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MAXIMIZATION OF DISTANCES OF REGULAR
POLYGONS ON A CIRCLE

FiLip GULDAN

(Received September 22, 1977)

The intense development of transport and efforts to achieve maximal efficiency
raise various practical everyday problems; their generalization and formulation
determines new interesting mathematical problems. For the best utilization of the
existing means of transport the application of the available mathematical knowledge
in the organization and the management of transport is often decisive.

The main purpose of this paper is to extend the set of already known mathematical
methods to the solution of some transport problems.

This paper presents the solution of the basic problem defined in [1] and [2],
which solves the concrete problem in railway and road transport (the problem of the
optimization of time-tables by some criteria).

THE BASIC PROBLEM

The Basic Problem. Let us have a circle ¢ with a length T and positive integers
my, my, ..., mg (s > 1).

It is necessary to locate

a regular my-gon Ay = {A(, ..., A n},
{
t

a regular my-gon Ay = {A,q, ..., Ay} s
: and

a regular mogon A, = {A,, ..., Ag}
on the circle ¢ in order that the number

d = min A jA;; (where i, i = 1,2, ..,8;j =1,...,m;

it

J=1,...,my i % i) be maximal;

182



the symbol A;;A;; denotes the length of the arc from the vertex 4;; to the vertex
Aj; in the positive direction.

Let us have a circle ¢ with a length T and positive integers my, m,, ..., my, (s > 1)
which are arbitrary but given and fixed through the whole paper. Let us introduce
now the following definition to avoid possible misunderstandings later.

Definition 1. Every system of regular polygons A,, ..., A; located on the circle ¢
will be called an M-system.

Let us introduce a coordinate system on the circle ¢ in the following way. One
arbitrary point on the circle is denoted by O and to each point X we determine a co-
ordinate x, which is equal to the length of the arc OX in the positive direction.

Every M-system A, ..., A; can be uniquely determined by s-tuple coordinates
(ayi» @zqs - agy) of the vertices Ay, ..., Ay

For the sake of simplicity we shall study in the following only M-systems with
a, =0and0 = q;; < T/mi foreveryi = 1,...,s — 1. We can do it, because every
general M-system is identical in geometrical sense with some M-system from the
chosen class of M-systems which we shall study.

Now we can characterize every M-system by the (s — I)-tuple U = (a4, ayy, ...

.., @5y ) and the vectors of coordinates

a; = (‘111’ Aoy eny alml)

;Is = (asl’ EEE) asms)
fulfil
a;=ay +(—1)Tm; for 1<j<m;.

Definition 2. Let A, A, be polygons on the circle c. The number g(A, A;) =
= min (a;; — a;; + T)mod T will be called the distance between the polygon A,

It
and the polygon A,

Definition 3. If no two vertices of the M-system have the same position, i.e. if
o(A;, A;) > 0 holds for all i % j, the M-system will be called a free M-system.

Definition 4. The M-system U will be called a fixed M-system, if there exists
a sequence of positive integers s = iy, iy, ..., i, = j(1 £ i, < s for all k) for every j

(1 £j £ s)sothat o(A,, A,,,,) = 0 holds for all k(1 £ k < n).

1134 LI =

A

CHARACTERISTIC VECTORS AND M-GRAPHS
Construction 1. Let us have a free M-system U = (a,,, ..., a,_, ;). We shall

construct a directed graph G = (V, H) with a vertex set V = {X,, X,, ..., X,}. We
shall carry out the construction in steps.
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The O-th step

We define 4a;; = a;; foralli = 1,...,sand j = I, ..., m;, then we define the sets
By, = {s} and C, ={1,2,...,5 — 1}, the directed graph G, = (V,, Hy), where
Vo = {X,} and Hy = 0.

The general (v + 1)-st step
We have from the preceding v-th step

val = (val_l’ RERE] vulnn)

v‘;s = (uas'ly MRS vasms)
and the sets B, < {i}i_,, C, = {i}j-;, the directed graph G, = (V,, H,), where
V, = {X; ieB,}. Now let us define

dyyy =min  min (i — ,a; + T)mod T.

