In Section I1 we re- 
capitulate results on perfect reconstruction structures [7]. 
Using these conditions with appropriate constraints ( l ) ,  
we derive new perfect reconstruction structures in Sec- 
tions I11 and IV, for odd and even M, respectively. In each 
section, we demonstrate theoretical results by design ex- 
amples. For M = 4,  we compare the filter lengths, the 
complexity of the analysis bank, and the overall group 
delay caused by the QMF bank, to the corresponding tree- 
structure based design [5], [ 181. 

The term “quadrature mirror” filters is in fact a mis- 
nomer for the analysis/synthesis system of Fig. 1, be- 
cause the frequency response magnitudes of Hk ( 2 )  do not 
in general have symmetry with respect to n /2  (which is 
the “quadrature” of the sampling frequency 27r). One 
purpose of this paper is to force this symmetry by relating 
the impulse response coefficients of pairs of filters as in 
(1). We impose this relation in a way that minimizes the 
number of parameters that enter the optimization problem 
[which seeks to minimize the stopband energies of 

Hk(z)]- 
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Even if we do not impose the symmetry conditions of 

( l ) ,  the optimized analysis filters sometimes exhibit such 

a symmetry, as evidenced from the design example of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7]. 
However, a priori imposition of such a symmetry condi- 

tion leads to much faster convergence of the optimization 
programs, because of elimination of redundant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' 'un- 

known" parameters. If we wish to impose the condition 

1 Hk(ej") I = I H M - 1  -k(eJ") 1, then (1) is clearly not the 

only way to do it. For example, if we arbitrarily replace 

a zero of HM-i-k(z) with its reciprocal conjugate, then 

(1) will fail but 1 Hk(ej") I = I HM- -k(eJw) I will con- 
tinue to hold. The motivation for choosing the particular 

relation (1) is the following. For the simple case of M = 
2, (lb) is known to hold [5], [6]. With M = 3, design 

examples [7] demonstrate that ( la)  tends to get satisfied 
even if this constraint is not explicitly imposed. More- 

over, it has been observed that, if the conditions (la) and 
(lb) are switched, then further impositions of the loss- 

lessness constraint often result in trivial transfer func- 

tions. In this paper, we shall therefore restrict our atten- 

tion only to the type of symmetry in (1). 
Notations Used in the Paper: Bold faced italic letters 

indicate vectors and matrices. Superscript T stands for 

matrix (or vector) transposition, whereas superscript dag- 
ger (?) stands for transposition followed by complex con- 

jugation. Superscript asterisk (*) stands for complex con- 

jugation. The tilde accent on a function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF ( z )  is defined 

such that, on the unit circle, E(z) = Ft(z). In other 

words, for arbitrary z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE ( z )  = FT(z-'). We consider only 
filters with real coefficients here. A single-input single- 

output digital transfer function G(z) is said to be lossless 

[8], [15] if it is stable and satisfies I G(  e'") 1 = 1 for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w.  Likewise, an rn-input p-output transfer function matrix 

T (z) is said to be lossless if it is stable and satisfies the 

paraunitary property, viz., p( z )  T ( z )  = Z for all z. 

11. PERFECT RECONSTRUCTION QMF BANK 

Let the FIR analysis filters Hk(z), k = 0, - * - , M - 
1 ,  be written in the form 

M -  1 

&(z) = c z-'Ek,J(zM), 0 5 k I M - 1 (2) 
l = O  

where the above representation is commonly known as 

polyphase implementation [2], [ 161 of the M-channel 

structure. Define the M x M matrix E ( z )  = [Ek,l(z)], 0 
I k, 1 I M - 1 ,  then the analysis filters can be expressed 

as 

Choose the synthesis filters Fk(z), k = 0, * * * , M - 1 to 
be 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs is a positive integer large enough so that 

z-'E(z-') has no positive power of z. Fig. 1 now can be 
redrawn as Fig. 2. Based on standard identities for mul- 

tirate system [2], Fig. 2 can in turn be redrawn as in Fig. 

3, with ideal channel characteristics assumption. If E( z )  
in Fig. 3 is lossless, Le., E(Z) E(z) = I ,  then it yields 

a perfect reconstruction structure [7]. Therefore, as long 

as E (z )  is a lossless transfer matrix and Hk (z), Fk (z)  are 
defined as in (3) and (4), the structure in Fig. 1 is a perfect 

reconstruction structure [7]. A simple way to obtain loss- 

less E(z) [8] is to define it as a cascade of lossless sys- 
tems, Le., E(z) = KN-1AN-2(z) * -Ao(z)Ko, where& 

are constant unitary matrices, i.e., 

(5)  
K ; K i = Z ,  t O s i l N - 1 ,  

and Ai(z) are diagonal matrices with delay elements (so 
that di(Z) &(z) = I ) .  A typical &(z )  for M = 4 could 
be 

Ai (z )  = (' 0 ' 0 z-1 ' ' 0 ) (6)  

0 0 0 2-' 

which is of course an arbitrary example. We consider only 

QMF banks with real coefficients, so Ki are real orthog- 

onal matrices. A simple way to generate an M X M or- 

thogonal matrix Ki is as a sequence of (?) planar rotations 

[7], [9]. The filters Hk(z) of the analysis bank are auto- 
matically guaranteed [7] to satisfy the condition 

M -  1 

(7)  

by the lossless property of E ( z ) .  An objective function 

which represents the stopband energies of the analysis fil- 
ters is 

$ 1  Mi1 I &(e'") 1' dw. (8 )  
k = O  kth stopband 

Since the constraint (7) is enforced by the structure, the 

passbands of Hk(z) are also "good" if their stopbands 
are good. The optimization of the parameters of Ki (so as 

to minimize $1)  can be done by employing standard gra- 

dient algorithms [lo]. This is usually time consuming 
since the objective function is a nonlinear function of 

many parameters (the parameters being the planar rotation 

angles mentioned above). Suppose that Hk(z) have pair- 

wise symmetry property, i.e., (l), then for the case where 
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Fig. 2. Polyphase implementation of Fig. 1 .  
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z 

Fig. 3.  An equivalent structure of Fig. 2. 

