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Abstract Given a finite ground set N and a value vector a ∈ R
N , we consider

optimization problems involving maximization of a submodular set utility function
of the form h(S) = f

(∑
i∈S ai

)
, S ⊆ N , where f is a strictly concave, increasing,

differentiable function. This utility function appears frequently in combinatorial opti-
mization problems when modeling risk aversion and decreasing marginal preferences,
for instance, in risk-averse capital budgeting under uncertainty, competitive facility
location, and combinatorial auctions. These problems can be formulated as linear
mixed 0-1 programs. However, the standard formulation of these problems using sub-
modular inequalities is ineffective for their solution, except for very small instances.
In this paper, we perform a polyhedral analysis of a relevant mixed-integer set and, by
exploiting the structure of the utility function h, strengthen the standard submodular
formulation significantly. We show the lifting problem of the submodular inequalities
to be a submodular maximization problem with a special structure solvable by a greedy
algorithm, which leads to an easily-computable strengthening by subadditive lifting
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of the inequalities. Computational experiments on expected utility maximization in
capital budgeting show the effectiveness of the new formulation.
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1 Introduction

Given a finite ground set N and a value vector a ∈ R
N , consider a set utility function

h : 2N → R of the form

h(S) = f

(
∑

i∈S

ai

)

, S ⊆ N , (1)

where f : R → R is a strictly concave, increasing, and differentiable function. Such
utility functions arise frequently in modeling risk aversion and decreasing marginal
preferences in combinatorial optimization problems. In the following, we present a
few examples on expected utility maximization, competitive facility location, and
combinatorial auctions with submodular utilities.

1.1 Expected utility with discrete choices

In expected utility theory [23,24] utility functions are used for representing an inves-
tor’s risk preferences against uncertain outcomes. Concave utility functions imply
risk-averse preferences as utility of the (certain) expectation of the outcomes is higher
than the expectation of the utilities of the uncertain outcomes. While most research
in this area is concerned with a convex decision set, our results are applicable for
expected utility maximization when decisions are discrete, such as investments in
infrastructure projects, venture capital, and private equity deals. Consider a set N of
investment possibilities with uncertain future values. Let vi ∈ R

N be the value vec-
tor for the investments under scenario i with probability πi , i = 1, . . . , m. Then the
expected utility maximization problem of a risk-averse investor can be stated as

max

{
m∑

i=1

πi f (vi x) : x ∈ X ⊆ {0, 1}N

}

,

where f is a concave, increasing utility function and X denotes the set of feasi-
ble investments. Klastorin [14], Mehrez and Sinuany-Stern [19], Weingartner [26]
consider various versions of this problem. A convenient and commonly used [5] util-
ity function for risk aversion is the (negative) exponential utility function: f (z) =
1 − exp(−z/λ), where λ > 0 is the risk tolerance parameter, with larger λ’s repre-
senting lesser risk aversion.
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Submodular utility function maximization 151

1.2 Competitive facility location

Competitive facility location models aim to maximize the total demand captured by
the facilities of a company, when facilities compete with each other for demand. While
opening a new facility expands the market of the company, it also has the effect of
“cannibalization” by reducing demand for other facilities. Consider the problem of
choosing k facility locations from a set N of potential sites to serve a set M of markets
with maximum demand di , i ∈ M . In marketing and location literature, a common way
of measuring the demand captured by the facilities uses a Huff-type [13] utility ui j ,
for i ∈ M, j ∈ N , which is a non-decreasing function of attractiveness and distance
of the facilities to the customers. Letting x ∈ {0, 1}N denote an indicator vector for
opened facilities, the proportion of demand in market i captured by the opened set of

facilities is given by fi

(∑
j∈N ui j x j

)
, where fi is a strictly concave and increasing

function to capture the effect of decreasing marginal utility of additional facilities
[1,4]. Then the competitive facility location problem is formulated as

max

⎧
⎨

⎩

∑

i∈M

fi

⎛

⎝
∑

j∈N

ui j x j

⎞

⎠ di :
∑

j∈N

x j = k, x ∈ {0, 1}N

⎫
⎬

⎭
·

1.3 Combinatorial auctions and welfare with submodular utilities

In combinatorial auctions bidders with nonlinear utilities on subsets of items are al-
lowed to bid for subsets of the items. A common problem of interest is distributing
the set of items (N ) to the set of bidders (M) so as to maximize the social welfare,
measured as the sum of utilities of the bidders. Letting xi j denote whether item j is
allocated to bidder i , this problem can be formulated as

max

⎧
⎨

⎩

∑

i∈M

fi

⎛

⎝
∑

j∈N

ai j xi j

⎞

⎠ : x ∈ X ⊆ {0, 1}M N

⎫
⎬

⎭
,

where ai j denotes the value of item j to bidder i and fi is an increasing and con-
cave function implying decreasing marginal preference of an additional allocation to
a bidder—hence submodular utilities. Fiege [7], Lehman et al. [16], Vondrak [25] give
approximation algorithms for maximizing social welfare with submodular utilities.

If the utilities of the bidders are unknown to the auctioneer, one may hold an iter-
ative auction, in which given the prices p ∈ R

N for the items, each player bids for
combinations of items that maximize the difference between their utility and prices
by responding to so-called demand queries, i.e., by solving the optimization problem

max
{

fi (ax) − px : x ∈ Xi ⊆ {0, 1}N
}
, i ∈ M,

where Xi denotes the constraints of bidder i . This approach leads to a set packing for-
mulation of the welfare maximization problem, populated with new bids as the prices
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change during the iterations of the auction. Dobzinski et al. [6], Lehman et al. [17]
give approximation algorithms for welfare maximization with demand queries using
submodular utility functions.