The M-system U is free and this implies d,, ; > 0. We define 0,,, = {(i, i);ieB,
ie C,, so that there exist j, j such that (uaij — o + T)mod T = d,y1}. We define
P,y = {i€ C, so that there exists i such, that (i,I)e O,,,}. We denote B,,, =
= Bv v Pv+ls Cv+1 = Cv - Pv+1‘ We define vectors 19, = (v+1ai19 LR v+1aim,-)
for i = 1,...,sin the following way
or1diy = a5 if 1€B,
and
v+1fij = oij — dyvy if ieC,.

We denote H,,; = H, U {(X;, X:);(i,1)€ Ops,}, Vouy = {X;€V;i€B,s,}. We
define the directed graph G, ; = (V,4, Hysy):

The last ¢t-th step
There exists t < s — 1 such that C,_, # @ and C, = 0, because card (CO) =51

and C; ., i C,. Thus we obtain the last set of directed edges H, and the last vectors

a;. We denote H = H, and
#0; = (#Q11s 0 %010,)

*a: = (*asl ey *asms) bl

where ya;; = ,a;; for all i, j. The directed graph which we obtained in this construc-
tion from the free M-system U is the graph G = (V, H). The numbers £a;; are the
coordinates of the fixed M-system ,U which we also obtained as the result of Con-

184



struction 1. We define a function f: H - N, N = {i}{2, in this way: f(X,, X;) =
= min {i: 3j, such that ya;; = a;;}, then f(X;, X;) £ m;/D(m,, m;)is fulfilled, where
D(m;, mj) is the greatest common divisor of m; and m;.

s
Definition 5. Let us have a free M-system U = (a“, vy ) Let g = Z m;

i=1
hold and let(cy, ¢;, ..., ¢,) be such a permutation of the vector (ayy, ..., Ay Az1, - -
Aamys -+ Aem) that ¢; < ¢;y holds for all i (1 £i < g). Let (by, by, ..., b,) be
such a vector that for every i (1 < i < g) there exists k such that ¢, = a,,. This
vector (by, by, ..., b,) will be called the characteristic vector of the free M-system U.

Remark 1. It is obvious that there exists a unique characteristic vector for every
free M-system, because a;; = a;; holds for every (i, i) * (j, j).

Definition 6. Let us have a free M-system U. Let G, = (V,, H,) be a graph and
5
o8y - o0 the vectors we obtained in the v-th step of Construction 1. Let g =Y m;
i=1
hold and let (Ucl, oCas - s oCq) be such a permutation of the vector (Uall, oo @i
o215 o ol2mys o oldem,) that o, S ,ciqy holds forall i(1 < i < g). Let (,by, ..., ,b,)
be such a vector that

1. for every i(] < i £ g) there exists such a k that ,¢; = o p, i And
2. if ,¢; = ;4 then there exists a directed edge from X, to X, in G,.

This vector ( by, ..., vbg) will be called the general characteristic vector of the
v-th step of Construction 1 from the free M-system U.

Lemma 1. Let G, be a directed graph of the v-th step of Construction 1. Then G,
contains no directed cycle.

Proof. We shall use mathematical induction.

1. It is obvious for v = 0, because there exists no directed cycle in G,.

2. Let us have now G,_; with no directed cycle. For G, = (V,, H,) we have
V,=V,_y W, where W, = {X;;ieP,} and H, = H,_, u{(X, X}); (i,j)€ 0},
which means that X; e V,_; and X, € W, for all new edges (X, X,) in the v-th step.
Hence there exists no edge in G, between two vertices X ;, X ;, both from W,.

Then the directed cycle must contain some vertices from V,_, and also some
vertices from W,. This is a contradiction, as there exist no X;e V,_, and X;e W,
such that (X, X,;)e H,,.

Lemma 2. For an arbitrary step v of Construction I there exists no more than one
N
general characteristic vector (,by, ,b,, ..., ,b,).
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Proof. For the vector ,¢ = (vcl, ... oC,) there exist such numbers 0 = g, <
<gy <g,<..<g,=g that ,; = ,c; holds for all i (0 < i < e) and for all
Joji(gioy <J =95 9i-1 <J = g;)- Let us have two different general characteristic
vectors (,by, ..., ob,) * (b1, ..., ,b,) of the same free M-system U and of the same
step 0. Then there exists such i (1 £ i < e) that (,by,_, 415 -+ obg) F (Py_ 410 ---
- oby). For every j <j, k<ked{g;-y + 1;g;> the relations ,b; + ,b; and
b # ,bj, hold because in the opposite case there would exist a cycle in G,