M = 3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H*(z) = Ho( - z ) ,  H , ( z )  = a d z 2 )  (9) 

for some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa l ( z ) .  Moreover, it is sufficient to optimize 

I Ho(eJ") 1' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdw 
42 = s:,,,,,, 

( * / 3 ) - t  

+ 0 1 HI(e'"))1' dw (10) 

where E depends on the desired stopband edges. In the 
next two sections, we modify the structure of Fig. 2 such 
that the properties described in (1) are structurally en- 
forced. The number of parameters in the resulting struc- 
ture is approximately half compared to our earlier struc- 
ture [7]; thus, the design time for this new structure is 
substantially reduced. 

111. PERFECT RECONSTRUCTION STRUCTURES WITH 

PAIRWISE SYMMETRIC ANALYSIS FILTERS (M ODD) 

Recall that any set of M transfer functions H k ( z ) ,  0 I 
k I M - 1 can always be represented as in (2), Le., as 
in Fig. 2 where E ( z )  is an M x M matrix. If we impose 
the condition 

HM-l-k(Z) = Hk(-Z), 0 I k I M - 1, (11) 

then we can write 

( 12) 

where lk is some odd integer (with lk = 1, this represen- 
tation is always possible ). Accordingly, the analysis bank 
can be redrawn as in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 where L = (M - 1)/2 (M  
being odd). In this figure, the M X M matrix R has the 

Fig. 4. The analysis bank for M odd. 

form 

1 R = -  
Jz 

1 0  . . . . . . . . .  lo 1 . . . . . . . . .  
. . . . .  I : :  . . .  (: ; * - .  ' & ' * . -  . .  

. . .  
. . . . . . . . .  
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0 
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and is orthogonal. By writing ak ( z )  in the form 

M -  1 

a k ( z )  = z-'E;, l(zM), 0 5 k 5 M - 1 (14) 

we can redraw Fig. 4 as in Fig. '5 where r'(z) is an M X 

M diagonal matrix of the form, 

l = O  

Here, J L ( z )  is a diagonal matrix with the diagonal ele- 
ments z-". With Zk = 1 for all k (so that J L ( z )  = z-'ZL), 
any set of M transfer functions H k ( z )  with the constraint 
(11) can be realized as in Fig. 5. If we restrict lk = nkM 
[i.e., integer multiples of Mso that r'(z) = I'(z')], we 
can realize a restricted class of such transfer functions. If 
lk are so restricted, and if B ' (z )  is lossless, then the com- 
plete QMF bank (shown in Fig. 6) is a perfect reconstruc- 
tion system. This can be seen by drawing it as in Fig. 7 
and recognizing that E ' ( z 2 )  f ( z )  R T R r ( z )  E ' ( z 2 )  = I .  
It can be shown that, with the diagonal elements z-lk in 
r'(z) restricted to be of the form zWnkM, where nk are ar- 
bitrary integers, losslessness of E ' ( z )  in Fig. 5 is equiv- 
alent to that of E ( z )  in Fig. 2.'  Furthermore, the synthe- 
sis filters F k ( z )  in Fig. 6 satisfy Fk(z)  = 
z-(SM+2M-2)f&(i?), and the synthesis bank in Fig. 6 is 
equivalent to that of Fig. 2. Consequently, the synthesis 
filters are painvise image with respect to 7r/2 if the anal- 
ysis filters are. 

Even though the condition lk = nkM makes it easier to 

see how to build a perfect reconstruction system [satis- 

'See Appendix A for further clarification of this perfect reconstruction 
property. 
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Fig. 5. ‘The M-channel analysis bank in which the filter’s frequency re- 
sponses are painvise image about 7r/2 ( M  is odd). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

... K[ r ( z M ) R T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 

2 - 2 4  m... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb) 
Fig. 6. A QMF bank in which the analysis bank (in Fig. 5) satisfies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr ‘ (z)  

= r(z’). 

... 

... 

Fig. 7. An equivalent structure for Fig. 6. 

fying (1 l)], this condition is not necessary. As an exam- 
ple, consider an analysis bank as in Fig. 2 with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM = 5 
and 

1 0  1 

E ( z )  = (i A - A  -!). (16) 

1 - 1  0 1 - 1  

1 - 1  0 - 1  

E ( z )  is orthogonal (and hence lossless) and, moreover, 

(1  1) is satisfied. If we now draw the analysis bank as in 

Fig. 5, we can verify that 

0 1 0 0  

E’ (z )  = (i -h E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA:I, 
1 - 1  0 0 0  

\o 0 0 0 z - I /  

so that E ’ ( z )  is not lossless and r ’ ( z )  is not of the form 

r ( z 5 )  (i.e., lk not multiples of M). Yet, it is a perfect 
reconstruction system satisfying (1 l ) !  

In summary, even though Fig. 5 with lossless E ’ ( z ) ,  
orthogonal R, and with r ‘ ( z )  = r ( z M )  (diagonal matrix 

of delays) leads to a perfect reconstruction system satis- 
fying ( l l ) ,  it does not cover all such systems. We can 

obtain a relatively more general system by not restricting 
R to be as in (13). We now proceed to this issue. 

