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Maximization Problems on Graphs with

Edge Weights Chosen from a Normal Distribution

Abstract

We consider optimization problems on ccsnplete graphs with edge

weights chosen from identical but independent normal distributions. We

show some very general techniques for obtaining upper and lower bounds

on tne asymptotic behavior of these problems. Often, but not always,

these bounds are equal, enabling us to state the asymptotic behavior of

the maximum. Problems in whicn the bounds are tight include finding the

optimuTi traveling salesman tour, finding a minimum cost spanning tree,

and finding a heaviest clique on k vertices. We then discuss sc»ne

greedy heuristic algorithms for these problems.

1. Introduction

Many results have been proven about the properties of random

graphs. Some of these [AV77, BE75, ER59, ER60, ER66, GM75, Ma70, Po76,

Wa77a] deal with graphs constructed by letting edges be present or

absent according to some distribution; one then tries to estimate the

probability that a subgraph of a given type will be present. We will

call such a problem a subgraph existence problem. Another area of

interest is algorithms on graphs in vhich all edges are present, but

weights are assigned to the edges according to some randan distribution;

one tnen tries to find the heaviest (or lightest) subgraph of a given

type. We will call such problems subgraph optimization problems. For

example, if a traveling salesman problem is constructed using the

Euclidean distance between n points chosen from a uniform distribution

in tne unit square, tnen asymptotically the maximum solution is

proportional to lBHri59]; a very efficient algorithm has been

designed whose expected behavior is asymptotically optimal [Ka76]. The

assignment problem for the case in which weights are chosen fran a

uniform distribution has been studied by several people [Do69, Ku62,
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wa77b]; Donath lDo69] has also considered the case in which the edge

weights have a value x in L0/1] with probability proportional to for

some k. In tnis paper we investigate the behavior of a number of

optimization problans on complete graphs witti edge weights chosen

inuepenoently from a normal distribution.

Throughout this paper, will be a random variable which is a

complete, undirecteo, weighted, labeled graph on n vertices; we will

assume the vertices are labeled l,2,...,n. Weights are chosen,

independently, from a normal distribution with mean 0 and variance 1.

(All of the results proved in this paper can immediately t)e generalized

to the case in which some other mean and variance are specified,

provided these quantities are the same for all edges; we assume zero

mean and unit variance to minimize notation.) G will denote some

particular weighted complete graph. The weight of the edge connecting

vertex v and w will be denoted d(v,w).

Let be a set of labeled graphs on n vertices; again, the

vertices are labeled l,2,...,n, so there is a natural one-to-one

correspondence between the vertices of an element of S and the vertices
n

of G^. All elements of are assumed to have the same nrmber of

edges; call this nunber m^. For any H in and any weighted graph G,
let w(G,H) be the number found by summing, over all edges in H, the

weight of the corresponding edge in G. For a given G, we wish to choose

h in S so as to maximize W(G,H); this maximum will be called W (G).
n max

«ote tnat, for exarrple, if is the set of the (n-1) !/2 cycles on n

vertices, gives the solution to the traveling salesman problem.

We wish to investigate the expected behavior of W (G ). (Often in an
nidx n

optimization prctolem, we wish to minimize some quantity; for

uniformity, however, we will always assume that we are maximizing

quantities. The results obtained here will, by symmetry, immediately

carry over to the corresponding minimization problem.)

In section 2, we will discuss some simple but useful facts about

normal distributions. In section 3, we will present a very general

technique for obtaining upper bounds on the expected values of maximum

solutions to such problems. The method used is to examine the tail of

the distribution of total weights of a subgraph from in Gj^. A
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similar iaea was used by Donath in obtaining a lower bound on the

solution to the assignment problem over n by n matrices whose columns

are random permutations of the integers 1 to n [Do69]. There it was

viewed as an enumeration argument; here the randcm elements are drawn

from a continuous distribution so the argument has a somewhat different

flavor. Section 4 discusses a very general technique for obtaining

lower bounds on these expected values; the method is to relate a

subgraph optimization problem to the corresponding subgraph existence

problem. (Walkup [Wa77b] independently expoited a similar relationship,

in estimating the optimum solution to random assignment problems with

edge weights chosen from a uniform distribution.) It turns out that

combining tne bounds of sections 3 and 4 often enables us to make rather

precise statements about the asymptotic behavior of the expected

maximum, as will be shown in section 5. In section 6 we will

investigate tlie behavior of some simple algorithms for some of these

proDlems.

