
IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING, VOL. XX, NO. XX, XX 2014 1

Maximizing a Record’s Standing in a Relation
Yilun Cai, Yu Tang, and Nikos Mamoulis

Abstract—Given a database table with records that can be ranked, an interesting problem is to identify selection conditions for the table,

which are qualified by an input record and render its ranking as high as possible among the qualifying tuples. In this paper, we study

this standing maximization problem, which finds application in object promotion and characterization. After showing the hardness of the

problem, we propose greedy methods, which are experimentally shown to achieve high accuracy compared to exhaustive enumeration,

while scaling very well to the problem input size. Our contributions include a linear-time algorithm for determining the optimal selection

range for an ordinal attribute and techniques for choosing and prioritizing the most promising selection predicates to apply. Experiments

on real datasets confirm the effectiveness and efficiency of our techniques.

Index Terms—Standing Maximization Problem, NP-Hardness, Relational Databases.

✦

1 INTRODUCTION

Certain classes of database operations, like top-k [6]
and skyline queries [2], rank the records in a relation
according to their values in some attributes and/or user
preference functions. With the help of such queries,
superior objects can be identified. However, there may
be objects, which stand-out not among all their peers,
but only among records which qualify certain selection
conditions. Finding these conditions helps identifying
the criteria that make a given object important and
facilitate its characterization and promotion.

TABLE 1

A relation with CS PhD graduates

name age location expertise publications

Brown 30 N. America systems 14
Smith 27 N. America databases 8
Suzuki 32 Asia theory 9
Müller 28 Europe theory 15
Dubois 26 Europe systems 12
Martin 31 Europe databases 17
Kim 28 Asia databases 10
Chen 26 Asia theory 12
Gupta 26 Asia systems 13

As an example, consider the relation shown in Table 1,
which stores information about CS PhD graduates. As-
suming that the last attribute (publications) is used as a
measure for the quality of the graduates, Kim does not
have a good ranking. However, if we restrict the relation
to include just Kim and Smith, then Kim ranks 1st in
this set; the restriction can be imposed by the selection
conditions (age < 30) and (expertise = ‘databases’).

Problem Definition. Motivated by this observation, in
this paper we study the standing maximization problem
(SMP), which takes as input a relation R(D;M), a query

• Y. Cai, Y. Tang, and N. Mamoulis are with the Department of Computer
Science, University of Hong Kong.
E-mail: ylcai@cs.hku.hk, ytang@cs.hku.hk, nikos@cs.hku.hk

tuple tq ∈ R, and a support threshold sup, 0 < sup ≤ 1.
R.D is a set of predicate attributes and R.M is used as
the measure attribute for ranking the tuples in R. Without
loss of generality, we assume that if t.M > t′.M , for two
tuples t, t′ ∈ R, then t is considered better than t′. The
objective is to find a conjunction of selection predicates C
on R.D, such that (i) tq is included in σCR, (ii) there are
at least sup · |R| tuples in σCR, and (iii) the percentile rank
pr(tq, σCR) is maximized. pr(tq, σCR) is the percentage
of tuples in set σCR whose values on R.M are smaller
than or equal to tq.M .

SMP basically strives to identify a set of selection
predicates that maximize the input tuple’s tq ranking
among those that qualify the predicates. In the example
of Table 1, tq = Kim could be an individual who, using
our query, wants to promote herself in job applications
using publications as a measure. By identifying se-
lection predicates that make her stand-out among all
graduates that qualify the predicates, Kim can advertise
herself using the most appropriate features (e.g., she is
the best among people in her age group and expertise).
The support threshold sup guarantees that there are
enough tuples in the selection result for the ranking to
have statistical significance. An appropriate value for sup
can be chosen using similar methods as for the mining
association rules problem. In addition, we require that
there is a single predicate for each attribute; a disjunction
of predicates can include tuples which are inferior to tq ,
but together with tq they may not form a natural group.
For example, the predicate-set (age > 26), (location =
‘Asia’ or ‘N. America’) and (expertise = ‘databases’ or
‘theory’) returns tuples {Smith, Suzuki, Kim}, in which
Kim prevails, however, the predicates do not define
a natural group of tuples with a concise description.
SMP and the proposed techniques in this paper are not
restricted to using a given ranking attribute R.M ; any
arbitrary criteria could be used for ranking the records.

