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Abstract This paper considers the maximin placement of a convex polygon P inside a polygon Q, and 

introduces several new static and dynamic Voronoi diagrams to solve the problem. It is shown that P can be 

placed inside Q,  using translation and rotation, so that the minimum Euclidean distance between any point 

on P and any point on Q is maximized in O(m4nAdmn)  log mn) time, where m and n are the numbers of 

edges of P and Q, respectively, and k 6 ( N )  is the maximum length of Davenport-Schinzel sequences on N 
alphabets of order 16. If only translation is allowed, the problem can be solved in 0 ( m n  log mn) time. The 

problem of placing multiple translates of P inside Q in a maximin manner is also considered. 

1. Introduction 
The polygon containment problem is to place a given polygon P inside another given polygon 
Q. This problem is closely related to the motion planning problem, and has been investigated 

extensively (e.g., Avnaim, Boissonnat [6], Chazelle [7], Chew, Kedem [8], Fortune [g], Leven, 

Sharir [14]). 
In this paper, we consider several maximin polygon containment problems, which are 

stated very naturally as follows. The most fundamental maximin problem is to  place a con- 
vex polygon P inside another polygon Q so that the minimum Euclidean distance between 
any point of P and any point of Q is maximized. Further, we consider the problem of placing 

multiple translates of P horizontally at regular intervals inside Q in a similar maximin way. 
Intuitively, the polygon P or its copies are placed inside Q so that they are as far from the 

boundary of Q as possible. A similar observation would hold for the problem of locating the 

largest similar copy of P in Q, which has been considered by Fortune [g], Leven and Sharir 
[14], Chew and Kedem [8], but they use the convex distance function which might not be 

good when P is thin. Although measuring the distance between P and Q by the Euclidean 

distance is very natural, there seems to  have been done no research using the Euclidean 
distance. 

We present efficient algorithms for these maximin location problems by introducing 

a new Voronoi diagram and its dynamic version for moving objects, and analyzing their 

combinatorial complexity. In analyzing the complexity, the theory of Davenport-Schinzel 
sequences is utilized (e.g., [l], [2], [5], [15]). We also investigate the combinatorial complexity 

of fundamental Voronoi diagrams for k rigidly moving sets of n points, which is really a 
canonical case and whose result is of interest by itself, and then apply the techniques used 

in this analysis to the new diagram. 
The above problems arise in placing regional names on a map nicely, which is a major step 

toward realizing a good user interface, called the semantic overview function, in geographical 

databases (Aonuma, Imai, Kambayashi [4]). Here, the name may be represented by a 
rectangle and the region by a polygon, and we may place the rectangle inside the polygon in 

© 1999 The Operations Research Society of Japan



46 K. Imai, H. Imai & T. Tokuyama 

the above-mentioned maximin manner. When the names, say, of schools have been placed 
at their sites in a region, the characters of the regional name may be represented as the 

congruent rectangle, and they may be placed horizontally at regular intervals in the region 

without making any intersections with the already placed characters. This corresponds to 
placing translates of a rectangle at regular intervals inside a polygonal region with holes. See 

Figure 1. The Voronoi diagrams introduced in this paper may also be used in the collision 

avoidance problem in robotics, especially to find a high-clearance path. 

We now describe several maximin placement problems and present our results for each 

problem, comparing them with existing results. We are given a convex polygon P of m 
vertices and a polygon (or a polygonal region) Q of n vertices. 

(PI) Locate the polygon P ,  using translation only, inside the polygonal region Q so that the 
minimum Euclidean distance between any point on P and any point on Q is maximized. 

Problem (PI) is related to locating the largest similar copy of P inside Q by translation 

only, which can be done in Q(mn1ogmn) time by using the Voronoi diagram of Q for the 
convex distance function concerning P [g]. In this paper, we define a new Voronoi diagram 

related to (PI),  and show that this diagram can be constructed in 0 ( m n  logmn) time by 

combining the Voronoi-diagram algorithm [g] and 0 ( m n  log mn)-time algorithms producing 
Euclidean Voronoi diagrams for 0(mn) line segments (e.g., [IO]). Given this new diagram, 

(PI) is solvable in linear time, and thus can be solved in 0 ( m n  log mn) total time. 

(P2) Locate the polygon P inside the polygonal region Q so that the minimum Euclidean 
ance between any point on P and any point on Q is maximized. In this problem, P 
be rotated and translated. 