2. Some facts about normal distributions

We shall often use random variables chosen from a normal

distribution with mean 0 ana variance 1. Such a variable will be called

a unit normal variable. For convenience, we shall let f (respectively

F) be the corresponding probability density function (respectively

probability distribution function). Thus

f(x) = (2-rr)"^/^

•/. f(t) dt

We will often be making statements about the asymptotic behavior of

functions. The following definitions will be assumed.

g(x) ~ h(x) <==> g(x)-h(x) = o(h(x))

g(x) < n(x) <==> max(g(x)-h(x) ,0) = o(h(x))

g(x) > n(x) <==> max(h(x)-g(x) ,0) = o(h(x))

Note that
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g(x) < h(x) and g(x) > h{x) <==> g(x) ~ h(x).

Also we will frequently discuss probabilities and expected values.

If X is a ranoom variable and A ana B are events, let P{A} be the

probaoility of A, P{A|B} be the probability of A given B, E1.X] be the

expecteo value of X, ana ElXlAJ be the expected value of X given A.

Tne following few observations, which are well-known or easily

establisned, are useful.

Fact 1. As r -> 0,

a) f~^(r) ~ + / 2 log r"^*

b) F ^(r) ~

c) F~^(l-r)

- V 2 log r'

^ 2 log r"

P^oof sketch. Part (a) is easily established; parts (b) and (c)
follow from (a) and well-known facts about the relationship between f
and F. (See [Fe68, p. 175].) |

Fact 2. Let X be a unit normal variable and let A be an event

which happens with probability p. Then as p-^' 0,

a) |E[X I A] I < /2 log p" '̂.

b) El 1X1 I A] < 2 log p~ '̂.

Proof sketch. For part (a), clearly the quantity in question will

be raaximizea if the event A has the form "X>a" for some a; it is not

haru to show that even in this case the bouna holds. Asimilar argument
holas for part (b). g

Fact 3. Let be a random variable which is formed by taking
the maximum of n unit normal variables. Then EfX l ~ \/2 loa n'

max-" ^
Moreover, for any e>0,

r /- » k.®/2
Pt^max 1 V2(l-e) log n } < e "



sketch. First we prove that (1) holds. Let

M{x) = Then M(x) = lF(x)]". Let a = / 2(l-e)log n".
n-»aD (and hence a-»ao), we have

F(a) = 1 - a"^ f(a) (1 + 0(a"^))

(See [Fe68, p. 175].) Thus,

^M(a) ~ [1 - a"^ f(a) (1 +0(a"^))]"

-n a~^ f{a) (1 + 0(a"^))
< e

-n a~^ (2tT)~^^^ log n ^ ^ 0(a~^))
= e

-a~^ n® (1 + 0(a"^))

-n®/2
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Next we establish the asymptotic behavior of EfX 1 First we
y > max^ we

Show > v ^ log n . Choose any e>0. Let OK be the event that

^max —^ 2(l-e) log n *. Then we may write

"^^^max^ = * (2)

^ the results of the preceeding paragraph, P{OK} -» 1; also clearly

EtXjj^lQK] >/2(>?rio^.

Thus, the first term on the right of (2) is > /liT^eM^oglT.
Further, E[X^^|not OK] is surely less than the sum of the expectations
of the magnitudes of the n random variables. Using Fact 2, we see that

the second term on the right of (2) is

0(P{not OK) n V2 log P~^{not OK}'),

which goes to zero, since

e/2
Pinot OK) < e~"

Thus (2) oecomes

^^*Tiax^ > V2 (1-e) log n .

Since e was chosen arbitrarily, the desired result follows.
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Next we show that

< / 2 log n'. (3)

Note that, by syinmetry,

^^\iax^ ~ ^^^max ' ~ (Xj^,X2,... ,X^)]

= I = iTiax{Xj^,X2,...,Xj^)J.