Typically the set function h is submodular. Hence, the above-stated problems in-
volve the maximization of a submodular function, which is known to be NP-hard as
the max-cut problem is a special case. One line of research addressing submodular
function maximization is to develop approximation algorithms [8,20,22]. The interest
of this paper, however, is mathematical programming formulations amenable for an
exact solution with branch-and-bound methods. For submodular maximization Nem-
hauser and Wolsey [21, p. 710] give a linear mixed 0-1 formulation with exponentially
many inequalities. This general formulation has been applied to a number of differ-
ent submodular maximization problems, including the quadratic partitioning problem
[15] and the fixed-charge network flow problem [29].

Even though the utility function h is not necessarily submodular for arbitrary
a ∈ R

N , by complementing binary variables, a suitable submodular function can
instead be used in order to utilize the submodular formulation of Nemhauser and
Wolsey (see Sect. 3). However, this general submodular formulation has a weak lin-
ear programming bound and is ineffective for solving all but very small instances.
In this paper, by exploiting the special structure of h, we significantly strengthen the
general submodular inequality formulation for maximization of this class of utility
functions.

In particular, we consider the relevant mixed-integer set

F :=
{

x ∈ {0, 1}N , w ∈ R : w ≤ f (ax + d)
}
,

where a ∈ R
N and d ∈ R. It is useful to include the constant term d for generality,

which will become necessary for studying the associated lifting problems with para-
metric right-hand-side. Because F is the union of a finite set of polyhedra (one for
each value of the binary vector x) with a common recession cone, the convex hull of
F is a polyhedral set. Thus F can be expressed using linear inequalities. While differ-
entiability assumption on f can be relaxed, for a simpler characterization of solutions
to the continuous relaxation, it is convenient to assume so. In the remainder of this
paper we develop linear valid inequalities for F that are stronger than the general
submodular inequalities of Nemhauser and Wolsey [21].

In Sect. 2 we show that optimizing a linear function over F is NP-hard. Next we
provide a useful characterization of the optimal solutions to the problem of optimiz-
ing a linear function over the continuous relaxation of F . In Sect. 3 we discuss the
classical submodular inequality formulation [21] of F and derive two new classes
of valid inequalities by lifting. We show that the lifting problems for the submod-
ular inequalities are submodular maximization problems with special structure and
are solvable by a greedy algorithm. This leads to an easily-computable strengthening
by subadditive lifting of the submodular inequalities. Finally, in Sect. 5 we present
computational results demonstrating the effectiveness of the new formulation with the
proposed inequalities.
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Submodular utility function maximization 153

2 Preliminaries

Because f is differentiable and increasing, its inverse g := f −1 exists and is differ-
entiable; and because f is strictly concave increasing, g is a strictly convex increasing
function. It is convenient to rewrite F as

F =
{

x ∈ {0, 1}N , w ∈ R : ax ≥ g(w) − d
}
·

We assume without loss of generality that a > 0 since binary variables can be com-
plemented. Note that complementing variables requires updating the constant term d
appropriately. Because g(w) is an unrestricted real, the mixed 0-1 set F may appear
to be related to

F ′ :=
{

x ∈ {0, 1}N , y ∈ R : ax ≥ y − d
}
;

however, its structure is much richer than F ′. Observe that the continuous relaxation
of F ′ has no fractional extreme points; thus, optimizing a linear function over F ′ is
trivial. On the other hand, the convex function g introduces infinitely many fractional
extreme points to the continuous relaxation of F . Indeed, optimization of a linear
function over F is NP-hard. We elaborate on these points in the remainder of this
section. We should remark that valid inequalities from 0-1 knapsack [3,11,27] or con-
tinuous 0-1 knapsack [18] sets are not useful for F as g(w) is unrestricted in sign. Let
conv(F) denote the convex hull of F and relax(F) denote the continuous relaxation of
F obtained by replacing the integrality restrictions on x with constraints 0 ≤ x ≤ 1.
Throughout, for S ⊆ N let a(S) := ∑

i∈S ai .

2.1 Optimization complexity

Consider maximizing a linear function w−cx over F for the specific function f (a) =
−e−a (the exponential utility):

max
{
w − cx : ax ≥ g(w) = − ln(−w), x ∈ {0, 1}N , w ∈ R

}
(2)

or, equivalently,

max
{
−cx − e−ax : x ∈ {0, 1}N

}
· (3)

Proposition 1 Optimization problem (3) is NP-hard.

Proof The proof is by reduction from partition [9]. Given numbers ai , i ∈ N ,
partition calls for a subset S of N such that a(S) = a(N\S). If a(N ) = 0, the
answer is trivially S = ∅. Otherwise, by scaling and negating if necessary, we may
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assume without loss of generality that a(N ) = −2. Then, there exists S such that
a(S) = a(N\S) = −1 if and only if the optimal value of the problem

max
{
−e · ax − e−ax : x ∈ {0, 1}N

}

equals 0, which is true if and only if there is an optimal solution satisfying ax = −1.
	


2.2 Continuous relaxation

We now consider optimizing a linear function over the continuous relaxation of F :

max {w − cx : (x, w) ∈ relax(F)}, where (4)

relax(F) :=
{

x ∈ R
N , w ∈ R : ax ≥ g(w) − d, 0 ≤ x ≤ 1

}
·

We employ (4) in the lifting and separation of inequalities in the subsequent sections.
Because g is a convex function, (4) is a convex optimization problem. Without loss of
generality, we may assume that ci/ai , i ∈ N , are distinct, since otherwise two vari-
ables xi and x j with ci/ai = c j/a j can be merged into a single variable xk with
ck = ci + c j and ak = ai + a j without changing the problem.