Kedem [8] study the related problem of finding the largest similar copy of 

ing translation and rotation. However, if the convex polygon P is thin, it is 
to place P as in (P2). By considering the dynamic version of the Voronoi 

), we show that problem (P2) can be solved in 0(m4nA16(mn) log mn) time, 
is the maximum length of Davenport-Schinzel sequences of order 16 (see 

[2], 151, [15]). The currently best bound for \u{N) is 0 ( ~ 2 * ( ~ ( ~ 1 ^ )  [2], where a ( N )  is the 

functional inverse of Ackermann's function. \i6(N) is almost linear in N. 

(P3) Locate k copies of P inside Q so that the copies are horizontal translates of each other, 
copy being the horizontal translate of the (i - l ) - th  copy by h, and the minimum 

ween any point on any copy of P and any point of Q is maximized, where h 

le greater than or equal to a given constant h0 > 0 so that the copies of P at 
rval h between the corresponding pair of reference points do not intersect one 

For a fixed h, this problem can be solved by computing the intersection of k copies of the 

polygonal region at regular intervals of h, and then considering (PI) for this intersection. 

blem with h as a variable, we consider a dynamic Voronoi diagram for k moving 
horizontally at regular intervals of h, with h ranging from h. to m, and analyze 

orial complexity of this diagram. We show that, for k = 2 and k > 3, problem 
olved in O('lY^n2 log mn) and O(k6m3n3 log kmn) time, respectively. 

2. Maximin Placement of P inside Q by Translation 
In this section, we explain our solution to problem (PI) of the maximin location of the 

convex polygon P of m vertices inside the polygonal region Q of n vertices, using translation 
only. This kind of maximin placement problem is often solved by using Voronoi diagrams 
for appropriately defined distance functions. In fact, if P is a point, this problem can 

be easily solved by first constructing in Q the Voronoi diagram for the edges of Q based 
on the Euclidean distance, and then finding a Voronoi point at which the distance to the 
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nearest edge is maximum. Our approach introduces a new Voronoi diagram suitable for this 

problem, which will also be used in solving (P2) and (P3). 

We suppose the convex polygon P in the plane is given together with a reference point 
p inside P .  For a point U, we denote by P(u) the polygon obtained by translating P so that 

the reference point p coincides with U. 

The feasible region of P inside Q [g], [l41 is defined to be a set of points U inside Q 
such that P(u)  is contained in Q. The feasible region may consist of several connected 

components, and each component is a polygon. The boundary polygon(s) of the feasible 

region is denoted by F(P,Q).  It is shown by Fortune [g], Leven, Sharir [l41 that the 

combinatorial complexity (the number of edges and vertices in this case) of the feasible 

region is O ( m ) ,  and that it can be computed in O(mn log mn) time by constructing the 

Voronoi diagram of Q with respect to the convex distance function concerning P. 
We now define a new Voronoi diagram variant. In considering the Voronoi diagram, a 

line segment is considered to consist of two endpoints and an open line segment. Vertices and 

(open) edges of a polygon are called faces of the polygon, and so the Voronoi diagram is for 
faces of P and Q. Faces of P and Q are especially called P-faces and Q-faces, respectively. 

(a) Problem (PI) (b) problem (P2) (c) problem (P3) 

Figure 1. Placing a regional name on a map 

Let r be a P-face and s a Q-face. For a point U, define db(u; r, S) to be the distance 

between P-face r of P(u) and Q-face S. Here, the distance between two points is just the 
ordinary Euclidean distance, and the distance between a point v and an open line segment 

W is defined to be the length of the perpendicular line segment from the point v to the line 
containing W if the perpendicular line intersect W, and +oo otherwise. The distance between 

two non-intersecting open line segments is generally considered to be +00, but, when they 

are parallel and there exists a perpendicular line segment connecting two points on the open 
line segments, the distance is defined to be the length of the perpendicular line segment. 

Define the boundary distance db(P(u), Q) by 

Using this notation, Problem (PI) may be restated as follows: 

The Voronoi region V(r, S) of P-face r and Q-face S is defined as 

V(r, S) = { U in F(P, Q) \ db(u; r, S) < ddu; r', S'), 
rl(# r)  : VP-face, S'(# S) : VQ-face } 
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The planar skeleton V formed by the boundaries of V(r, S) (r: P-face, S: Q-face) is called 
the P-Euclidean Voronoi diagram. The common boundary of two Voronoi regions V(r, S) 

and V(rl, S') is called a Voronoi edge. We call these two pairs (r, S) and (r', S') of a P-face 
and a Q-face the supporting pairs of the Voronoi edge, and say that the Voronoi edge is 

supported by (r, S) and (r', S'). The common boundary of three Voronoi regions is called a 

Voronoi vertex, as usual. This diagram plays an important role in the following sections. 
In defining the Voronoi region above, if there is a parallel pair of an edge r of P and an 

edge s of Q such that there is a perpendicular line segment connecting two points on the 

two edges, the distance between two open edges r and s is equivalent to the distance from 

an endpoint of one of r and S to the other edge (suppose the endpoint is an endpoint r' of 

r and the other edge is S). Then, V(r, S) and V(rl, S) are both empty, which is not good. 