(va,- - X ’”"'”’vay =X ,,J_)

v+t
or

(X 4. > X o X=X,

vb K vh i+ 1 vb'E

This implies that the vectors (,by,_, 1y, ... ,by,) and (,by, 11 - oby,) are two dif-
ferent permutations of the same set with (g; — g,_,) elements and this implies that
there exist a, @ such that a = ,b; = ,b},,anda = ,b, = ,b;.sothatg,_ , + 1 £j <
<k=Zgjandg,., + 1 =k <j =g,

This yields that there exists a directed path from X, to X; in G, and there exists
also a directed path from X, to X, in G, and this means that there exists a directed

cycle in G, which is a contradiction — the lemma is proved.

Lemma 3. For every v there exists just one general characteristic vector of the
v-th step and it is equal to the characteristic vector of the free M-system U.

Proof. We shall use mathematical induction.

. The lemma is obvious for v = 0, because 4a;; = a;; for all i,j and a;; # a;;
holds for all (1, j) = (i, J).

2. Let ,.b=1(,_{by, ..., y—1b;) = (by, ..., b,) be the general characteristic
vector of the (v — 1)-st step and the characteristic vector of the free M-system U.
For the v-th step, ,a;; = ,_a;; holds for all i€ B,_, and ,a;; = ,-a;; — d, holds
for all i € C,_. This implies that ,¢; = ,_¢; holds for all i such that ,_,b;e B,_,
and that ,¢; = ,_,¢; — d, holds for all i such that ,_,b,e C,_,, because for all i
such that ,_,b,eC,_, and ,_,b;_,€ B,_; the inequality ,_,c; = ,_.¢c;~-4 + d,
holds. Now we prove that ,_ b is also a general characteristic vector of the v-th step.

It follows from the preceding that the condition is fulfilled that for every i there
exists k such that ,¢; = ,a < because for every i there exists k = kso that ,_ ¢c; =

oYy~ 1by,
= 019, bige If y¢; = ,¢;4 and
A)if ,_j¢; = ,_1¢;4 1, then it follows from the preceding (v — 1)-st step that there
exists a directed edge from X |, to X in G,.
B) if ,_jc; # ,-1¢;y holds, then ,_jc; + d, = ,_,¢;4, holds. This implies
v-1b:€By_ 1, y-1bis1 € Coy and (,— by ,—1b;1,) € O, and so there exist a new

edge (X, ;X )in G,.

~1bi+y

v-1bis1
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From the preceding facts and from lemma 2 it follows that (b, ..., ,b,) =
= (y=1bgs - s=1by) = (by, ..., b,) is a single general characteristic vector of the

v-th step.

Definition 7. Given a directed graph G = (V, Hy; V={X}.,HcVxV, then
every vertex X ; such that (X;, X;) ¢ H for all i will be called an initial vertex of the
directed graph G. Every vertex X, such that (X;, X;)¢ H for all j will be called

a terminal vertex of the directed graph G.

Definition 8. Let U be a free M-system. Let G = (V, H) be a directed graph and
let f be the function f: H — N, which we obtain in Construction I from the free
M-system U. The ordered triplet (V, H, f) (a weighted directed graph) will be called
an M-graph of the free M-system U.

Remark 2. Construction I evidently implies that X is a single initial vertex in the
M-graph G and that every M-graph is connected. From Lemma 1 it follows that
there exists no directed cycle in the M-graph G. It is also true that there exists just one
corresponding fixed M-system to every M-graph.

Theorem 1. There exists a unique M-graph G = (V, H, f) for every free M-system
U.

Proof. The proof of this theorem follows from the fact that Construction 1 is
uniquely determined.

FINDING ALL M-GRAPHS OF FREE M-SYSTEMS
THE M-TREE OF THE FREE M-SYSTEM

Construction 2. Let us have an M-graph G = (V, H, f) of the free M-system U.
Let us construct a new directed graph (V’, H') with the function f* : H" — N so that
V=V, H < H and we delete edges which do not fulfil the following conditions.
An arbitrary edge (X, X;) € H will be contained also in H' if and only if:

1. There exists no directed path from X to X;in G which does not contain (X;, X )
and which is longer than all the directed paths from X to X ; which contain (X,-, Xj).
2. There exists no directed path from X, to X;in G
a) which does not contain (X;X), but contains (X, X;) and
b) which is as long as the longest directed path from X, to X j» which contains
(X:, X;) and
¢) k < i holds.
Now we define the function f’ : H' - N, f(X,, X;) = f(X,, X,) forall (X, X;)e H'.
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Definition 9. Let G = (V, H, f) be an M-graph of the free M-system U. The
ordered triplet G' = (V', H', f'} (a directed weighted graph, which we obtain in
Construction 2) will be called the M-tree of M-graph G.