But clearly X^^ is the maximum witn probability n~^, so (3) follows by
Fact 2. I

3. An uK^er bound.

Let = II; throughout this paper, we assume that

= CD. For exanple, if we are dealing with the traveling

salesman problem, then = (n-1)1/2. (Note that since our graphs are

labeled, we c^an distinguish the elements of even though they are all

isomorphic.) The result of this section will establish that E[W l
y— \ max'

cannot be much less than v 2 m log M .
n ^ n

Let be a new random variable which is formed by c±oosing an

element of S^; each elanent is chosen with equal probability. When
both and appear in an expression, we assume they are chosen

inaepenaently.

Theorem 1. E(G^^) J </ 2 m^ log

Proof. We begin by showing tnat

'''"maxtV' -

E1W(G_^,B^)|W(G„,b„)=W^(G„)).

To see this, note that

EIW(G„,b„) IW(G„,Bn)=VK<Vl
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Now clearly for any at least one H G satisfies

W(G^,H)=Wj^{G^); on the other nand, the set of Gfor which more than
one ti 6 is maximal forms a space of measure zero. Thus for almost

any G, the probability of W(G,H^)=W^^ (G) is precisely Since
this is indepenoent of G, it follows that the right side of (5) is
simply E[W^^(G^)j.

For any Hin 8^, W(G^,H) is simply the sum of m^^ unit normal
variables; hence W{G^,h) has a normal distribution with mean 0 and
variance m^. since this is true for any H, W{G^,Hj^) must have this
same distribution. Now W(G^,h^) =W^3^(G^) is an event which, as
noticed before, has probability thus by (4) and the obvious

generalization of Fact 2 to normal variables which have nonunit

variance, the theoron is established. •

4. A lower bound.

In tnis section we obtain an upper bound on E[W ]. Many results
I , rod5(have been obtaineo which demonstrate tnat for sufficiently dense graphs,
certain properties are very likely to occur. More formally, define a
random variable G^^^^ to be a grapn on n vertices, where each edge is
present with probability p^, independently of the others. Given a real
sequence p^^ and a sequence of classes of subgraphs, let Q be the

probability that the graph G^^^^ fails to contain an element^of S^.
Then, for exanple, it is known [AV77, Po76] that for any i, we can
choose a c large enough so

Q^=0(n"^)

hamiltonian cycles on n vertices, and
= (c log n)/n.

In this section, we establish a theorem which relates results of

this form to the optimization problems we are considering.

Theorem 2. Suppose goes to zero rapidly enough so that

ihen
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> % V2 log p^"

Proof. Consider the following algorithm for choosing an element of

1. Let a =F^(1-p ), and let Hbe some fixed element of S .
" n

2. Let E be the set of edges in G whose weight is greater than a.

3. Let Hbe any element of all of whose edges are in E, and

stop. If no such H can be found, go on to step 4.

4. Let H = h.

Note tnat if this algoritnm stops at step 3, we surely have

W(G,H) > a m ,
— n'

so by Fact 1,

W(G,H) > m 2 log p
~ n '^n

We must also consider the possibility that H is set to H in step
4, that is, that no element of can be constructed fran the edges in
E; call this event FAIL. Now note that distribution of graphs obtained
by choosing all edges of weight greater than F~^(i - p^) is identical to

®n,pn- probability of FAIL is just By Fact 2, and the
fact that W(G^,H) is ixjrmally distributed with variance m^, we may
conclude that the expected weight of H in the event FAIL is

0 (y m^ ^09 ^ hypotheses of the theorem, the error we
commit Oy ignoring the possibility of event FAIL is negligible. |

5. Some examples.

We now consider several examples of the applications of Theorems 1

and 2. We shall often observe a happy occurence—the up^)er and lower
bounds coincide, enabling us to determine the asymptotic behavior of the

maximum solution.
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We begin by considering the traveling salesman problem; W^^{G)
will denote the maximum weight traveling salesman tour in a weighted

graph G. Theorem 1 easily gives an asymptotic upper bound of

n / 2 log n'. On tiie other hand, it is known [AV77, Po76] that the

probability tiiat G fails to contain a hamiltonian cycle can be made
"'Pnto be 0(n ), tor any oc, letting p^ = (c log n)/n, where c is large

enough. Thus, by Theorem 2,

^lW^(Gn)] >n/ 2log ((c log n)/n)~^^
2 log n .