To avoid this, we regard the distance between r and s is smaller than the distance from the 

endpoint r' of edge r to edge S. When there is an edge of P and two concave vertices of 
such that the line connecting two concave vertices is parallel to the edge of P, we break 

a tie by regarding a vertex with lexicographically smaller coordinate is closer to the edge. 

We call these two special cases parallel degenerate cases, and handle them in such a special 

way. 
The diagram is a subdivision of the interior of the feasible region F(P, Q). It has the 

following basic properties. 

emma 2.1. Considering four cases where r and s are a vertexledge of P and Q, 

respectively, we have the following. 
(a) V(r, S) = 0 for an edge r of P and an edge s of Q unless r and s form a parallel 

degenerate case. 
(b) For an edge S of Q, there is at most one P-face r with V(r, S )  # 0, and then r is a vertex 

of P unless r and s form a parallel degenerate case. 
(c) For a convex vertex s of Q, V(r, S) = 0 for any P-face r .  

(d) For a concave vertex s of Q, there may be multiple P-faces r with V(r, S )  # 0. 0 

Lemma 2.2. There are 0(m) Voronoi regions, edges and vertices. 

r a point U on a boundary edge W of the feasible region F(P, Q), P(u)  has a contact 
with the boundary of Q. Such contacts can be classified into four types as follows. 

(a) a contact between a vertex of P(u)  and a vertex of Q: U is then a vertex of F(P, Q). 

(b) a contact between a vertex of P and an edge of Q: W is then parallel to the edge of Q. 
(c) a contact between an edge of P and a concave vertex of Q: W is then parallel to the 

edge of P. 
(d) a contact between an edge in P and an edge in Q: this is a parallel degenerate case, and 

should be handled differently as mentioned above. 
We now show a main lemma for the P-Euclidean diagram. Define d(F, U) to be the 

minimum Euclidean distance between any point on the boundary of F = F(P, Q) and U. 

mma 2.3. For a point U inside the feasible region, db (P(u), Q) = d(F, U). 
roof: We first show db(F(u), Q) < d(F, U). Suppose that d(F, U) is attained by U and 

e boundary of F(P ,  Q). Let v' be the point of P(u') in contact with Q, and 
t of P(u)  corresponding to v' (see Figure 2). 

S a translate of P(u),  clearly di(v', v) = d2 (U', U), where dz denotes the 
e between two points. Then 

To show that db(P(u), Q) 2 d(F,u), we let U' and U be the points of Q and P(u)  

determining db (P(u), Q), respectively. Let P(u') be the translate of P(u)  in contact with Q 
at v' (again, see Figure 2). The point U' is thus either on the boundary of F, or outside F .  

Copyright © by ORSJ. Unauthorized reproduction of this article is prohibited.



Maximin Location of  Objects in a Polygon 

But, in either case, 

and hence db (PM, Q) = d(F, U). U 
' 

Lemma 2.3 implies that the Euclidean Voronoi diagram for the line segments of F(P, Q) 

and the P-Euclidean diagram are identical over the feasible region F(P, Q). The Euclidean 

Voronoi diagram for O(mn) lines segments can be constructed in O(mn\og m) time (e.g., 

see Fortune [10]). Therefore, we have the following lemma. 

Lemma 2.4. The P-Euclidean diagram can be constructed in Ofmn log mn) time. U 

Problem (PI) is now reduced to finding a point U inside the feasible region F(P, Q) 

such that the minimum distance between U and any point on F(P, Q) is maximized. This 

is equivalent to finding the largest enclosed circle inside F(P, Q). Given the P-Euclidean 
diagram, the largest enclosed circle in it can be found in linear time. Thus, we have the 

following theorem: 

Theorem 2.1. Problem (PI) can be solved in O(mn log mn) time by using the P- 
Euclidean diagram. 