Lemma 3. I: Consider the analysis-bank structure of 

Fig. 5 where r ’ ( z )  is of the form 

with M odd and where M I  is an integer with 0 I M1 I 
M - 1 .  The relation (1 1) holds if and only if R is of the 

form 

where A is L x (M  - Ml), B is L x M1, C i s  1 x ( M  
- M1 ), and PI is the L X L permutation matrix given by 

Here, M I  is the number of connecting lines between 

E ‘ ( z ~ ~ )  and R with delay zdM,  and M = 2L + 1 .  A proof 
of the above lemma can be found in Appendix B. No- 

tice that M I  does not have to be equal to L (which is ( M  
- 1) /2 ) ,  even though this was the natural choice when 

we derived the structures of Fig. 4 and Fig. 5 .  Next, by 

forcing E ’ ( z )  to be lossless and R to be orthogonal, we 

can obtain perfect reconstruction. Orthogonality of R im- 
plies 

R R ~ =  (* c : ) ( A T  BT OT CT -BTP1 ATPl) = z, (21) 

PIA -PIB 

which is equivalent to the three following conditions: 

C C T =  1, 

A A ~  = B B ~  = $zL, (22) i ACT = 0. 

Since R is a square matrix, (21) also implies RTR = Z 
which is equivalent to the following conditions: 

2ATA + CTC = Z M - M , ,  
[BTB = i z M , ,  (23) 

in terms of the submatrices A, B, and C. 
The condition BBT = I Z ,  in (22) implies that M I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 L, 
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whereas BTB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ZM, in (23) implies that L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 M1. In other 
words, the only choice of MI that is permitted by an or- 
thogonal R of the form (19) is Ml = L. r’(z> and R in 
(18) and (19), respectively, now take simpler forms, i.e., 

and R = ) (24) 

whereAisL X (L + l ) ,  B i s L  X L, andCis  1 x (L + 
1 ). The painvise symmetric structure of Fig. 5, with I”(z) 
and R as in (24), is redrawn as Fig. 8. We can simplify 
the structure in Fig. 8 further by observing that R can be 
written as 

(: PIA -Pi B 

Form a square matrix D as follows: 

The orthogonal requirements for A and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC in (22) reflect 
into the following condition on D: 

Such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD is easy to construct. For instance, denote the rows 
of an (L + 1) X (L + 1 )  orthogonal matrix D’ by d i ,  
dr ,  - - , d:, then the matrix 

satisfies (27). Using the above orthogonal matrix D’ ,  R in 
(25) is equivalent to 

* (”’ O ). 
0 &B 

We observe from Fig. 8 that D‘ in R can be moved to the 
left of the delays and can be combined into the general 
lossless matrix E ’ ( z )  since the delay lines only affect the 
last L ljnes of the structure. Furthermore, as evident from 
(22), B = &B is an L X L orthogonal matrix of unity 
norm. Fig. 8, consequently, can be redrawn as Fig. 9 
where l?’(z)!s a general M x M lossless transfer function 
matrix and R is 

-2  

-2 

-2 
Z 

Fig. 8. An equivalent structure for Fig. 5.  

Fig. 9. An equivalent and simplified structure for Fig. 8 .  

In summary, having chosen B to be any L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx L orthogonal 
yatrix of unity norm, the analysis bank in Fig. 9, with 
R defined as in (30), i s  the analysis bank of a perfect re- 
construction structure in which the filters satisfy the pair- 
wise image property. 

Exumple 3. I: Let M = 3, so that the symmetry require- 
ment (11) on the analysis filters becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH 2 ( z )  = 

H o ( - z ) ,  H , ( z )  = al(z2).  We a!so have L = 1 here. To 
ensure the lossless property of E ’ ( z ) ,  we choose it to be 
a cascade of M X M orthogonal matrices K, andPiagona1 
blocks of delay elements A i ( z ) .  Thus, E ’ ( z )  = 

K N f - 1 A N r - 2 ( z )  KN,-2AN,-3(z) * - A o ( z ) K o  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

K, = 0 cos -sin e,,, (1 :in cos e , , )  

cos 0i,2 0 -sin 

(:in 0i,2 :os e i , )  
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The terminal lossless block R has the form 

and B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 .  As a design example, let the number of or- 

thogonal matrices zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK,  be N = 10, which implies that the 

order of the analysis filters is 61. The 30 rotation angles 
in the lattice structure for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB r ( z )  were optimized using 

IMSL subroutines [lo] on a computer so as to minimize 
(10). The resulting frequency response magnitudes for E 

= 0 . 0 5 ~  are shown in Fig. 10. 
Comment on Generality: The main difference of the 

design technique here, as compared to [7], is that we have 
structurally imposed the pairwise symmetry conditions 

( 1  l ) ,  so as to cut down the number of planar rotation an- 
gles in the optimization. This has led to faster optimiza- 

tion programs, and we have been able to obtain designs 

with much better stopband attenuation than before. How- 

ever, we cannot claim that our methods to enforce the 

symmetry are completely general, as evidenced by the 

counterexample of (16) and (17). Moreover, the choice 

of A,(z)  in (31) required for the synthesis of $ ' ( z )  is not 
general enough. In an earlier conference publication [ 141, 
a completely gFneral procedure for synthesizing lossless 

FIR matrices E ' ( z )  was outlined. The method in [14] is 

such that every lossless &(z) is covered (and such that 

none but lossless matrices ( z )  are covered). Such a gen- 
eral technique can of course be combined with the pro- 

posed methods here to -obtain further design examples. 