Thus we easily obtain

Corollary 1.. The expected maximum for the traveling salesman

problem is given by E[W^^(G^)] ~n/2 log n'.

A very similar result is very easily established for the expected

weight of the maximum cost spanning tree in G, denoted (G).

Corollary 2. El^(G^)] 2 log n .

Actually, the examples consiaered so far have not fully tested the

power or Theorems 1 ana 2. For both the TSP and the maximum cost

spanning tree proolem, the upper bound could have been obtained by

simply calculating the expecteo total weight of the heaviest n or n-1

edges. Also, as we shall see in Section 6, the lower bound can be

achieved by a very sinple algorithm. The bounds achieved in the next

example do not appear to be obtainable by such sinple arguments.

Consider the problem of finding the weight of the heaviest k-clique in a

gr^h G, denoted (G). (In the asymptotic statements which

follow, we assume that both k and n tend to infinity, but n goes to

infinity much faster than k.) First note that the number of edges in a

k-clique is ~ k /2. Further, the number of distinct k-cliques is

C(n,k). Thus an upper bound is

^ ^2(k2/2) log C(n,k)
~ ^3/2 log n .
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Now the proof of Theorem 1 in [GM75] can easily be adapted to show

that if we let p =n 2/(k+2)^ probability that G fails to
—"j/9 '^'Pn

contain a k-clique is 0(n . Thus Theorem 2 gives

EfpgQ{k) (^n)] > {k2/2) /2 log

~ (k^/2) y 2 (2/(k+2)) log n'

k^/^ ylog n^ (7)

Combining (6) with (7), we get the following.

Corollary 3:

£[^CLlQ(k) - 1^3/2
max ^

log n

Finally, we give an example in vdiich the upper and lower bounds

guaranteed by Theorems 1 ana 2 oo not coincide. We will say a graph H

nas property X(k) if

a) H has a clique of size k, and

b) Hhas k^ edges.

Let be the set of all n vertex graphs with property X(k). Also, let

C(a,b) denote the number of combinations of a things taken b at a time.

First consider the upper bound of Theorem 1. To obtain a simple

lower bound on M^, imagine we first select a fixed set of k vertices to
be the clique; now choose the remaining k^(k,2) edges in any way from
the remaining n-k vertices. This gives a lower bound of

log > log C(C(n-k,2) ,k^-C(k,2))

> k^ log n

On trie other hano, is surely less than the number of ways of choosing
k vertices times the number of ways of choosing any k^-C(k,2) edges
joining the n vertices. Thus an upper bound is

log < log C(n,k) + log C(C(n,2),k^-C{k,2))

~ k log n + k^ log n

k^ log n.



Conbining these ufper and lower bounds, we obtain

log ~ log n

The upper bouna of Theorem 1 becomes

(Gn)J </ 2 k^ log n
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Now consider the lower bound provided by Theorem 2. In order to

get as strong a result fran this theorem as possible, we wish to let p

go to 0 as fast as possible. We will show that even if we let it go to

0 too fast, the bound is not tight. In particular, if we let p^ be as
small as n 2{l+e)/k^ probability that has
a subgr^h with property X(k) goes to zero, since the probability of

having a clique on k vertices goes to zero. (Again, this is an easy

consequence of the proof in [GM75].) Thus we are lettirq p^ go to zero
faster than the conditions of the theorem allow. Even with this choice

of however. Theorem 2 gives a lower bound of

kV2 1ogn2<l«)A'

.2 k- log n (1+e)

Letting e go to zero would give a lower bouna of

Log n

Note that the upper and lower bounas do not coincide. In fact, we can

show that neither is tight, by determining

(G) be the weight of the heaviest k^-C(k,2) edges in G. It
max ' ' — ^

is not hard to see that

~ (k^/2) / 2 log n

On the other hano, an upper bound is
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since by choosing tiie clique and extra edges independently we can

certainly do as well as when we must avoid duplication of edges.

Combining (12), (10), and Corollary 3 we obtain

< (kV2) / 2 log n'+ ^^

~ (k2/2) /2 log n' (13]

Then (10), (11), and (13) give

~ {k^/2) y 2 log n'.

Comparing this with the bounds in (8) and (9), we conclude that neither

bound is tight.