Proposition 2 There is a unique optimal solution (x, w) to (4); moreover,

xi =
⎧
⎨

⎩

0, if ci/ai > 1/g′(w),
g(w)−a(T )−d

ai
, if ci/ai = 1/g′(w),

1, if ci/ai < 1/g′(w),

i ∈ N ,

where T = {k ∈ N : xk = 1}.
Proof Because constraints of problem (4) are convex and relax(F) has an interior
point; e.g., ( 1

2 1, g−1( 1
2 a1 + d − 1)), constraint qualification holds. Defining a dual

variable λ for ax ≥ g(w) − d, αi for xi ≤ 1, and βi for −xi ≤ 0, i ∈ N , KKT
conditions imply

xi : ci = λai − αi + βi

w : 1 = λg′(w)

λ, α, β ≥ 0.

From complementary slackness we have that xi = 1 implies βi = 0 and ci/ai ≤ λ,
xi = 0 implies αi = 0 and ci/ai ≥ λ, whereas 0 < xi < 1, implies αi = βi = 0 and
λ = ci

ai
= 1

g′(w)
> 0. Because g is strictly convex and the ratios ci/ai are distinct,

there is a unique solution satisfying these conditions. 	

Corollary 1 Each extreme point (x, w) of relax(F) has at most one fractional com-
ponent xi , i ∈ N.
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Fig. 1 A simple linearization
cut (5)

0 1

f(0)

f(a)

3 Valid inequalities

In this section we derive strong valid inequalities for F . In order to simplify the nota-
tion, in the remainder of the paper, we assume without loss of generality that d = 0,
since otherwise, we can work with g̃(w) = g(w) − d and f̃ = g̃−1. Note that, like
g, g̃ is differentiable, increasing, and strictly convex and, like f , f̃ is differentiable,
increasing, and strictly concave.

In order to give first some intuition on the valid inequalities that cut off fractional
solutions of relax(F), we consider the simple case of F with a single binary variable

F1 = {x ∈ {0, 1} , w ∈ R : f (ax) ≥ w ⇐⇒ ax ≥ g(w)} ·

Evaluating f (ax) for x = 0 and x = 1, one sees that the affine inequality

w ≤ f (0) + ( f (a) − f (0))x (5)

is valid for F1 and eliminates the fractional solutions of relax(F1). Figure 1 illustrates
inequality (5) and the cut-off fractional solutions for the case with f (ax) = −e−ax .

3.1 Submodular formulation

Inequality (5) can be generalized to higher dimensions by using submodularity.

Definition 1 A set function h : 2N → R is submodular on N if

h(S) + h(T ) ≥ h(S ∪ T ) + h(S ∩ T ) for all S, T ⊆ N .

A submodular function can be characterized by its difference function ρi (S) :=
h(S ∪ i) − h(S) for S ⊆ N and i ∈ N\S. A set function h is submodular if and only
if its difference function is nonincreasing; that is, ρi (S) ≥ ρi (T ) for all S ⊆ T ⊆ N
and all i ∈ N\T [21, p. 662]. The following properties of submodular functions will
be useful.
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Proposition 3 [22] If h is a submodular function on N, then

(1) h(T ) ≤ h(S) − ∑
i∈S\T ρi (N\i) + ∑

i∈T \S ρi (S) for all S, T ⊆ N;
(2) h(T ) ≤ h(S) − ∑

i∈S\T ρi (S\i) + ∑
i∈T \S ρi (∅) for all S, T ⊆ N.

Consider now the set function h : 2N → R defined as

h(S) := f (a(S)) forS ⊆ N .

Proposition 4 The set function h is submodular if a ≥ 0 or a ≤ 0.

Proof If a ≥ 0, for S ⊆ T and i �∈ T , we have

ρi (S) = f (a(S) + ai ) − f (a(S)) ≥ f (a(T ) + ai ) − f (a(T )) = ρi (T ),

which holds from a(T ) ≥ a(S), ai ≥ 0, and concavity of f . Similarly if a ≤ 0, for
S ⊆ T and i �∈ T , we have

−ρi (S) = f (a(S)) − f (a(S) + ai ) ≤ f (a(T )) − f (a(T ) + ai ) = −ρi (T ),

which holds from a(T ) ≤ a(S), ai ≤ 0, and concavity of f . 	


Proposition 3 immediately implies the following submodular inequalities

w ≤ h(S) −
∑

i∈S

ρi (N\i)(1 − xi ) +
∑

i∈N\S

ρi (S)xi for all S ⊆ N (6)

w ≤ h(S) −
∑

i∈S

ρi (S\i)(1 − xi ) +
∑

i∈N\S

ρi (∅)xi for all S ⊆ N (7)

for F provided that a ≥ 0 or a ≤ 0. Either set of the inequalities (6) or (7) can be used
to formulate a submodular maximization problem as a linear mixed 0-1 program [21,
p. 710]. Because we assume without loss of generality that a ≥ 0, we have a linear
formulation of F using the submodular inequalities

F =
{

x ∈ {0, 1}N , w ∈ R : (6) or (7)
}
·

Observe that inequality (5) is the special case of submodular inequalities (6) and (7)
with S = ∅.

Although in the case of a single variable, the submodular inequalities are sufficient
to give conv(F), for high dimensions our computational experience using the sub-
modular inequalities (6) and (7) has shown them to be not very effective except for
very small instances. These results are summarized in Sect. 5 for an expected utility
maximization problem. In the next subsections we derive stronger inequalities that

123



Submodular utility function maximization 157

better exploit the concavity of the function f . In order to do so, by complementing
variables xi , i ∈ S ⊆ N , we first rewrite F as

F =
⎧
⎨

⎩
x ∈ {0, 1}N , w ∈ R :

∑

i∈S

−ai (1 − xi ) +
∑

i∈N\S

ai xi ≥ g(w) − a(S)

⎫
⎬

⎭
·

In the next subsections, we will derive two classes of inequalities by considering
different restrictions of F . The first class is obtained by fixing xi = 1 for all i ∈ S and
then lifting inequalities from this restriction; whereas the second class is obtained by
fixing xi = 0 for all i ∈ N\S and then lifting the corresponding inequalities.