Figure 2. Proof of Lemma 2.3 

3. Maximin Placement of P inside Q by Translation and Rotation 
As shown in the previous section, without rotation, the P-Euclidean diagram directly gives 
a solution to problem (PI). However, when the orientation of P changes, the feasible region 
F(P,  Q) itself changes, and the P-Euclidean diagram also changes dynamically. In order 

to solve problem (P2) by using a Voronoi diagram, we have to compute the dynamic P- 
Euclidean diagram. This is similar to the situation encountered in the problem of finding 
the largest similar copy of P inside Q, considered by Chew and Kedem 181. We investigate 

the combinatorial complexity of the dynamic P-Euclidean diagram based on their approach. 
However, the P-Euclidean diagram is much more complicated than the diagram defined by 
the convex distance function considered in [g], and several new ideas are necessary to get a 
result for our problem. 

To represent the orientation of P, for an angle 0 (0 <: 0 <, 2 ~ ) ,  we consider the polygon 

P(@) obtained by rotating P by 0 around the reference point p. For a point U in the feasible 

region F (P(0), Q), the polygon obtained by translating P(0) so that p coincides with U is 

denoted by P(@, U). 
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We will first investigate some properties of the static P-Euclidean diagram which are 
useful in analyzing the dynamic diagram, and then consider the combinat orial complexity 

of the dynamic diagram in two steps. 

3.1. Useful properties of the P-Euclidean diagram 

In this subsection, we classify Voronoi edges of the P-Euclidean diagram into two types. 

For a Voronoi edge e of the P-Euclidean diagram, let (r, S) and (r', S') be the two sup- 

porting pairs of the edge, where r, r' are P-faces and s, s' are Q-faces. These pairs are 
distinct, that is, (r, S) # (r', S'), but either r = r' or S = S' may hold. If r = r', these two 

are a vertex of P, and, if s = S', these two are a concave vertex of Q. We call the Voronoi 
edge proper if r = r' or s = S' holds. Also, in this case, the pair (S, S') of Q-faces is called 

a proper Q-pair. For a concave vertex s of Q, (S, S) is a proper Q-pair. A Voronoi vertex 

incident to a proper Voronoi edge is defined to be proper. Voronoi edges and vertices which 

are not proper are defined to be improper. 

Let W be a Voronoi vertex incident to e. There is another supporting pair (r", S") besides 

e two pairs a t  the Voronoi vertex. 

n improper Voronoi vertex. Regard e as a directed edge 
line containing e and having the same direction. Suppose 

sides of the directed line, respectively. Then, r" is distinct 

is contained in the list of P-faces from r to r' in clockwise order (in the 

ges of P appear alternatively). 
is improper, r" is distinct from r and r'. Hence, r" is either a member 

o r' in clockwise order or a member of P-faces from r' to r in clockwise 

er case cannot occur, which may be naturally seen from the fact that 
ical with the ordinary Euclidean Voronoi diagram for the 

. Suppose all the improper Voronoi edges are cut at all the proper Voronoi 

proper Voronoi edges incident to the same proper Voronoi vertex are made 

nt to each other), and then are decomposed into the connected components. 
er of improper Voronoi edges and vertices in each connected component is 

consider a component containing an improper Voronoi vertex U. In the 

, the diagram is a tree, and we transform this tree to a directed tree rooted 
irected Voronoi edge whose supporting pairs of P-faces are r and r' such 
t to this directed edge, r is in the left side and r' is in the right side, we 
P-faces from r to r' in clockwise consecutive order. In the list, vertices and 

alternatively, and we consider that r and r' themselves are not contained 
in the list. 

We walk on the tree from U by a depth first search. In this walk, the search backtracks 

per Voronoi vertex. Then the number of vertices visited during this walk 
the number of improper Voronoi vertices in the connected component 

will show that this number is 0(m) .  

-face each time the search proceeds successfully. Initially only P-faces 

ronoi vertex v are marked. Let U' be the current Voronoi vertex, and 

adjacent Voronoi vertex v" to U' is next visited along a Voronoi edge 

pairs (r, S) and (r', S').  If U" is a vertex of the feasible region or a proper 
Voronoi vertex, the searc 

Otherwise, as in Lem supporting pair (r", S") appears at U" such that r" is 
list of P-faces associated with the directed Voronoi 

h first search proceeds. Since the search backtracks 
oi vertex, and from Lemma 3.1, only P-faces in the list associated with 
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the directed Voronoi edge are marked once while descendants of U" are visited, and these 

marked vertices will not be marked after the search backtracks over U". 
Thus each P-face is marked only once during the whole search and we mark a P-face 

each time the search proceeds forward. Therefore, the search proceeds successfully at most 
2m times (2m is the total number of P-faces), and it backtracks at most the same number 
of times. Therefore, this depth first search visits at most 4rn vertices. D 

This lemma implies that, if the number of topological changes of proper Voronoi vertices 

may be estimated, the total number of topological changes may be evaluated. We will first 

evaluate topological changes related to proper Voronoi edges, and then prove this observation 

later. 