Ihus there are sets such that the bounds of Theorem 1 and

Theorem 2 are not asymptotically tight.

6. Some algorithms.

In this section we investigate the expected behavior of some simple

heuristic algorithms for the traveling salesman problem and the heaviest

clique problan. Since both of the corresponding subgraph existence

problems are NP—complete [Ka72], it is likely that there is no efficient

algorithm vdiich produces exact answers all of the time. Nonetheless, we

shall see that some simple fast algorithms have average behavior which

is close to the average behavior of the optimum. (Since a fast exact

algorithm for the spanning tree problem is well-known [Kr56], we will
not discuss heuristic approaches for it.)

It is not hard to show that a very simple greedy algorithm for the

TSP, wnich constructs a tour by starting at an arbitrary vertex and

iteratively walking to the closest unvisited vertex, achieves the

expected asymptotic betiavior described in Corollary 1.

The problem of finding the heaviest clique on k vertices is

considerably more interesting. Consider the following greedy approach.



procedure CLIQ_GREEDY(G);

begin

C <- {an arbitrary vertex of G};

while |C| < k do

let V be the vertex not in C

which maximizes the sum, over

all w in C, of d(v,w);

ado V to C;

end

return the total weight of all edges

joining vertices of C;

end;

Lemma 1;

E[CLIQ_GREEDY(G^)] > /I^
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Proof. Note that if we consider, for some fixed i, the i^*^ pass
through the loop, we are choosing the maximum of n-i sums of i unit

normal variables. Unfortunately, the i^ pass through the loop is
affected by the previous passes, which complicates the analysis

somewhat. However, an idea similar to tnat used in IES74,GS76] is

useful here--we can simply eliminate all cases in which things don't

work out as we like. More formally, let us choose an e > 0 and

consider tne probability that for ^ set C of vertices, |C|<k,

•n** 2 d(v,w) <\/2 Id (1-e) log (n-|C|)'
V0C wee

Using Fact 3, we see that for any fixed choice of C, this probability
goes to zero fast enough to swallow polyncanials. But, for fixed k,

there are only polynonially many choices for C, so the sum of this

probability, over all possible Cwith !C|<k, must go to zero fast enough
to swallow polynomials; call this probability P(n,k). (Recall that we

are letting n go to infinity much faster than k.) Accordingly, we

conclude that the algorithm produces a clique of weight at least
U-l

51 V 2 i (1-e) log (n-i)
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~ / 8/9' / (1-(1-e) log n

exc^t with probability P(n,k). But since P(n,k) vanishes so rapidly an

argument like that in the proof of Theorem 2 tells us that the result is

EICLIQ GREEDY (G )1
— j

>/ 8/9 ' k^/^ / (1 - e) log n\

Since e m^ be arbitrarily small, we conclude that

E[CLIQ_GREEDY(G^)] >/s/? k^^^ g

Next we will show that this is in fact a tight description of the

behavior of the algorithm. The following lemma will be useful.

Lemma 2. Let be a column vector of m independent real random

variables chosen with a continuous distribution function G. Let g be a

real—valued function of nt-vectors which is monotonic nondecreasing, in
the sense that

< V2 ==> giVj^) < g(V2).

is said here to be less than or equal to if the inequality holds
componentwise.) Finally, let B be an r by mmatrix of nonegative reals,
and b be a column vector of r reals. Then

E[g(V^)|B < b] < E[g(¥^)].

Proof. We prove the lemma by induction on m. For m=0 it is

ti^ivial. Suppose it holds for m=k-l. We may deconpose V, as
K

\ = ^k-i 11

where || denotes concatenation, is the first k-1 components of
and Vis the last component of Vj^. Then

E[g(¥|̂ ) I B < b]

= £ilg{Vl " I ^1 \-i + B2 V< bj (14)

v*tiere ana B2 are appropriate suumatrices of B. Let G* be the

aistribution function of V. Then we may write the right hand side of



(14) as

f dG'(x) E[g(¥,^_j |̂ Ix) I V,^_^ <b - B^x] k(x)

JdG-(X) h(x)
where

h(x) - PlBj^ < j3 _ x}.

i\ow oy trie inductive hypotnesis, for any x.
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MX) I <b - B2 X] <E[g(¥j^_ |̂ |x)J