Theorem 2. There exists a unique M-tree to every M-graph of some free M-
system U.

Proof. It follows from the uniquely determined Construction 2.

Remark 3. If follows from Construction 2 that every M-tree is a directed weighted
tree with a single initial vertex X. Thus it is in general a simpler graph than the M-
graph. But we must note that not every directed weighted tree with a single initial
vertex X, is an M-tree of some M-graph. We shall investigate this fact in Theorem 3.

Theorem 3. Let us have a directed weighted graph G' = (V', H', f') which is
a tree with a single initial vertex X,. Then we can uniquely determine whether G’
is an M-tree of some M-graph or not. If G’ is an M-tree we can uniquely determine
the corresponding M-graph G and the coordinates sa;; of the corresponding fixed
M-system ,U.

Proof. If the condition 1 £ f(X,X,) < m;/D(m;, m;) is fulfilled, then we shall
determine the vectors .4, in several steps (if the condition is not fulfilled, then there
exists no M-graph G with an M-tree G').

The 0-th step

For 4a, = (40,1, ..., 4@,y ) the condition that way; = (i — 1) T/msforall i =1, ...
..., My is obviously fulfilled.

The general (v + 1)-st step

We know already all vectors .a; such that there exists a directed path X to X
which is not longer than v. Let R, be a set of all vertices to which the directed path
from X has the length just ». In this (v + 1)-st step we determine vectors to which the
directed path from X, has the length just (v + 1). Let a; be such a vector. The
directed path with the length (v + 1) from X, to X; must contain some edge (X, X ),
where X; € R,. Then one element of the vector xa; will be +a; ;(x, x,, the others
will be

-1

J

(#ai pxox, + kT/mj)mod T for k =0,1,...,m

We order these elements into a sequence from the least element to the greatest and
5o we obtain the vector 4a;.

In this way we successively determine all vectors ga;, i = 1,...,s; we shall not
make more than s steps.
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Then we investigate all such cases of the couples i, that there exist k, k that
say = xa;z and (X, X;) ¢ G, (X;, X;) ¢G". Let d; (resp. d;) be the length
of the directed path from X, to X, (resp. X ;) in G’ and let d; 2 d, be fulfilled.

If follows from Construction 1 that if 4a; = 4«4, there must exist either an edge
(X:X,)or (X, X;)in the M-graph G.

1. If d; = d; and we add the edge (XX ), then the length of the directed path from
X, through X; to X; will be greater and it is a contradiction to condition 1 of con-
struction 2. We obtain the same contradiction if we add the edge (Xj, X;). This

fmplies that there exists no M-graph with an M-tree G'.

2.1fd; = d; + 1 and k > i, where (X, X;) is contained in the directed path of the
length d; from X; to X; in G’, we can add neither the edge (X, X;) because of con-
dition 2 of Construction 2 nor the edge (XjX,-) because of condition 1 of Construction
2. This yields that there exists no M-graph with the M-tree G'.

If conditions 1 and 2 are not fulfilled we add the edge (X, X;). We obtain similar
conditions if d; 2 d; if they are not fulfilled, we add the edge (X, X ;). If conditions 1
and 2 are not fulfilled for all cases (xay = +a;5), G’ is an M-tree of the M-graph G
which we obtain by the mentioned adding of edges and by defining f(X,-Xj) =
= min {i; 3] such that a;; = xa;;} for all new edges (X, X).

Theorem 4. Let us have two free M-systems U, U’ which have the same M-graph
G = G'. Then U and U’ have also the same characteristic vector (by, b,, ..., b,) =
= (b’l, e b;). (Also the reverse implication is true, but we do not need it to solve
our problem.)