3.2 Inequalities from the restriction F(∅, S)

Consider the restriction of F by setting xi = 1 for all i ∈ S:

F(∅, S) :=
⎧
⎨

⎩
x ∈ {0, 1}N\S , w ∈ R :

∑

i∈N\S

ai xi ≥ g(w) − a(S)

⎫
⎬

⎭
·

It follows from (6) that

w ≤ h(S) +
∑

i∈N\S

ρi (S)xi (8)

is valid for F(∅, S). It is easily checked that (8) defines a facet of conv(F(∅, S)).
Inequality (8) can be extended to a valid inequality for F by lifting it with xi , i ∈ S.
Toward this end, we write the corresponding lifting function

ζ(δ) := max w − ∑

i∈N\S
ρi (S)xi − h(S)

(L : S) s.t.
∑

i∈N\S
ai xi ≥ g(w) − a(S) − δ

x ∈ {0, 1}N\S, w ∈ R,

for δ ∈ R−. From Proposition 4, the lifting problem (L : S) involves maximization
of a submodular function, which is NP-hard in general. Nevertheless, as we show
next, this particular submodular maximization problem can be solved efficiently by
the greedy algorithm. We introduce some notation to describe the algorithm and ζ(δ)

explicitly. Let N\S =: {1, 2, . . . , m}, be indexed so that a1 ≥ a2 ≥ · · · ≥ am and let
Ak = ∑k

i=1 ai for k = 1, . . . , m, with A0 = 0.

Proposition 5 Algorithm Greedy(L:S) solves problem (L : S).

Proof Let (x, w) be an optimal solution to (L : S) and T = {i ∈ N\S : xi = 1}.
Suppose T does not satisfy the greedy order; that is, ai > a j for some j ∈ T and
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Algorithm 1 Greedy(L:S)
1: k = 0; x = 0;
2: while k < m and Ak + δ < 0 do
3: k = k + 1; xk = 1;
4: end while
5: w = f (a(S) + Ak + δ);

i �∈ T . Then, consider the solution T ′ = T ∪ i\ j and the corresponding objective
values z and z′ for these solutions. We have

z′ − z = f (a(T ) + a(S) + δ + ai − a j ) − f (a(T ) + a(S) + δ) − ρi (S) + ρ j (S)

= f (a(T ) + a(S) + δ + ai − a j ) − f (a(T ) + a(S) + δ)

− f (a(S) + ai ) + f (a(S) + a j )

= [
f (a(S) + ai + a(T ) − a j + δ) − f (a(S) + ai )

]

− [
f (a(S) + a j + a(T ) − a j + δ) − f (a(S) + a j )

]

Then, because ai > a j and f is concave, z′ ≥ z if and only if a(T \ j) + δ ≤ 0.

Claim. Inequality a(T \i) + δ ≤ 0 holds for all i ∈ T .

Suppose 	 := a(T ) − ai + δ > 0 for some i ∈ T . Consider the solution T ′′ = T \i
and its objective value z′′. Then

z′′ − z = f (a(T ) + a(S) − ai + δ) − f (a(T ) + a(S) + δ) + ρi (S)

= [ f (a(S) + ai ) − f (a(S))] − [( f (a(S) + ai + 	) − f (a(S) + 	)] > 0,

where the inequality follows from 	 > 0 and strict concavity of f . However, this
contradicts the optimality of T .

Claim. Either a(T ) + δ ≥ 0 or T = N\S.

Suppose 	 := a(T ) + δ < 0 and T �= N\S; and let i ∈ N\(S ∪ T ). Consider the
solution T̄ = T ∪ i and its objective value z̄. Then

z̄ − z = f (a(S) + a(T ) + ai + δ) − ρi (S) − f (a(S) + a(T ) + δ)

= [( f (a(S) + ai + 	) − f (a(S) + 	)] − [ f (a(S) + ai ) − f (a(S))] > 0,

where the inequality follows from 	 < 0 and strict concavity of f . However, this
contradicts the optimality of T . 	


It follows from Proposition 5 that the optimal value of the lifting problem (L : S)

can be stated as
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Fig. 2 Lifting function ζ , its
concave upper envelope γ , and
the coefficients γ̂ of inequality
(6)

-A5  -A4          -A3                   -A2                            -A1                                    0

ζ(δ) = f (a(S) + Ak + δ) −
k∑

i=1

ρi (S) − f (a(S)),

for −Ak ≤ δ ≤ −Ak−1, k = 1, . . . , m.
The lifting function ζ is continuous on R− and concave on each interval

[−Ak,−Ak−1], k = 1, . . . , m (see Fig. 2). However, it is not subadditive on R−.
In order to construct a subadditive and, therefore, sequence-independent lifting func-
tion [2,10,28], we consider the concave upper envelope of ζ . Let

γ (δ) :=
{

ζ(μk − Ak−1) − ρk(S)
bk (δ)

ak
, if μk − Ak ≤ δ ≤ μk − Ak−1,

ζ(δ), otherwise,

where μk = g((g′)−1(ak/ρk(S))) − a(S) and bk(δ) = μk − Ak−1 − δ for
k = 1, . . . , m.

Proposition 6 γ is the concave upper envelope of ζ over R−.