3.2. Topological changes of proper Voronoi vertices 
We now consider the dynamic P(^)-~uclidean diagram when 0 moves from 0 to 27r. 

First, we consider the number of proper Q-pairs, where a trivial bound is 0(n2) .  

Lemma 3.3. The number of proper Q-pairs is 0 (n) .  
Proof: The number of proper Q-pairs which are pairs of the same concave vertex of Q 

is trivially 0(n) .  Let e be the Voronoi edge corresponding to a proper Q-pair of distinct 

Q-faces s and S'. This edge is supported by (r, S) and (r, S') for a vertex r of P .  A circle 

centered at r of PIS, U) with radius db(P(9, U), Q) for a point U on e is contained in Q 
and touches Q at s and S'. This implies that, in the Euclidean Voronoi diagram for n line 

segments of Q, there is a Voronoi edge equidistant from s and S'. Since there are 0 ( n )  

Voronoi edges in the Euclidean Voronoi diagram, the lemma follows. 0 

Now, fix a proper Q-pair (S, S') of Q-faces. If s # S', fix a vertex r = r' of P; otherwise, 
fix a pair of a vertex r and its incident edge r' of P .  For this, there may be a proper Voronoi 

edge supported by two supporting pairs (r, S) and (r', S') at some 6. To evaluate the number 
of topological changes of proper Voronoi vertices incident to this proper Voronoi edge, we 
classify proper Voronoi edges into four types: 
(el) proper edges supported by two edges S, S' of Q (r(= r') is a vertex of P) ;  
e 2 )  proper edges with a concave vertex s = S' of Q (r is a vertex of P and r' is its incident 

edge), or proper edges supported by a concave vertex s and its incident edge S' of Q 

( r  (= r') is a vertex of P); 
e 3 )  proper edges supported by a concave vertex s and an edge S' of Q which are not incident 

to each other (r(= r') is a vertex of P); 
e 4 )  proper edges supported by two concave vertices S, S' of Q (r(= r') is a vertex of P). 

Let e be a proper edge of type (el) (see Figure 3). For a pair c of a P-face and a Q-face, 
define a function dc(6) to be the minimum 6 such that, for some point U which is on the 

line containing e and in ~(P(ff), Q), the boundary distance db(P(9, U), Q) = 6 is attained 

by (r,  S), (r, S') and the pair c. If there is no such a point U, dc(0) is set to +oo. In Figure 3, 

the pair c are an edge of P(9, U) and a concave vertex of Q. Let C be a set of all pairs c of 
a P-face and a Q-face, and define a function dc(0) by 

dc (9) = min dc (9). 
cec 

Then, if dc for the pair c attains the minimum in dc, this pair, together with (r, S), (r, S'), 
determines a proper Voronoi vertex. Minima change as 6 varies. dc can be computed from 

the lower envelope of dc(0) (c G C), for which results on Davenport-Schinzel sequences can 
be used. 

We can define dc(6) for edges of other types similarly. General functional forms of dC(0) 
are given as follows, where there are four cases for types of contact pairs c but the case for 
edge-edge contact pairs is skipped (all Greek letters with subscripts are constants). 

For a Voronoi edge e of type (el), dc(6) may be expressed as follows. 
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Figure 3. A proper Voronoi edge e of type 

(el) supported by (r,  S) and (r, S') for a ver- 
tex r of P and edges S, s7 of Q 

(a) c is a pair of a vertex of P and an edge of Q: 

(b) c is a pair of an edge of P and a vertex of Q: 

(c) c is a pair of a vertex of P and a vertex of Q: 

For a proper edge of type (e2), the same expressions are obtained for the cases (a) and 
(b), and the following simplified expression is obtained for the case (c). 

(c) c is a pair of a vertex of P and a vertex of Q: 

Next, we consider a proper Voronoi edge of type (e3). Here, we consider a variable X 

defined by 

( 0 )  = X' + 1, X 2 0 

and give expressions for X. 

(a) c is a pair of a vertex of P and an edge of Q: 

(b) c is a pair of an edge of P and a vertex of Q: 

(c) c is a pair of a vertex of P and a vertex of Q: 
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Finally, we consider a proper Voronoi edge of type (e4). In this case we consider a 

variable X defined by 

dc(ff) = Vx2, X > 0 

and give expressions for X. 