Proof. Let Construction 1 be applied to U (resp. U’) in just ¢ (resp. ') steps and
let (,by, ..., .b,) (vesp. (b1, ..., ;/b,)) be the general characteristic vector of the last
t-th (resp. t-th) step of Construction 1 from the free M-system U (resp. U’). The
values of the vectors xa; and sa; (for i = 1, ..., 5), the coordinates of the correspond-
ing fixed M-systems can be obtained from the M-graphs G, G’ in the same way as in
the proof of Theorem 3.

U and U’ have the same M-graph G = G’, which implies ya;; = xaj; for all i, j.
This gives

(€15 o i€g) = (s s o)) -

The condition G, = G = G' = G; is fulfilled, which implies (,b,,..., b,) =
= (b}, ..., b)) According to Lemma 3 (by, ..., b)) = (b, ..., ;b,), (b, ..., b)) =
= (b}, ..., b)) and this implies (b,, ..., b,) = (b}, ..., b;), which we wanted to
prove.

If we want to find all M-graphs, it is sufficient according to Theorem 3 to find the
set of all directed trees (with s vertices) with a single initial vertex X, the edges of
which are weighted with the function f' so that 1 < f'(X;, X,) £ m,[D(m,, m)).
Every directed tree with a single initial vertex X is uniquely determined by the set

189



of terminal vertices and by the set of directed paths from X, to the terminal vertices.
Starting from this we shall successively construct all directed trees with a single
initial vertex X in the following way:

Construction 3

I. We determine successively the number of terminal vertices p = 1,2,...,s — L.

II. To every number p we successively choose the set M of terminal vertices, i.e.
we construct all the combinations of the p-th class from the elements X, X,, ...
e Xy

I{. We arrange the elements of the set M into an increasing sequence X, , X,,,, ...
..., X3, according to the numbers of the subscripts and we divide the set V — (M v
U {X,}) into p disjoint sets M,,, ..., M, (which can be also empty), which determine
for every vertex X, the part of the directed path from X, to X, in the following way:

for X,,, M,, means just the set of vertices contained in the directed path from X,
to X,, (except X, X,,) and for X, (i > 1) M,, means just the set of vertices contained
in the directed path from X, to X, (except Xgo X,,i), where X, is such a vertex of

the directed path from X to X, that the vertices between X, and X, (also X,,) are
contained in {X} uI}1 M, and the directed path from X, to X,, contains no vertex
from the set Dlejjil{Xgi}.

In this wajyzive assign an Integer 1, 2, ..., p to each element of the set V — (M ©
U {X,}), i.e. we perform all permutations with repetitions of the {s — p — 1)-st

class from p elements.

IV. We choose successively all (p - l)-tuples of the vertices Xg,, X5 .-, X,
i—1

where X, € {X;} u U M,
j=1

V. We determine successively all the possible directed paths from X, to X,, (for
given sets M,), i.e. we make all permutations of the sets M.

VI. We determine successively all possible values of the function f/, i.e. we assign
to every edge an integer which fulfils 1 < f'(X,, X;) < m;/D(m,, m)).

If we change successively all parameters in cycles I, 11, IIT, IV, V and VI, we obtain
all suitable weighted directed trees with the vertex set V and a single initial vertex X,.

ESTIMATE OF THE NUMBER OF DIRECTED TREES WHICH HAVE
A SINGLE INITIAL VERTEX X, AND WHICH ARE WEIGHTED
WITH THE FUNCTION f”

For this estimate we shall use the following one to one mapping ¢ of the set of

undirected trees with the vertex set V onto the set of directed trees with the same
vertex V and a single initial vertex X,.
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Let G = (V, H) be an undirected tree, then ¢(G) = (V', H') will be the directed
tree, where V = V' and (X, X;) € H' if and only if there exists a path from X, to X
containing (X, X;) in G.

As G is a tree, the condition is fulfilled that for every (XX ;) € H either (X, X;) e H’
or (X;, X;) e H'. This implies that ¢(G) is also a tree. As there exists a directed path
from X, to every X, =+ X,, there exists some k such that (Xg, X,)€ H' and so no
X # X,is an initial vertex. Let ¢ be a mapping which assigns to every directed graph
its undirected graph by means of deleting the direction of edges. Then the condition
is fulfilled that the mappings ¢, @ are inverse and @(¢(G)) = G and so ¢ and @ are
one to one mappings. According to [3] the number of all undirected trees with s
vertices is s°72, so the number of all directed trees with a single initial vertex X,
will be the same. To every edge we can assign maximum (max m;) various values, so

the number of all directed trees with the vertex set V, with a single inijtial vertex X,
and with the edge-weight of the function f” will not be greater than s°~% (max m,)* .