Proof Let γ̄ (δ) be the upper bound of ζ(δ) obtained by dropping the integrality restric-
tions in the lifting problem (L : S). That γ̄ is a concave upper bound of ζ follows
from the fact that it is the continuous relaxation of the lifting function, which is a
parametric convex optimization problem. Because ordering variables in nonincreas-
ing ρi (S)/ai is the same as ordering them in nonincreasing ai , from Proposition 2,
we see that x variables are increased in the same greedy order in the exact lifting
problem as well as in its continuous relaxation. Furthermore, from Proposition 2, for
a given δ if the optimal solution (x, w) has an index k ∈ N such that 0 < xk < 1,
then 1/g′(w) = ρk(S)/ak , and otherwise x is integral, in which case, the continuous
relaxation is exact, i.e., γ̄ (δ) = ζ(δ). In the former case, because the value of w is
fixed as (g′)−1(ak/ρi (S)) as δ varies in the interval μk − Ak ≤ δ ≤ μk − Ak−1,
the function γ̄ (δ) changes linearly with slope ρk(S)/ak . Because γ̄ (δ) > ζ(δ) for
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μ1 − A1 ≤ δ ≤ 0, we have

γ (δ) =
{

ζ(δ), if μ1 − A1 ≤ δ ≤ 0,

γ̄ (δ), otherwise.

As ζ and γ̄ are concave over these intervals, we have that γ is a concave upper bound
on ζ .

That γ cannot be improved follows from γ (δ) = λζ(μk − Ak−1)+ (1 −λ)ζ(μk −
Ak) for δ = λak + μk − Ak−1 and 0 ≤ λ ≤ 1, i.e., γ (δ) is the convex combination of
some ζ(δ′) and ζ(δ′′) whenever γ (δ) > ζ(δ). 	

Lemma 1 [12, p. 239] A concave function ϕ : R+/R− → R is subadditive if and
only if ϕ(0) ≥ 0.

Because γ ≥ ζ and from Lemma 1 it is subadditive on R−, we have

ζ

(
∑

i∈S

−ai x̄i

)

≤ γ

(
∑

i∈S

−ai x̄i

)

≤
∑

i∈S

γ (−ai )x̄i

implying the subadditive lifting inequality

w ≤ h(S) +
∑

i∈S

γ (−ai )(1 − xi ) +
∑

i∈N\S

ρi (S)xi (9)

is valid for F . A sufficient condition on the strength of the inequalities follows from
the lifting argument.

Proposition 7 Inequality (9) is facet-defining for conv(F) if γ (ai ) = ζ(ai ) for all
i ∈ S.

The next proposition shows that inequalities (9) are sufficient to cut off all fractional
extreme points of the continuous relaxation of F .

Proposition 8 Inequalities (9) cut off all fractional extreme points of relax(F).

Proof Let (x, w) be a fractional extreme point of relax(F). From Proposition 2, 0 <

xk < 1 for some k ∈ N , xi = 1 for T ⊆ N\k, and xi = 0 for i ∈ N\(T ∪ k) and
g(w) = a(T ) + ak xk . Let us evaluate inequality (9) with S = T for (x, w):

f (a(T ) + ak xk) ≤ f (a(T )) − ( f (a(T ) + ak) − f (a(T ))) xk

= (1 − xk) f (a(T )) + xk f (a(T ) + ak).

But this is not valid due to strict concavity of f . 	

Proposition 9 For each S ⊆ N inequality (9) implies inequality (6).
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Proof For a ≤ 0 letting γ̂ (a) := f (a(N )+a)− f (a(N )), we see that the coefficients
−ρi (N\i) = γ̂ (−ai ), i ∈ N\S. Because γ̂ (0) = γ (0) = 0, it is sufficient to show
that γ ′(a) ≥ γ̂ ′(a) for a ≤ 0 to establish γ (a) ≤ γ̂ (a) on R−.

For all a ≤ 0, γ̂ ′(a) = f ′(a(N ) + a). On the other hand,

γ ′(a) =
{

ρk(S)/ak if μk − Ak ≤ a ≤ μk − Ak−1,

f ′(a(S) + Ak + a) otherwise.

As f is concave and a(S)+ Ak ≤ a(N ), we have f ′(a(S)+ Ak +a) ≥ f ′(a(N )+a).
On the other hand, for μk − Ak ≤ a ≤ μk − Ak−1, by concavity of γ̂ and linearity of
γ on this interval, it suffices to observe that γ ′(μk − Ak) ≥ γ̂ ′(μk − Ak). To see this,
recall that by definition of μk , we have g(w) = μk +a(S) for w = (g′)−1(ak/ρk(S)).
Then

g′(w) = ak

ρk(S)
= 1

f ′(g(w))

(
as g = f −1

)

and f ′(μk + a(S)) = ρk(S)/ak . Then,

γ ′(μk − Ak) = f ′(μk + a(S)) ≥ f ′(a(N ) − Ak + μk) = γ̂ ′(μk − Ak)

by concavity of f . 	

The function γ̂ is compared with the subadditive lifting function γ in Fig. 2.

3.3 Inequalities from the restriction F(N\S,∅)

Consider the restriction of F , this time, by setting xi = 0 for all i ∈ N\S:

F(N\S,∅) =
{

x ∈ {0, 1}S , w ∈ R :
∑

i∈S

−ai (1 − xi ) ≥ g(w) − a(S)

}

·

It follows from (7) that

w ≤ h(S) −
∑

i∈S

ρi (S\i)(1 − xi ) (10)

is valid for F(N\S,∅). Furthermore, (10) is facet-defining for conv(F(N\S,∅)).
Inequality (10) can be extended to a valid inequality for F , this time by lifting it with
xi , i ∈ N\S. To do so we compute the lifting function

ξ(δ) := max w + ∑

i∈S
ρi (S\i)(1 − xi ) − h(S)

(L : N\S) s.t.
∑

i∈S
−ai (1 − xi ) ≥ g(w) − a(S) − δ

x ∈ {0, 1}S , w ∈ R
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for δ ∈ R+. Although the lifting problem (L : N\S) is a maximization of a sub-
modular function, similar to problem (L : S), it can also be solved efficiently by
the greedy algorithm. In order to describe the algorithm and state ξ(δ) explicitly, let
S =: {1, 2, . . . , r}, be indexed so that a1 ≥ a2 ≥ · · · ≥ ar and let Ak = ∑k

i=1 ai for
k = 1, . . . , r , with A0 = 0.