IV. PERFECT RECONSTRUCTION STRUCTURES WITH 

PAIRWISE SYMMETRIC ANALYSIS FILTERS (M EVEN) 

The structure in Fig. 5 is not suitable for even zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM,  as it 

yields analysis filters which are functions of z 2 .  When M 
is even, we define a different requirement on the analysis 

filters than (1 l ) ,  and still preserve the pairwise symmetry 

property on the magnitude respo'nses as follows: 

HM-I-k(Z) = Z-rHk( -z- ' ) ;  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI k I M - 1 

(33) 

where r is a positive integer large enough to ensure the 

causality of H M - l - k ( ~ ) .  For the case of M = 2, H l ( z )  
= z-'Ho( - z - ' ) .  One recognizes that this is the condition 
that Smith and Barnwell [ 5 ] ,  Mintzer [6], Vaidyanathan 

and Hoang [18] imposed on their analysis filters for the 

2-channel QMF bank. We shall generate this symmetry 
property by employing the structure of Fig. 1 1 .  Here K, 
are orthogonal matrices. Ki and Ki+ I are separated by a 

transfer matrix of the form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 .  

m 
0 -10.000 
z 
H 

w 9 

z -20.000 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 
v, 
w (L 

w -30.000 
0 
3 
r 
H z 

-40.000 
r 

- i o  a m  "".~"" 
0. 0,100 0.200 0.300 0.400 0.500 

N O R H R L I Z E U  t K E Q U E N C Y  

Fig. 10. Magnitude response plots for the optimized analysis filters (Ex- 
ample 3.1). 

Fig. 11. The M-channel analysis bank in which the filter's frequency re- 
sponses are painvise image about 7r/2 ( M  is even). 

where L = M/2. We would like to find Kj  such that the 

pairwise symmetry property propagates throughout the 
structure, Le., (33) is enforced at every stage of the struc- 

ture, so that the analysis filters H k ( z )  also inherit this 

property. In other words, let H m , k ( z )  denote the transfer 

function from the input x (  n ) to the kth output terminal of 

Km [Fig. 11  denotes several examples of H m , k ( z ) ] ,  and 

suppose that H m , k ( z )  satisfy (33), i.e. (Fig. 12), 

The idea is to find K, + such that the same property is 

conserved at the ( m  + 1 )th stage, i.e., 

The only matrix K, + for which (35) holds for any set of 
Hm,k(z)  satisfying (34) is (see Appendix C for proof) 

where P I  is defined in (20). Here J ,  + I and J ,  + 1,2 are 
arbitrary L X L matrices. We observe that using (36) for 

KO does not yield a set of transfer functions HO,k ( z )  that 

satisfy the pairwise symmetric property since the delay 

wise symmetry condition in (33). Hence, we need to ini- 

tiate the induction process by looking for an orthogonal 

chain (1 z-' . . z - ( M - ' )  ) T does not satisfy the pair- 
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K m t 1  

H m - l , N - l ( Z )  

Fig. 12. One stage of the analysis bank in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. 

(20), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-.: ( n )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 

z 

Fig. 13. An equivalent structure of Fig. 11.  

matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKO such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo,k(Z) satisfies (331, for 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 k 5 M 
- 1 .  Notice that 

in (20) and (39), respectively. Fig. 13 is the analysis bank 
of a perfect reconstruction structure in which the analysis 
filters Hk ( z )  and HM- - k  ( z )  have the pairwise symmetry 
property if Tm + I and To are orthogonal, i .e., if 

T i + l T m + l  = Z and TLTo = I .  (44) 

H O , M -  1 ( 4  PT = P I ,  P :  = I ,  and P3P2 = - I ,  (45) 

* (37) 
Using the identities 

(2:;:; ) ) 
z - ( M -  1 )  

The only KO in (37) for which HO&) satisfies (33) has 

the form (see Appendix D for proof) 
(44) is equivalent to 

JK+I,1Jm+l,I + P I J ~ + I , z J ~ + I , z P I  = 

PI  Jm + I ,  I Jm + 1 , 2  = ( P I  J f  + I ,  I Jm + 1 . 2 )  

(46) 
Ji.1J0.1 + P ~ T J ; , ~ J o , ~ P ~  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 

KO = ( Jo' l  p1J0,2p3 Jo'2 PIJo,  1p2 ) (38) i T  
where J o , l ,  J0,2 are arbitrary L X L matrices, P I  is as in and [ 

P2TJO: I J o , ~  = (P2TJO: I J o , ~ )  

Km+ I and KO in (36) and (38) can be rewritten as 

K m + ,  = (" ) * T,+ ,  (" ), 
0 PI 0 PI 

0 PI 0 p2 

K O = (  ZL 0 ) * T o . ( "  O )  

where 

If we define 

u m + l  = J , + I , I  +JJm+l.2P1 and 

UO = J O , I  + J J o , ~ ' ~ ,  (47) 

then it is clear that the unitariness of Urn + and Uo implies 
the orthogonality of Tm + I and To, respectively, and vice 
versa. Consequently, to form orthogonal M x M matrices 
Tm + I and To of the specific form (42), (43), we first con- 
struct arbitrary L X L unitary matrices and Uo. .4 
general procedure to generate an arbitrary L x L unitary 

matrix is described in [9] and requires L2 angles. Having 
formed Urn+ I and Uo, Tm+ I and To are constructed as fol- 
lows: 

(39) 

(48) 

(42) 
This procedure guarantees that Tm+ I and To are orthogo- 
nal and, hence, Fig. 13 is the analysis bank of a perfect 
reconstruction structure with pairwise symmetric re- 
sponse analysis filters. Compared to our earlier method 
[7] which requires ( 2:) rotational angles, the symmetric 
structure described above requires at most L2 angles [9]. 