DETERMINING THE OPTIMAL FREE M-SYSTEM

Theorem 5. Let us have a free M-system U = {A, .., A} and let d =

= min g(A;, A,). Let A, A, , ..., A, (2 £t < 5) be the sequence of polygons which
i*i
satisfies d = o(Ay,» Ay, )foralli=1,2,....,1 — 1 as well as d = o(A,,, A,,). Let
U’ = {Aj{,..., A}} be another free M-system which has the same M-graph G. Let
there be d' = min o(Aj}, A}). Then d’ < d.
i*i

Proof. It follows from the assumption of the theorem that there exist iy, i,, ..., it
and jy, ja .o je $0 that d = Ay Ay i = Ay Ay = o= Ay Ay = Ay -
. Ay, ;,- We shall carry out the proof indirectly. Let d’ > d. Let us bave U as assumed
in Theorem 5, i.e. U and U’ have the same M-graph and this implies (Theorem 4)
that they have the same characteristic vector, too.

I Let a = ap,y — dp,1 = Ap,1A4p, 2 0. Hence Ay, 44,5, = d, Ay, Ap,j, 2= d'
It follows that Ay, ;A5 + ApiAp,j, = ApiAss, + AbiAp,j, and then A, . .
.A;;. = o+ (d — d). This evidently implies that 4,4, = o + (d' — d) for all
k=1,2,..., my,.

In the same way we obtain A,ud,, = o + 2(d' — d) for all k =1,2,..., my,,
and finally we obtain A, A, = « + (t — 1) (d' — d) for all k =1,..., m,, and
also Ay, Ay, = o« + (t — 1) (d' — d). Since U and U’ have the same characteristic
vector and a,; = a,; = 0, we have 4, 4, + Ay ;. A, = ApiApj, + Apj Ab
and then A;,;A;; <d+a—[e+(t —1)(d - d)] <d<d,which is a con-
tradiction, as we must have Aj,;,4p;, = d'.

191



I1. The proof is very similar in the case of a,,; — a5,y < 0.
The theorem is proved.

In the next part we shall construct to every M-graph a free M-system, which con-
tains the sequence A, , ..., 4,, which fulfils the conditions from Theorem 5 and so
this free M-system is the best of all those which have the same M-graph.

Construction 4. Let us have an M-graph G = (V, H, f). We determine the
coordinates 4a;; of the corresponding fixed M-system ,U in the same way as in the
proof of Theorem 3. Now we shall carry out Construction 4 in steps.

The O-th step

We define oa; for all i so that ya;; = xa;; for all i, j. We define the directed graph
Go = (V, Hy), where H, = H so that (X, X;)e H, if and only if (X;, X;)e H and
in G there does not exist a longer directed path from X, to X; not containing (XX )
than the longest one, which contains (Xin). We define also ¢, = 0 and then we
have (X;, X;) € H, implies ¢(A;, A;) = 0 = e,.

The general (v + 1)-st step

We have ,a; = (,@;y, .-+, o@im,) for i = 1, ..., s and the directed graph G, = (V, H,)).
We define ,k; to be equal to the length of the directed path from X to X; in G,,

The condition is fulfilled that if (X, X,) € H,, then o(,A,, ,A;) = Y. e, and if (X, X;) ¢
v k=0
¢ H, then o(,A;, ,A;) =Y e, We define h(X, X;)= min (a; — i+ T).
k=0 i

v ‘,aﬁ;deJ]
.mod T— Y ¢ forall 1 £1i,j £ s. We define
k=0
.  h(X,X)
e,4; = min min —>—""%_ and R,,, = {(X,X;)€eH,
. i=1,s=1 § ok — ki 4+ 1 1 {( J)

vkiZ vky

such that k; = ,k; and e,+; = h(X;, X;)/(,k; — ,k; + 1)}. We define ,, ,a; so that
vi1di; = o5 + ;. e,0q. We denote H, = H,UR,,, and G, = (V, H,). If the
graph G/ does not contain a directed cycle, we determine the graph G, = (V, H,11);
H,,, < Hjsothat (X;, X;) € H,, if and only if (X, X;) € H, and in G, there does
not exist a longer directed path from X, to X ;, not containing (X, X ;) than the longest
one, which contains (X, X).