(a) c is a pair of a vertex of P and an edge of Q: 

(b) c is a pair of an edge of P and a vertex of Q: 

(c) c is a pair of a vertex of P and a vertex of Q: 

Lemma 3.4. For a proper edge of types (el), (e2), (e3) and (e4), any pair of functions 

dc (c ? C) intersect at most 4, 4, 8 and 16 times, respectively. Hence, the combinatorial 

complexity of dc is 0(Ai6(mn)). 

Proof: The number of intersections can be calculated directly. Then the lemma follows 

from the theory of Davenport-Schinzel sequences. 

Lemma 3.5. The number of topological changes of proper Voronoi vertices is 0 ( m n  

A16(mn)) in total. 
Proof: From Lemma 3.3, there are 0 ( n )  proper Q-pairs. With each proper Q-pair, we 

may pair each vertex of P, or for each proper Q-pair of the same concave vertex we may 

associate a pair of a vertex and its incident edge of P .  Since the number of vertices of P is 

m, we may consider O(mn) pairs, and then applying Lemma 3.4 we have this lemma. 

3.3. Topological changes of improper Voronoi vertices 
Now, we have to estimate the number of topological changes of improper Voronoi vertices. 

For this purpose, we may use Lemma 3.2, which states that every connected component of 

all the improper Voronoi edges cut at proper Voronoi vertices consists of 0 ( m )  improper 

Voronoi vertices and edges. In each component, the number of supporting pairs is 0 ( m )  
since there are 0 (m)  Voronoi edges. We will consider how the set of supporting pairs in 

each of the connected components changes and how such changes affect improper Voronoi 
vertices topologically. 

For an improper Voronoi edge, any supporting pair is a pair of a vertex of P and an edge 
of Q, or that of an edge of P and a concave vertex of Q except the parallel degenerate case. 

The set of supporting pairs in the connected component may be updated if 

(a) there is a topological change of a proper Voronoi vertex incident to the component, or 

(b) there occurs a parallel degenerate case, or 

(c) the connected component of improper edges is divided into two, or two connected com- 

ponents of improper edges are merged into one according as the connected component 
of the feasible region is divided into two, or two connected components of the feasible 

region are merged into one. 
In the cases (a) and (b), the set of supporting pairs is updated by deleting a few pairs and/or 
inserting a few new pairs (in ordinary cases a pair is deleted and a new pair is inserted). In 

the case (c), the set of supporting pairs is greatly changed. 
About the case (a), we have evaluated the number of such changes in Lemma 3.5. For 

the case (b), recall that the parallel degenerate cases are such that 
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(bl) there are a parallel pair of an edge r of P and an edge S of Q, or 
(b2) there are an edge of P and two concave vertices of Q such that the line connecting the 

two concave vertices is parallel to the edge of P. 
The case (bl)  occurs O(mn) times, and the case (b2) occurs 0(mn2) times, and we thus 

ave the following. 

.6. The number of times a parallel degenerate case occurs is O(mn2). 0 

For the case (c), we have to evaluate the number of times the connected components 

e feasible region change (as mentioned in section 2, the feasible region may consist 
era1 connected components and these components dynamically change as 0 varies). 

Considering when the connected components of the feasible region change, we have the 

Lemma 3.7. When two connected components of the feasible region are merged into 

one, or a connected component is divided into two at 0 = I f ,  at the junction point U, P(0', U) 

and touches the boundary of Q at an antipodal pair of P-faces. 

hen a convex polygon is supported at two parts which are not antipodal to 

the polygon may be moved in at most one direction along any line by translation. 
P(@', U) can move in both directions along some line, and so the lemma follows. 

D 

Lemma 3.8. The number of changes of the connected components of the feasible region 

is 0 (mn2). 
Proof: From Lemma 3.7, there may be a change for an antipodal pair of P-faces and a 

-faces. Since the number of antipodal pairs of P-faces is 0 ( m )  and the number of 
pairs of Q-faces is 0 (n2) ,  the lemma follows. 0 

hus we have evaluated how many times the set of supporting elements in each connected 

component is updated in total. 
There can be topological changes in the component even if the set of supporting pairs is 

not updated. A tuple of four supporting pairs in the set can determine a degenerate Voronoi 

degree four, and so will be called a candidate tuple. For each candidate tuple of four 
supporting pairs, there are at most a constant number of topological changes determined by 

the tuple in total. For a set of 0 ( m )  supporting pairs, there are 0 ( l p ) )  = 0(m4) tuples. 

Let us evaluate the number of distinct candidate tuples which appears in some set of 
supporting pairs in a component in the whole dynamic diagram. 

Initially, there are 0 (mn)  connected components, and we may count O(mn m4) candi- 
date tuples. 

or the cases (a) and (b), when the set of supporting pairs is updated, only a few 
supporting pairs are deleted and a few possibly new supporting pairs are inserted to the set. 