(43) 

Making use of the identities (40) and (41) in Fig. 1 1 ,  it 
can be redrawn as in Fig. 13 where P I ,  P2 are defined as 

Thus, the above structure yields faster optimization al- 
gorithms. The relation between Tm+ l and um+ l leads us 
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L L 

Fig. 14. The "complex domain" interpretation of each stage in Fig. 13. 

to the equivalence shown in Fig. 14. Thus, the analysis 

bank is essentially a cascade of L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx L complex unitary 

building blocks, with delays inserted into the imaginary 

paths of the signals. Appropriate adjustments are done at 

the left and right ends in order to obtain the correct ini- 
tializations and the correct outputs. The initialization is 

done by setting 

where ~ - ~ ( n )  = [ x ( n )  x ( n  - 1 ) -  - - x ( n  - L + l)] '  
and r - l ( n )  = [ x ( n  - L )  x ( n  - L - 1)  - . x ( n  - 2L  
+ l ) ]  (recall L = M / 2 ) .  The analysis transfer func- 
tions are obtained as Ho(z) = S ~ - ~ ( Z ) / X ( Z )  and 

H I ( z )  = P ~ r ~ - ~ ( z ) / X ( z )  where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHo(z) = [ H d z )  

 HI(^) - - . H ~ . - + ( z ) l ~  and H l ( z )  = [HL.(z) HL.+I(Z) 

Example 4.1: For M = 4,  the analysis filters of a per- 

fect reconstruction structure satisfy the pairwise fre- 

quency response image property, 

HM-I(Z)l . 

where N is the number of sections in the structure. Let the 

unitary matrices Uo and U, be 

and 

then 

\-Co,1 c0.2 -so,1 -s0,2/ 

and 

where cm,i = cos ( O m , i ) ,  s , , , ~  = sin ( O m , i )  and are the 

planar rotation angles at the mth stage. It can be easily 

verified that the above To and T, are orthogonal. The 
above forms for Uo and Urn do not represent the most gen- 

eral 2 X 2 unitary matrices (which actually require 4 an- 

gles to be completely characterized). These forms are 

meant only to be examples. We choose N = 15, in this 

example, so that the length of each (FIR) analysis filter is 

60. There are 30 angles Om,i  0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI m I 14, 0 I i I 1 in 
the lattice structure of Fig. 13, and these are optimized 

using the IMSL subroutine to minimize the following ob- 
jective function: 

*/4) -6  

4 = 1" IHo(ej") l 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdw + 1' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 IHl(ej") l2 dw 
(* /4) fE 

(54)  

for E = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 . 0 5 ~ .  Note that we do not include the stopband 

energies of H2( e'") and H3( e'") in 4 since they will be 

small if the stopband energies of their images, Ho(eJ")  
and H,(e'"),  are small due to the pairwise symmetry 

property. Moreover, because of the structural form of Fig. 
13, the constraint E:=-: 1 Hk( e j " )  l 2  = 1 automatically 

holds, hence, the passband errors automatically come out 

to be small. The magnitude responses of the resulting 

analysis filters are shown in Fig. 15. 

A second procedure to design a four-channel perfect- 
reconstruction system would be to use the tree structure 

[5] of the form in Fig. 16. Here, [Hoo(z ) ,  Hol(z)] is a 

two-channel perfect-reconstruction pair, and so is 

[H&,(z) ,  H&(z)]. These pairs are designed by spectral 
factorization of appropriate half-band filters [5]. The 

overall analysis filters are H~(  z)  = H,( z ) H & , ( z ~  ), H~ (z ) 
= H,(z) Hh1(z2), and so on. In order to obtain the same 
transition bandwidth Af as in Fig. 15, we should take the 

transition bandwidth of H,(z) to be Afand that of H&,( z)  

to be 2Af. The stopband attenuation seen in Fig. 15 can 

be obtained with the tree structure if H,(z) and H&,(z), 

designed as in [5], are of lengths 30 and 16, respectively. 

Thus, each analysis filter has length = (29 + 2 X 15 + 
1) = 60. The responses are shown in Fig. 17. It seems 

to be an interesting coincidence that the analysis filters 

corresponding to Fig. 15 and Fig. 17 have the same length 

( =  60).  It is not clear to us, at this time, as to whether 

this is a general property of the two methods, for power- 

of-two M. The overall group delay of the QMF system is 
equal to 59 samples, for both methods. 

It is interesting to compare the complexity (in terms of 
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Fig. 15. Magnitude response plots for the optimized analysis filters (Ex- 
ample 4.1). 

Fig. 16. The 4 X 4 tree-structured QMF analysis bank. 
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Fig. 17. Magnitude response plots for the analysis filters designed based 
on the tree structure (Example 4.1). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

number of multiplications per unit time (abbreviated 
MPU2) for the two designs. For the tree structured design, 
we can implement each two-channel branch in Fig. 16 by 
either direct form [5] or lattice structure [ 181. In our im- 
plementation, two factors which can potentially contrib- 
ute to the savings in the number of multiplication are: a) 
the relation Hol(z)'= z-29H00( -z-'), and b) decimation 
by a factor of two. In a direct-form structure we cannot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
simultaneously exploit both of these factors because the 
filter order is necessarily odd (29 in our example). Based 
on either one of these factors, it is easy to implement the 

'A unit of time is defined to be the sampling period of the input sequence 
x ( n )  in Fig. 1 .  

pair [ H , ( z ) ,  HO,(z)] using only (29 + 1)  MPU. Galand 
and Nussbaumer have proposed a modified direct-form 
scheme [ 171 whereby both the above contributing factors 
can be partially exploited to obtain an implementation 
with only 3/4 X (29 + 1) MPU. Thus, the pair [H,(z), 
HOl(z)] requires 3/4 X (30) multiplications per com- 
puted output sample [17]. Similarly, due to the decima- 
tion factor, each [ H & ( z ) ,  H~,(z)] pair requires 1/2 x 
3/4 X (16) = 6 MPU. Hence, in a modified direct-form 
implementation, the analysis bank designed based on the 
tree structure requires 3/4 X (30) + 3/4 x (16) = 35 
MPU. 