Algorithm 2 Greedy(L:N\S)
1: k = 0; x = 1;
2: while k < r and Ak < δ do
3: k = k + 1; xk = 0;
4: end while
5: w = f (a(S) − Ak + δ);

Proposition 10 Algorithm Greedy(L:N\S) solves problem (L : N\S).

Proof Let (x, w) be an optimal solution to (L : N\S) and T = {i ∈ S : xi = 0}.
Suppose T does not satisfy the greedy order; that is, ai > a j for j ∈ T and i �∈ T .
Then, consider the solution T ′ = T ∪ i\ j and the corresponding objective values z
and z′ for these solutions. We have

z′ − z = f (a(S\T ) − ai + a j + δ) − f (a(S\T ) + δ)

+ f (a(S)) − f (a(S\i)) − f (a(S)) + f (a(S\ j))

= [ f (a(S\i) − a(T \ j) + δ) − f (a(S\ j) − a(T \ j) + δ)]

− [ f (a(S\i)) − f (a(S\ j))]

Then, because ai > a j and f is concave, z′ ≥ z if and only if a(T \ j) − δ ≤ 0.

Claim. Inequality a(T \i) ≤ δ holds for all i ∈ T .

Suppose 	 := a(T \i) − δ > 0 for some i ∈ T . Consider the solution T ′′ = T \i and
its objective value z′′. Then

z′′ − z = f (a(S\T ) + ai + δ) − f (a(S\T ) + δ) − ( f (a(S)) − f (a(S\i)))

= [ f (a(S) − 	) − f (a(S\i) − 	)] − [ f (a(S)) − f (a(S\i))] > 0,

where the inequality follows from 	 > 0 and strict concavity of f , contradicting the
optimality of T .

Claim. Either a(T ) ≥ δ or T = S.

Suppose 	 := δ − a(T ) > 0 and T �= S; and let i ∈ S\T . Consider the solution
T̄ = T ∪ i and its objective value z̄. Then

z̄ − z = f (a(S\T ) − ai + δ) + ρi (S\i) − f (a(S\T ) + δ)

= [ f (a(S)) − f (a(S\i))] − [ f (a(S) + 	) − f (a(S\i) + 	)] > 0,

where the inequality follows from 	 > 0 and strict concavity of f . However, this
contradicts the optimality of T . 	
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By Proposition 10 the optimal value of the lifting problem (L : N\S) equals

ξ(δ) = f (a(S) − Ak + δ) +
k∑

i=1

ρi (S\i) − f (a(S)),

for Ak−1 ≤ δ ≤ Ak and k = 1, . . . , r .
The lifting function ξ is continuous on R+ and is concave on each interval [Ak−1,

Ak], k = 1, . . . , r . However, it is not subadditive. In order to construct a subadditive
lifting function, this time we consider the concave upper envelope of ξ . Let

ω(δ) :=
{

ξ(Ak − νk) − ρi (S\k)
bk (δ)

ak
, if Ak−1 − νk ≤ δ ≤ Ak − νk,

ξ(δ), otherwise,

where νk = a(S)−g((g′)−1(ak/ρk(S\k))) and bk(δ) = Ak −νk −δ for k = 1, . . . , r .

Proposition 11 ω is the concave upper envelope of ξ over R+.

The proof of Proposition 11 is similar to that of Proposition 6 and is omitted for
brevity. As ω ≥ ξ and it is subadditive on R+ by Lemma 1, we have

ξ

⎛

⎝
∑

i∈N\S

ai xi

⎞

⎠ ≤ ω

⎛

⎝
∑

i∈N\S

ai xi

⎞

⎠ ≤
∑

i∈N\S

ω(ai )xi

and therefore the subadditive lifting inequality [2,10,28]

w ≤ h(S) −
∑

i∈S

ρi (S\i)(1 − xi ) +
∑

i∈N\S

ω(ai )xi (11)

is valid for F . From the lifting argument a sufficient facet condition follows.

Proposition 12 Inequality (11) is facet-defining for conv(F) if ω(ai ) = ξ(ai ) for all
i ∈ N\S.

Similar to (9), lifting inequalities (11) are sufficient to cut off all fractional extreme
points of the continuous relaxation of F as well.

Proposition 13 Inequalities (11) cut off all fractional extreme points of relax(F).

Proposition 14 For each S ⊆ N inequality (11) implies inequality (7).

The proofs of Propositions 13 and 14 are similar to that of Propositions 8 and 9 and
are omitted for brevity.
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4 Constraint generation

In this section we describe how to generate the inequalities discussed in the previ-
ous section on-the-fly within a branch-and-bound algorithm. Given a point (w̄, x̄) ∈
R− × R

N+ if x̄ ∈ {0, 1}N , then separation is trivial: the corresponding inequality with
S = {i ∈ N : x̄i = 1} is violated if and only if w̄ > h(S). An exact separation for
binary x̄ ensures that w ≤ h(S) holds for all S ⊆ N and, thus, the algorithm terminates
with a correct solution.

On the other hand, if x̄ �∈ {0, 1}N , we employ a heuristic scheme to cut off x̄ . In
this case, in order to find violated cuts we follow a hierarchical approach, in which we
first search for violated inequalities of the form

w ≤ h(S) +
∑

i∈N\S

ρi (S)xi (12)

and

w ≤ h(S) −
∑

i∈S

ρi (S\i)(1 − xi ) (13)

and then write the corresponding cuts (6) and (7), or (9) and (11) for the chosen subset
S.