Thus an upper bound is

/<iG'(x) h(x) E[g(Vj^_ |̂|x)]

^dG'(x) h(x)
But since h(x) is easily seen to be inonotonic decreasing, while

E[g(Vj^_ll |x)] is monotonic increasing, this ratio is bounded above by

JdG'ix) E[g(¥^_ |̂|x)],
which is precisely E[g(Vj^)]. This completes the induction. |

Lemma

E[CLlQ_GR£EDy(G^)] </s/?/log n(15)

Proof. Note tnat this lemma asserts that the lower bound of Lemma

1 is also an ufper bouna. If, on any given pass througn the main' loop
of the algoritfim, tne edge weight probabilities were not conditioned by
previous passes, it would be a sinple matter to analyze the expected
weight of the new eoges adoed to the clique. We begin the proof by
showing that the conditioning of edge weights which has taken place can
only hurt the average behavior of the algorithm.

Assume that the vertices of Gare labeled v^,V2,...,v^. Suppose we
have completed r-1 iterations, ihen |C| = r. If L is a list of r

vertices, let A(L) be the event that L contains the vertices of C, in
the order in which they were added to C, and that no ties were present
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during tne selection of maxima. For the time being, consider the case

Then to determine the contribution of the next vertex to the total

clique weight, we must evaluate

r

^^r<i<n 'i(v.,v^) I A(L)]. (16,
Now since the choice of vertices to add to C is determined by
canparisons of sums of edge weights, the event A(L) can be phrased as a
set of inequalities on the edge weights. In particular, the
inequalities which must be satisfied are

ym with 1 < m < r-1,

Vi with m+2 < i < n,

,17)

If G is the weignted graph on n vertices, let VI(G) be a vector
which contains the weights of edges joining vertices numbered r or

lower, in some arbitrary oroer; let V2(G) be a vector which contains

the remaining eoge weights, we will use VI (respectively V2) as an

abbreviation for Vl(G^) (respectively V2(G^)).

Note that we can find matrices and with all elements of B,
positive, such that (17) can be written as

B2 V2(G) < B^ VI(G)

Thus if we let

g(V2(G)) E d(v.,v ),
- j=l J

we may rewrite (16) as

E[g(V2) I B^ V2 < B^ VI] (j

By an application of Lemma 2, this can be seen to be bounded above by
Llg(V2)J. But this is just the expected value of the maximum of n-r

inoepenoent sums of r unit normal variables, so

Elg(V2)J - \/2 r log n .
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Thus far we have shown that

^^<i<n ^ I A{L)] < / 2 r log n'
j=l

Now by ^inmetry, the choice of L does not affect the analysis;

moreover, the events A(L), over all possible L, together with the space
of measure 0 in which ties are present during the selection of maxima,

exactly cover the entire probability space. Thus, the expected weight
of the set of edges added at the r^ iteration is at most asymptotic to
V2 r log n'. Summing from r equalling 1 to k-1, we obtain the lemma.

I

Theorem

£[CLI^_GREJ:DY] ~ /8/9 /log n'.

Proof. This follows immediately from Lemmas 1 and 3. |

Thus the algorithm has an average result which is less than 6

percent away from the average optimum.

Conclusion •

We have examined the problem of finding a heaviest instance of a

subgraph, from a given set, in an n-vertex weighted complete graph.

Assuming that the edge weights are chosen frcxn a normal distribution, we

have investigated the expected behavior of this optimization problem.
Two very general theorems were discussed, one of which gave an upper
bound and one of which gave a lov^r bound. In a number of interesting
problems, these bounds turned out to be tight, enabling us to state the

asymptotic behavior of the optimum; these problems included the

traveling salesman problem, the maximum weight spanning tree problem,

ana the problem of finding the heaviest clique on k vertices, where

l<<k<<n. However, an example showed that in some cases neither bound

was tight; it would be interesting to obtain good sufficient conditions

unoer which either ix)und was tight.

Next some greedy approximation algorithms were discussed. For the

travelling salesman problem, a very simple greedy algorithm gave results
whose average was the same as the average optimum. For the clique
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problem, a simple greedy algorithm was analyzed and found to produce an

average result which was about 6 percent lower than the average optimum.

It would be interesting to find an algorithm with even better average

behavior.
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