The lattice structure implementation is based on the 
lossless property of the polyphase filter matrix E (z ) [ 181. 
The denormalized two-channel lattice requires S/2 MPU 
(see [18]) where S is the length of each analysis filter. 
The normalized lattice structure, on the other hand, has 
automatic internal L2 scaling property, as the internal 
building blocks are planar rotation operators. Each such 
operator is mathematically identical to a single complex 
multiplication, and can be implemented [20] using 3 real 
multiplications (and 3 real additions). As a result, the en- 
tire normalized analysis bank requires only 3S/4 MPU 
which is exactly the same as the best known [17]. The 
complexity of the pair [H , , ( z ) ,  Hol(z)], hence, is 23 and 
15 MPU for the normalized and denormalized implemen- 
tations, respectively. Similarly, due to the decimation 
factor, each [H&,(z), and H&(z)] pair requires 6 and 4 
MPU for the normalized and denormalized structures, re- 
spectively. Implemented by lattice structure, the total 
complexity of the analysis bank designed based on tree 
structure is 23 + 2 X 6 = 35 MPU and 15 + 2 x 4 = 
23 MPU for the normalized and denormalized structures, 
respectively. 

Next, for transfer functions designed based on the pro- 
posed pairwise symm5tric lattice structure, if we imple- 
ment Hk ( z )  of length S in direct form and if we share the 
multipliers of H k ( z )  and HM-l-k(z), a total of 2s = 2 
X 60 = 120 multiplications are involved per computed 
output sample (see Fig. 30 of [19]). Having shared the 
multipliers of the pairwise symmetric analysis filters, we 
cannot, however, take advantage of the decimation factor 
of 4. A more efficient direct-form implementation is to 
take advantage of the decimation ratioAwithout sharing the 
muvipliers. This requires a total of 4S/4 = 240/4 = 60 
= S MPU for the complete analysis bank. 

Finally, if we implement the lattice structure of Fig. 13 
directly, we can take further advantage of the orthogonal 
form of T,. At the output of each stage, we would have 
to compute 

(55) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAui and yi are the inputs and outputs of each block 

T,. Rewrite the above equation as 

(57) 

Having computed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a0 a1 ) and (bo bl ) ', we have 

Since each 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 2 block in (56) is an orthogonal block, 

we can compute it using 3 multiplications and 3 additions 

[20]. Thus, (55) requires 6 multiplications and 10 addi- 

tions. The complexity of the normalized lattice structure 

is, therefore, 6 X number of stages = 6N = 6/4 X S = 
90 MPU where $ is the length of H k ( z ) .  Since the deci- 

mators can be moved all the way to the left of the building 
block To in Fig. 13, the actual number of MPU's is only 

= 23. Notice that the 4 X 4 matrix (55) is orthogonal, 

hence, the lattice stnrcture is automatically L2 scaled. It 

is possible to obtain a more efficient (but denormalized) 

lattice structure by noting that, if we divide each element 
in T, by a constant, say cm, the responses of Hk (z)  are 

unchanged (except for a scale factor.) Thus, (56) and (57) 
are rewritten as 

( 5 9 )  

By noting that (u6 a; ) can be computed by 2 multipli- 
cations, each denormalized orthogonal block T, requires 

only 5 multiplications. Hence, the total complexity for the 

analysis bank is 5$/16 = 19 MPU. 
Table I summarizes the comparison between the new 

design and the tree-structured design. As evident from it, 

the complexity of the new pairwise symmetric lattice 

structure implementation is less than that of the tree-struc- 
tured implementation. In fact, with a denormalized lat- 

tice, the MPU count is the smallest (= 19). Besides the 

complexity advantage, the pairwise symmetric lattice 
structure can be used for designing filters with arbitrary 

M, which is not necessarily a power of 2. 

V. CONCLUDING REMARKS 

We have described two perfect-reconstruction struc- 
tures, free of aliasing and distortions of any kind, in which 

the analysis filter responses are pairwise images with re- 
spect to r /2. Using this image property to our advantage, 

the objective function can be simplified so as to include 

only the stopband energies of about half the number of 
filters. For both odd and even number of channels, the 

number of parameters is approximately cut in half and 
consequently the design time is substantially reduced. De- 

sign examples are given to verify the theory. 

APPENDIX A 

We shall state and prove two lemmas here. 
Lemma A. I: If the analysis filters can be written in two 

ways: 

= G ( z M )  ( - i  ) ( A . l )  

z-i(M- 1) 

where3 ( i ,  M )  = 1, then 

EE = Z if and only if & = 1. (A.2) 

Lemma A.2: Consider the structure in Fig. 18. If ( i ,  
M )  = 1 ,  then this is a perfect reconstruction system. 

With i = 2 and M is odd, the above two lemmas can be 

applied to Fig. 5 to conclude two features. 