We first consider inequality (12). For a given (w̄, x̄), we are interested in finding a
set S ⊆ N that maximizes the violation of the inequality

w̄ ≤ h(S) −
∑

i∈N\S

ρi (S)x̄i .

To simplify the problem, we divide the constraint by h(S) and approximate ρi (S)
h(S)

as
ρi (∅)
h(∅)

. If necessary by adding a constant to f , we may assume that f (0) = h(∅) > 0.
Note that this approximation is exact for the exponential utility function because

ρi (S)

h(S)
= e−a(S∪i) − e−a(S)

e−a(S)
= (e−ai − e0)

1
= ρi (∅)

h(∅)
·

Then, for finding a violated inequality we can write the following maximization prob-
lem

max
S⊆N

∑

i∈N\S

ρi (∅)

h(∅)
x̄i + w̄

1

h(S)
· (14)

Introducing z ∈ {0, 1}N as the indicator of S, problem (14) is equivalent to

max
z∈{0,1}N

∑

i∈N

ρi (∅)

h(∅)
x̄i (1 − zi ) + w̄

1

f (az)
· (15)
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Since 1/ f is convex and decreasing and w̄ < 0, (15) is a submodular maximization
problem of the form (3).

For inequalities (13), given (w̄, x̄), we search for a set S ⊆ N that maximizes the
violation of the inequality

w̄ ≤ h(S) −
∑

i∈S

ρi (S\i)(1 − x̄i ). (16)

This time, by approximating ρi (S\i)
h(S)

as ρi (∅)
h(i) , which is also exact for the exponential

utility function, we can write a similar submodular maximization problem of the form
(3):

max
z∈{0,1}N

∑

i∈N

ρi (∅)

h(i)
(1 − x̄i )zi + w̄

1

f (az)
·

In our implementation, we find heuristic solutions to the separation problems (15)
and (17) by rounding up and rounding down their continuous relaxation solutions
described in Proposition 2 in a greedy fashion.

5 Computations

In this section we describe our computational experiments with using the inequalities
of Sect. 3 for solving an expected utility maximization problem in capital budget-
ing. As in Sect. 1, for a set N of investment options, let a j , j ∈ N , be the capital
requirements. Let vi ∈ R

N be the value of investments at some future time under sce-
nario i with probability πi , i = 1, . . . , m. Then, using the exponential utility function
1 − exp(z/λ) with risk tolerance λ, the expected utility maximization problem can be
stated as

max

{
m∑

i=1

πi

(
1 − exp

(
−vi x

λ

))
: ax ≤ 1, x ∈ {0, 1}N

}

,

where, by scaling, we let the available budget for investments equal to 1.
Introducing a continuous variable wi ∈ R for each scenario i , we can rewrite the

problem equivalently as

1 + max
{
πw : ax ≤ 1, wi ≤ − exp

(
−vi x

λ

)
, i = 1, . . . , m, x ∈ {0, 1}N

}
(17)

so that each utility constraint defines a set of the form F . Thus the utility constraints
can be reformulated into linear inequalities using the submodular inequalities (6), (7)
or the lifted inequalities (9), (11).
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5.1 Data generation

The data set for the experiments are generated as follows. The capital requirements
(ai ’s) are generated from a continuous uniform distribution in between 0 and 0.2. As is
customary in the financial literature, in order to compute the future values, we use a fac-
tor model for investment returns. It is well-established that the nonnegative, skewed,
and fatter-tailed lognormal distribution describes investment returns better than the
normal distribution. Therefore, we draw Monte Carlo samples from the lognormal
return distribution using a single factor model

ln r j = α j + β j ln f + ε j , j ∈ N ,

where f is the lognormal factor return (say, return of the overall market or industry), α j

is the active return, β j ln f is the passive return component, and ε j is the normal error
with mean zero. For j ∈ N we generate α j from a continuous uniform distribution in
between 0.05 and 0.10 and β j from a continuous uniform distribution in between 0 and
1. For scenario i (i = 1, . . . , m) we draw ln fi from Normal(0.05, 0.0025) and εi j from
Normal(0, 0.0025). Consequently, the value of investment j ∈ N under scenario i is

vi j = ri j a j

with probability πi = 1/m for i = 1, . . . , m.

5.2 Experiments

In order to test the effectiveness of inequalities we generate five random instances as
described above for varying number of variables (n), scenarios (m), and risk tolerances
(λ). All experiments are performed using the MIP solver of CPLEX Version 11.0 on a
3.12 GHz × 86 Linux workstation with 1GB main memory. The search tree size limit
is set to 1 GB. In the implementation, we approximate the exponential utility function
using 2.72 for the irrational number e. By default, a solution is reported as optimal if
the optimality gap is within 0.01%.

In Table 1 we present a summary of our experiments with submodular inequalities
and lifted inequalities. For varying number of variables (n), scenarios (m), and risk
tolerances (λ), we report the number of cuts added (cuts), the percentage integrality
gap at the root node (rgap), percentage gap between the best known upper bound and
lower bound at termination (egap), the number of branch-and-bound nodes explored
(nodes), and the CPU time spent in seconds (time). Each row of the table represents
the average of five instances.