The other 0{m) supporting pairs remain unchanged. Since there are a constant number of 
new supporting pairs, the number of new candidate tuples of four supporting pairs in the 

S just 0(m3),  not @(m4). Hence, we may just count 0(m3) candidate tuples 
e case (a) or (b) occurs. 
of the cases of (c), since the set of supporting pairs is updated much, we 

count 0 (m4)  candidate tuples for a set of 0 (m)  supporting pairs obtained by 
ding the connected component (S) B 

total number of distinct candidate tuples in the whole dynamic diagram is 

O(mn m4 + (mn\\Q{mn) + mn2)m3 + mn2 + m4) 

= 0(m4n^fmn)). 

As noted above, there may be a constant number of topological changes for each tuple when 

0 changes from 0 to 27r, we obtain the following. 
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Lemma 3.9. The number of topological changes of improper Voronoi vertices is 0 (m4n  

\w(mn))- 0 

3.4. Combinatorial complexity of the dynamic diagram 
Regarding the original plane as the (X, ?/)-plane, the dynamic diagram is a diagram in 

the three-dimensional (X, y, 0)-space. Combining Lemmas 3.5 and 3.9, the combinatorial 

complexity of this dynamic diagram is given as follows. 

Theorem 3.1. The combinatorial complexity of the P(@)-Euclidean diagram in the 
(X, y, 0)-space with 0 < 19 < 27r is O ( m 4 n w m n ) ) .  D 

Algorithmically, we may first maintain the feasible region dynamically. As 0 changes, 

the feasible region F(P(o), Q) of P(9) inside Q changes accordingly, and further a connected 
component of the feasible region may be divided into two connected components, and two 
disjoint connected components may be united to form a connected component. In computing 

the dynamic P-Euclidean diagram, we compute all the changes (especially, union of two 
connected components) of the feasible region in advance (cf. Lemma 3.8). 

We can then apply the plane (strictly, space) sweep method using a heap, after computing 

the changes of the feasible region, and have the following theorem. 

Theorem 3.2. The dynamic P(0)-Euclidean diagram in the (X, y, 0) space with 0 < 
0 < 27r can be constructed in 0(m4n\\Q(mn) logmn) time, and problem (P2) can be solved 

in 0(m4nA16 (mn) log mn) time. 
Proof: The time complexity follows from Theorem 3.1 and a fact that each operation 

for the heap requires 0 (log mn) time . 
The problem (P2) for fixed 0 (i.e., problem (PI)) can be solved by finding a Voronoi 

vertex in P(0)-~uclidean diagram for this 0 which is a center of the largest enclosed circle. 

Hence, for varying 0 in the plane (space) sweep method, we maintain for each Voronoi vertex 
its starting time OStart and, when it finishes at time Ofinish, we compute a time between 

OStart and @finish such that the maximum enclosed circle centered at the Voronoi vertex is 
maximized. Then, by keeping track of the maximum value among these maximums for all 
Voronoi vertices, the problem (P2) can be solved, which can be performed within the time 

bound for the construction of the dynamic Voronoi diagram. 

4. Problem (P3) 
Problem (P3) is originally stated in such a way that the k copies of P are located in Q at 

regular intervals. But, instead of considering how to place copies of P, for a fixed h, we may 
solve this problem by computing the intersection of k copies of the polygonal region Q at 

regular intervals of a fixed h, and then considering problem (PI) for the intersection. 

The intersection of k copies of Q is of size O(A2n2) in the worst case, and can be 
computed in time linear to this size. For this intersection it takes O(mk^n2 log mkn) time 
to solve problem (PI) (Theorem 2.1), and hence problem (P3) for a fixed h can be solved 
in this time. 

In ordinary cases, A and m are much smaller than n, and are regarded as constants. Con- 
sidering k and m as constants, the above time complexity is 0 ( n 2  log n). We can solve prob- 

lem (P3) for a fixed interval in 0(n2)  time by directly applying the plane-sweep paradigm 
where each of 0 ( n )  one-dimensional subproblems can be solved in O(n log n) time individu- 
ally, but each can be solved in 0(n)  time by solving them as a series of consecutive problems. 

However, this 0 (n2)-time algorithm is rather complicated and it has almost no connection 
for the discussion below, we omit its details. 