1) If E ' ( z Z M )  is lossless and R orthogonal, then 

RI'(z*) E ' ( z Z M )  = G ( z M )  is lossless, hence, the com- 
plete structure in Fig. 6 has perfect reconstruction prop- 

erty by Lemma A.2. 
2) Imposing losslessness on E ' ( z )  is equivalent to 

imposing losslessness on E ( z ) .  
Proof (Lemma A. 1): First consider the M X M DFT 

matrix. This is unitary because WtW = M I ,  Le., 

0, if 1 # 1 ' ;  

i f1  = 1' 

M -  1 

k = O  = W-"kW" = M, 

'Here. ( i ,  M )  denotes the greatest common divisor of i and M. 
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TABLE I 
COMPARISON OF THE NUMBER OF MULTIPLICATIONS PER UNIT TIME I N  THE ANALYSIS BANK FOR VARIOUS FOUR-CHANNEL QMF BANK IMPLEMENTATIONS. 
HERE “UNIT TIME” IS THE SAMPLING PERIOD CORRESPONDING TO THE INPUT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn )  I N  FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. THE NORMALIZED TWO-CHANNEL LATTICE IS ASSUMED TO 

BE IMPLEMENTED WITH THREE MULTIPLICATIONS PER SECTION 

Tree-Structure Based Design Nontree Lattice-Based Design 

Direct Form Lattice zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I81 New Lattice 

Regular Galand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 171 Denorm Norm Direct Form Norm Denorm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
No + Nl : ( N o  + Nl) ; ( N o  + Ni) ! ( N o  + NI) s ’,s &s  General Expression 

for MPU 
Number of MPU with 

46 35 23 35 60 23 19 No = 30 
N ! =  16 

S = 60 

59 59 59 59 59 59 59 
Order of H k ( z )  = 

Group Delay 

No = length of the analysis filters in stage 1 (tree structure). 
?(, = length of the analysis filters in stage 2 (tree structure). 
S = length of analysis filters in the new lattice. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

z l  ;(”) 

Fig. 18. Pertaining to Appendix A. 

where 0 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 1’ I M - 1. Suppose we replace W with 
Ws where (s, M )  = 1, then 

M -  1 M -  1 
w-/’k”w/k” = C wks(/-1‘) 

k = O  k = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0, 

M, otherwise. 

Since ( 1  - 1’1 < M, we see that s ( l  - 1’) is a multiple 
of M only if s contains a factor of M. This cannot happen 
if (s, M) = 1 .  Hence, 

if s ( l  - 1’) z multiple of M, 

(A.3 1 
= (  

0, if 1 # 1’; 

M ,  1 = 1’. 
(A.4)  

M -  1 
C w k S ( 1 - l ’ )  = 

k = O  

The modified DFT matrix, denoted W‘”, is therefore also 
unitary. Now (A. l )  implies 

/ 1  0 \ / 1  

for any k. This implies 

E ( z M )  A(z) W = G ( z M )  A(z’) W ( i )  (A.5) 

where A(z)  = diag [ z - ~ ] .  Since A(z) ,  W ,  A ( z i ) ,  and 
W ( i )  are lossless, we conclude that (A.2) is true as long 
as ( i ,  M) = 1 .  

Proof (Lemma A. 2) : 

R(z) = - 1 M - l  C M - l  C Fk(z)Hk(zW‘)X(zW’). (A.6) 

qz) = - 1 M - l  c M - ’  c Z- (M- l - k ) i ( zW/ ) -k ’X (zW/ )  

M k = O  / = O  

In Fig. 18, Hk(z) = zPki and ~ ~ ( z )  = z - ( ~ - ’ - ~ ) ’  7 so 
(A.6) becomes 

M k = O  / = 0  

~ M - 1  M -  1 
1 C x (zw/ )  C Z - ( M - l - k ) i  -kiW-k/i z - _  - 

k = O  M I = O  

~ M - 1  M -  I 

Note that Cf=-: W-lk’ = 0 ,  unless li is a multiple of M. 
Since 0 I 1 I M - 1 and ( i ,  M) = 1, 1 has to be 0. 

Thus, (A.7) simplifies to 

1 
M X ( 4 .  R(z) = - x ( ~ ) ~ - ( M -  1)iM = z - ( M -  1 ) i  

The structure in Fig. 18 is, therefore, a perfect-recon- 
struction structure. We will now find the relation between 
the analysis and synthesis filters of Fig. 6. With G ( z M )  
b R r ( z M )  E ’ ( z ~ ~ ) ,  the synthesis filters Fk(z) in Fig. 6 
are given by 

[Fo(z)  Fdz) * * F M - d Z ) ]  

= [ Z - ( M - l ) i  Z - ( M - 2 ) i  . . . 2-’ 13 G ( z M ) z - s M  

( A 4  
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Thus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Hk(Z)* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-( sM + iM - i ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF , ( z )  = z 

Fig. 19. Pertaining to Appendix B. 

64.9) 

If the analysis banks of Fig. 6 and Fig. 2 are related as in 

(A.l) ,  are the synthesis banks of Fig. 6 and Fig. 2 iden- 

tical? From (A. l ) ,  we have 

[ l  z * - Z ( M - l ) ]  E(Z") 

= [ 1  z i  . . . p -  1 ' 1  

which implies 

Z ( M - l ) [ Z - ( M - I )  . . . z-l 11 E(z")  

- - z i ( M - l ) [ z - i ( M - l )  . . . z-' 11 e ( z " ) .  (A.lO) 

Hence, the synthesis banks in Fig. 6 and Fig. 2 are iden- 

tical, except for a possible overall delay. 