An immediate observation in Table 1 is that the risk tolerance (λ) is the most critical
factor affecting the bounds, consequently the solution quality and overall performance.
The higher the λ, the lesser is the investor’s risk aversion. As risk aversion increases
with smaller λ, the nonlinearity of the objective becomes more of an acute problem
leading to weaker bounds. This observation is consistent for small as well as large
instances. The number of the variables and scenarios does not appear to have a signifi-
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Table 1 Comparing submodular and lifted formulations

n m λ Submodular ineqs. (6) & (7) Lifted ineqs. (9) & (11)

Cuts Rgap Egap Nodes Time Cuts Rgap Egap Nodes Time

1 18706 26.25 14.71 23912 467 1414 2.61 0.01 2517 4
1 2 16451 8.94 3.18 47479 673 33 0.23 0.01 390 0

4 1852 2.04 0.01 22734 35 8 0.04 0.01 136 0
1 99523 27.59 21.11 3546 1069 32193 2.37 0.43 9718 684

25 25 2 92243 9.26 5.87 3710 935 768 0.33 0.01 899 6
4 46578 2.20 0.71 8673 682 200 0.04 0.01 316 4
1 174168 27.69 22.56 2428 1875 81870 2.33 0.88 4034 1701

100 2 152438 9.25 6.49 2615 1751 2918 0.34 0.01 1335 27
4 114962 2.21 1.06 3151 1793 800 0.03 0.01 175 14
1 11882 27.35 23.96 22981 458 2346 2.42 0.01 31742 116

1 2 9734 9.20 6.91 28433 355 27 0.25 0.01 465 0
4 4788 1.77 0.82 68107 297 8 0.03 0.01 218 0
1 77279 28.59 27.58 3232 987 45196 3.35 2.23 4845 736

50 25 2 67904 7.14 6.59 3438 859 1412 0.49 0.01 2727 18
4 49458 2.36 2.05 5018 717 200 0.02 0.01 402 8
1 122013 28.61 27.76 2634 1318 76344 3.54 2.44 2995 1204

100 2 97762 9.79 9.23 2737 1044 8401 0.47 0.03 7025 339
4 87268 2.56 2.32 2884 1184 800 0.02 0.01 325 36
1 56871 26.17 24.52 34171 625 4470 2.44 0.85 54689 239

1 2 11704 8.79 7.66 23266 580 40 0.17 0.01 708 1
4 6317 2.07 1.62 45181 297 8 0.02 0.01 362 1
1 77211 28.34 27.77 5853 1482 47324 2.23 1.86 5155 728

100 25 2 66259 9.64 9.26 3354 1330 9720 0.67 0.13 27092 556
4 57065 2.28 2.18 3984 927 200 0.02 0.01 407 18
1 96124 28.52 28.06 3186 1713 75766 3.10 2.64 3042 1035

100 2 83281 9.59 9.34 3027 1058 28849 0.57 0.23 6925 899
4 83989 2.36 2.28 3041 979 801 0.01 0.00 796 91

cant effect on the quality of the bounds. Additional experiments with controlling other
parameters of the model (α’s, β’s, and variability) have shown that the effect of these
parameters on the bounds and the performance of the algorithm is not as significant
as the risk tolerance parameter λ.

Out of the 135 instances only 6 of the smallest instances are solved to optimality
within the computational limits using the standard submodular formulation. All of the
unsolved instances terminated due to memory limit of 1GB. For instances with 100
variables, the difference between the gaps at the root node and at termination is less
than 2%, indicating that no substantial progress was achieved to reduce the optimality
gap even after extensive branching. The average root gap is 13.0% and the average
optimality gap at termination is 10.9%. From these results it is clear that the standard
submodular formulation is not effective in tackling this problem except for very small
instances or when the investor is close to being risk-neutral.

On the other hand, when formulated using the lifted inequalities the integrality gap
at the root node and the search tree size are much smaller. Of the 135 instances 96 are
solved to optimality. The average root gap is reduced from 13.0 to only 1.0% and the
average optimality gap at termination is reduced from 10.9 to only 0.4%.
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Table 2 Average of coefficients (n = 25, m = 100, λ = 1)

Inequalities (6) & (9) Inequalities (7) & (11)

−ρi (N\i) γ (−ai ) ζ(−ai ) Imp(%) ρi (∅) ω(ai ) ξ(ai ) Imp(%)

−0.112 −0.288 −0.292 98.88 1.478 0.398 0.396 99.78

The comparison in Table 1 illustrates that the strengthening of the submodular
inequalities through subadditive lifting is quite effective. In order to have a closer
look at how much strengthening is achieved in the coefficients, in Table 2 we report
the average of coefficients computed while running the algorithm for the instances
with 25 variables, 100 scenarios and risk aversion λ = 1. Recall that the coefficients
−ρi (N\i) of the submodular inequality (6) are improved to γ (−ai ) in the subadditive
lifting inequality (9), whereas ζ(−ai ) is the lower bound given by the lifting func-
tion ζ . In the table we see that 98.88% of the gap between −ρi (N\i) and ζ(−ai ) is
closed by the subadditive lifting coefficients. Similarly, the coefficients ρi (∅) of the
submodular inequality (7) are improved to ω(ai ) in the subadditive lifting inequal-
ity (11), whereas ξ(ai ) is the lower bound given by the lifting function ξ . Here we
observe that 99.78% of the gap between ρi (∅) and ξ(ai ) is closed by the subadditive
lifting coefficients. The magnitude of the difference between the coefficients of the
submodular inequalities and the lifted inequalities is helpful in explaining the relative
effectiveness of the inequalities observed in Table 1.

6 Concluding remarks

In this paper we studied a mixed-integer set that arises in combinatorial optimiza-
tion problems with submodular utility maximization objectives, such as risk-averse
capital budgeting under uncertainty, competitive facility location, and combinatorial
auctions. The classical submodular reformulation of such problems into mixed 0-1
programming appears to be computationally ineffective due to its weak linear pro-
gramming relaxation. In order to address this difficulty we strengthen the coefficients
of the submodular inequalities by subadditive lifting that exploits the special structure
of the particular submodular function. Computational experiments on expected utility
maximization in capital budgeting show the effectiveness of the new formulation.
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