To solve the general problem (P3), where h is a variable, by this approach, we have 
to compute the dynamic P-Euclidean diagram for k horizontally moving copies of Q. Be- 
fore analyzing the combinatorial complexity of this dynamic diagram, we consider the most 
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canonical problem of this kind, that is, the problem of analyzing the combinatorial complex- 

ity of the Voronoi diagram for k rigidly moving sets of n points, which was first considered 

in Tokuyama [16]. The general problem is treated in [12], [13]. The following approach 
leads to a worse bound than the best known bound in [l11 for such point set case, but is 

applicable to more general cases like our problem. 

We consider the case of k > 4. There are k sets of n points in the (X, y)-plane at  time 

t = 0, and as time passes each set moves smoothly according to the specified functions. 

Consider the three-dimensional (X, y, ̂ )-space with t > 0. For each set, consider a spatial 

subdivision such that its intersection with the plane t = t' gives a Voronoi diagram at time 

t = t'. Since each set is rigidly moving, the diagram a t  the intersection is congruent with 
e initial diagram. 

Consider a subdivision obtained by overlaying these k spatial subdivisions. It is then 
easy to show the following. 

emma 4.1. The combinatorial complexity (the number of regions, faces, edges and 
vertices) of the overlaid subdivision is O(k3n3). D 

a region R in the overlaid subdivision, and consider the number of topological 

e region. This region is the intersection of k Voronoi regions, one from each 

i diagrams for k sets. Let Sp be a set of k points associated with these k 
Voronoi regions. Any topological change inside R is performed by four points in Sp, since 

to any point inside R for any of k sets of points is contained in SR. Then 
in section 3.3 can be applied, and we can show that the topological 

gions of the three-dimensional subdivision is 0(k6n3) in total. 
topological changes on faces of the subdivision. However, we have already 

mber of topological changes on faces of the subdivision is 0(n2k3 log* k}. 
he combinatorial complexity of the dynamic Voronoi diagram for k rigid 

S is W n 3 )  for k > 4. This bound is worse than the bound 0(n2k2A,(k)) 

his technique can be applied to the problem (P3) as follows. 
above, we will consider the dynamic 

enotes the translate of Q to the right 

ove technique, we consider k spatial subdivisions for the P-Euclidean 
i = 0,. . . , k - l), and overlay these k spatial subdivisions. The over- 

laid subdivision consists of O(k3N3) regions, edges and vertices similarly, where N = mn. 
Therefore, the number of topological changes inside regions of the overlaid subdivision is 

0(k6N3). The number of topological changes on faces of the overlaid subdivision is bounded 

the case of k = 2, the combinatorial complexity of the overlaid subdivision 

nd the combinatorial complexity of the whole dynamic Voronoi diagram is 

O(N1). 
In the case of of k = 3, however, unlike the point set case, the number of intersections 

edges when three polygonal regions Q, Q + h, Q + 2h move linearly as h increases 
. From this, it is seen that the number of topological changes of the whole dynamic 

diagram is O{N3) (in the point set case, this bound is 0 (N2)) .  
Thus, the combinatorial complexity of the whole dynamic Voronoi diagram for parameter 

h ranging from hn to +oo is O(N2) for k = 2 and O(k6N3) for k > 3. Algorithmically, again 

pace) sweep algorithm with a heap, we obtain the following. 

Problem (P3) can be solved in 0 (m2n2 log m) and 0 (k6m3n3 log kmn) 
time for k=2 and k > 3, respectively, using O(kmn) space. D 

In the above algorith , we consider k linearly moving polygons. The technique is appli- 
movements, and can be directly applied to the following problem. 
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(P4) Locate k translates of P inside Q so that the translates are at regular intervals h for 
a given h arranged along a line with slope tan0 so that the minimum distance between 

any point on any translate of P and any point of Q is maximized. Here, 0 is a variable, 
while h is constant. 

For this problem, we have the following. 

Theorem 4.2. Problem (P4) can be solved in 0(m2n2 log mn) and 0(k6m3n3 log kmn) 

time for k=2 and k > 3, respectively, using O(kmn) space. 

It is left open whether the technique in [l11 giving an quadratic bound for a constant 

number of rigid point sets can be applied to the above problems. 

5. Concluding Remarks 
In this paper we have introduced a new Voronoi diagram, called the P-Euclidean diagram, 

and its dynamic versions to solve the maximin placement of a convex polygon P inside 

a general polygon Q. This problem has much connection with the problem of placing a 
regional name on a map and that of finding a high-clearance path in the collision avoidance 
problem. We have also investigated the dynamic Voronoi diagram for k rigidly moving sets 

of points. Our bounds on the combinatorial complexity of the dynamic Voronoi diagrams 

improves trivial bounds much. Improving the bounds here or proving tight lower bounds 
for them would be an interesting problem. 
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