APPENDIX B 

Fig. 19 shows the terminal blocks of the analysis bank 

for odd M where M = 2L + 1 ,  and the number of con- 

necting lines with delays z - ~  are M I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI M. We will derive 

the necessary and sufficient conditions for R so that Hk ( z )  
satisfies the pairwise symmetry property (1 1). Let 

Thus, the pairwise symmetry property on H k ( z )  yields 

P,h2(z)  = hl( - z )  ( A . l l )  

where P1 is defined as in (20). Let R be partitioned into 

(A.  12) 

Aq1(z2)  + z-*Bq2(z2) 

Eq1(z2)  + z-MFq2(z2) 

Our aim is to find a structural form for R such that, for 
any set of polynomials zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq l ( z )  and q 2 ( z ) ,  the vectors h ' ( z )  
and h 2 ( z )  are related by (A.11). By the pairwise sym- 

metry property, H L ( z )  = HL( - z )  = function ofz2. Since 

M is odd, it is clear from (A. 13) that D = 0. Substituting 
(A. 13) into (A. 11) and simplifying, we have 

( A  - PlE)q1 (z2 )  = z - ~ ( P I F  + B )  q2 (z2 ) .  (A.14) 

Since M is odd, the RHS of (A.14) has only odd powers 

of z - ' ,  whereas the LHS has only even powers. With ar- 

bitrary q l ( z )  and q 2 ( z ) ,  this is possible if and only if A 
- P I E  = 0, and P I F  + B = 0. Thus, E = PT'A = PIA  
and F = -P; 'B = - P I @  as in (19). 

APPENDIX C 
Let 

A C  
Krn+l= ( B  D) 

where A ,  B ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, and D have dimension L x L. We will 
derive the necessary and sufficient condition on K,,, + such 

that (35) holds if (34) holds. In terms o f h i ( z )  and h i ( z ) ,  
(34) and (35) are equivalent to 

Ph2 ( ) Z-((m+')M-l)hl ,,,( - z - ' ) ,  (A.15) 

Plh;+ l (z)  = z -  hrn+1(-Z-'), (A.16) 

~ r n Z  

( ( m + 2 ) M - l )  1 

where A is L X ( M  - Ml), B is L X M I ,  C is 1 x ( M  

- M l ) , D i s l  X M l , E i s L  X ( M - M 1 ) , a n d F i s L  x 
where P1 is as in (20). We would like to find the structural 

formofKm+lsuchthat(A.16)holdsforanysetofh~(z) 
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh i ( z )  satisfying (A. 15). From Fig. 10 

BhA(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz-MDhi(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA). (A.17) 

AhA(z)  + ~-~Chi(z)  

Substituting (A. 15) into (A. 17), we have 

P’h i+ l (Z)  = -P1BP,hi( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-z- ’)  
. z - ( ( m + l ) M - l )  

+ P,Dhi(z)~-~. (A.18) 

z - ( ( m + 2 ) M -  1)hl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm + l (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- z - ’ )  = AP1h; (z )YM 

+ c h i (  - z - l ) z - ( ( m + l ) M - l )  

(A. 19) 

If (A. 16) has to hold, then the right-hand sides of (A. 18) 
and (A.19) should be the same, so that 

(P IBPl  + C ) h i (  -z- l )z-((m+l)M-l)  

= z - ~ ( P ~ D  - API) h i ( 2 ) .  (A.20) 

For arbitrary causal FIR h i ( z ) ,  the function 
h i (  - z - l  l z - ( ( m +  1)M-1) is also causal and FIR, and in 
general has the form ho + z-’h, + * * - . Since the RHS 

of (A.20) has power of z-’ starting from z - ~ ,  (A.20) holds 
for arbitrary h i ( z )  if and only if PIBPl  + C = 0, which 
in turn implies API - P I D  = 0. Simplying these rela- 

tions, we obtain B = -P ICPl  and D = PIAP1 which re- 
sults in the form (36) for Km + ’. 

APPENDIX D 

Consider the even M case. Let h L 1 ( z )  = 

where L = M/2. Using the notations in Appendix B with 
KO = ( 2  E), we will derive the necessary and sufficient 
conditions on KO such that 

( 1  z-’ . . . z-(L-l))Tandh?l = ( z - L  . . . z - ( M -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ) )  T 

satisfies the pairwise symmetry property, i.e., P&( z )  = 
z - ( ~ -  -z-’). Accordingly, (A.21) is simplified to 

P,BhL,(z) + P1DhQz) 

= L - ( ~ - ’ ) { A ~ L ~ (  - z - ’ )  + Ch?1( -I-’)}. (A.22) 

However, hL1( -z- ’ )z- “ - ’ ’  = P2hT1(2) ,  and 
h?]( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-z-’)z-(~-’) = P 3 h Y l ( ~ )  where P2 and P3 are as 
in (39). Hence, (A.22) simplifies to 

(PIB - CP,)h ’_ l (z )  = z - ~ ( A P ~  - PlD)h ! l ( z ) .  
(A.23) 

The matrices ( P I B  - CP,)  and ( A P ,  - P I D )  are L X L. 
The left-hand side has the powers z - ~ ,  0 I k I L - 1 
and the right-hand side contains z - ~ ,  L 5 k I M - 1. It 
can therefore be easily verified that we must have P I B  - 
CP3 = 0, AP, - P I D  = 0. This can be rewritten, yielding 
B = P1CP3, D = PlAP2,  and thus, KO in (38) is the only 
form which forces HO,k ( z  ) to have the pairwise symmetry 
property. 
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