From the definition of e, ; it follows that if(X;, Xj) e H,, ,then o(,+1As o+ lAj) =
v+1 v+1

=kzoek and if (X, X;) ¢ Hy 1, then o(,4 1Ay o4 1A)) gkzoek.

We can begin the (v + 2)-nd step. If the graph G| contains a directed cycle X,,
X5 - Xy, we finish Construction 4 and we can determine the resulting vectors
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a, = (a,-,, oo Gyy,), Where a;; = 4 a;; for all i, j. These vectors determine the free
v+1

M-system which satisfies d = min g(A;, A)) = Y ¢, and d = o(A,,, A,) and for all
i*i k=0
i=1,..,t~1,d = Q(A,,‘, AL

End of Construction 4.

In this way we have solved the basic problem, because we can successively construct
all suitable M-trees (according to Construction 3); to every M-tree we determine its
M-graph (Theorem 3) and then we find the best M-system (one of the best M-systems
with the same number d) of the whole group of M-systems, which have the same
M-graph (Construction 4). Then we only choose the optimal M-system (or M-
systems) from a finite number of M-systems which are the best ones of the whole
class of M-systems with the same M-graph.

A SHORT EXAMPLE

For better understanding of the algorithm solving the problem we shall show one
part of it.

Let us have s =4, my = 2, m =3, m, = 1, my =5, T = 30. We choose some
M-tree by Construction 3, e.g. let p =2, let X, = X, X;, = X3, let M; =0,
My ={X,}, let X,, = X,, let f'(X4, X)) =2, f'(Xan X2) = 1, f(X,, X5) = 1.

In this way we have chosen an M-tree G’ (sec fig. 1). The corresponding M-graph G
(see fig. 2) determines the fixed M-system LU (see fig. 7), whose coordinates are
xa, = (0,15); 4a, = (5, 15, 25); a, = (0); 4@, = (0,6, 12, 18, 24).

X2
Figure 1 — G’. Figure 2 — G.
X
Xy
X, X X, A
Xz x2-
Figure 3 — Gy. Figure 4 — Gy.
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In the 0-th step of Construction 4 we define ga, = xa; oa, = 4a,;

0f3 == xd3;
094 = 0, and we determine the graph G, (see fig. 3).
X, X,
. K ‘l\ )
X, X,
Figure 5 — G,. Figure 6 — Gi.
Ay AT Ay
]
Ay Ars
+As +A 35
* A33 *A.B'
A,=,A Az
A2 % 0 Ags
Figure 7 — ,U. A35‘
A
Ay
Azy
Figure 8 — U. ’
~ ] A
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In the first step we find that e, = ; ,a, = (0, 15); ;a, = (5%; 154; 25%); @, =
= (%); 1a5 = (1,7, 13, 19, 25). We determine the graph G} (see fig. 4) and the graph
G, (see fig. 5).

In the second step we find that e, = 4; ,a, = (0, 15); ,a; = (7, 17, 27); ,a, = (1);
,as = (2, 8,14, 20, 26). The graph G, (see fig. 6) contains two directed cycles, thus
Construction 4 is finished. The result is that the best free M-system U (sce fig. 8)
of those which have the same M-graph G has the vectors with coordinates a, =
=(0,15); a, = (7,17,27); a, =(1); a3 = (2,8,14,20,26) and that 1 =d =
= min g(A;A;) (1 £ i, i < 4) holds.

i*i

The above problem corresponds e.g. to a network of 4 bus lines which have regular
time-tables (the first line has the interval 10 minutes between two vehicles, the second
has 30 minutes, the third has 6 minutes, the fourth has 15 minutes). The bus lines
have one common segment on which we optimize the transport by the solution of the
basic problem.
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Sdhrn

MAXIMALIZACIA VZDIALENOSTI PRAVIDELNYCH
MNOHOUHOLNIKOV NA KRUZNICT

FiLip GULDAN
Tento ¢lanok uvadza rieSenie zakladného problému, definovaného v [1] a [2]
a rie§iaceho konkrétny problém v zelezni&nej a cestnej doprave (problém optimali-

zacie cestovnych grafikonov na zaklade urditych kriterif).
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