Applications. Object promotion is the main application
of the SMP query; still, there are additional uses of

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING, VOL. XX, NO. XX, XX 2014 2

an SMP query result. First, the result can be used to
characterize the input object among its peers, by finding
out what is special about it. Second, by identifying the
selection conditions that make the object stand-out, we
also identify its competitors (i.e., the peers that also sat-
isfy these conditions) and we are able to assess the effort
required to improve its rank (e.g., how many additional
publications Kim would need to become first in her age
group). The two examples that follow illustrate the real-
life applicability of SMP.

Example 1 (University Ranking): A PR officer of the
Hong Kong University of Science and Technology
(HKUST) would like to promote HKUST as a promi-
nent university. By checking a world university ranking
(www.topuniversities.com) he realizes that HKUST only
ranks 33rd among all universities. However, further
analysis reveals that HKUST is the top university among
all universities that are aged under 50 (i.e., universities
established within (1963, 2014]).

Example 2 (E-commerce): A car owner wants to sell his
car via a second-hand auto trading website, but the
price he sets is quite high, which does not make the car
attractive to potential buyers. However, with the help of
an SMP query, he discovers that his car is actually the
second cheapest one among those cars that are made by
BMW and they have mileage less than 10,000 miles. The
car owner now has more specific information to put in
his ad in order to promote his car; he may even make a
minor adjustment to the price in order to make his car
the cheapest in its group.

Contributions. We show that SMP is a hard problem,
due to the exponential number of predicate combina-
tions that should be considered. In addition, in this
paper we focus on solving SMP for the case where the
selection attributes are ordinal, which renders the space
of possible predicates for a given attribute quadratic to
the attribute’s domain size. In view of this, we propose
greedy methods which explore the search space only
partially, striving to identify a sub-optimal SMP solution
of high quality. Our first method, BA, greedily picks the
most promising attribute and the best selection predicate
on it at a time; while this method is extremely fast,
it explores a very limited part of the search space.
Our second method, DBA, extends BA to consider a
small number of predicates for the (greedily) best at-
tribute at a time. Finally, EDBA considers all possible
attribute orderings and a small number of predicates
for each of them. Our contributions include a linear-
time algorithm for determining the optimal selection
range for an ordinal attribute (used by all our methods)
and techniques for choosing and prioritizing the most
promising selection predicates to apply (in DBA and
EDBA). As we demonstrate experimentally, EDBA finds
a solution with quality close to the optimal, while being
orders of magnitude faster than the baseline solution.
BA and DBA trade time with quality; they are faster
than EDBA but their results are not as good. EDBA can

also be applied as a progressive algorithm which, if given
more time, improves its result, and can be stopped as
soon as the user is happy with the solution found so far.

Outline. The rest of the paper is organized as follows.
Section 2 reviews related work. Section 3 outlines base-
line solutions for SMP, which compute the problem
exactly but are too expensive to be practical, and presents
our proposed methods for finding an approximate so-
lution to SMP fast. Section 4 includes an experimental
evaluation and Section 5 concludes the paper.

2 RELATED WORK

Rank-based Analysis and Query by Output. Das et
al. [4] study the problem of identifying a small set of
attributes in a relation which are the most influential in
the ranking of the results of a given query. Our problem
is different, since we are trying to define selection con-
ditions that maximize a given record’s standing. Tran
et al. [11] investigate the problem of finding an SQL
statement that produces results which include a given
set T of input tuples. This problem is relevant to ours;
however, in our case T is not predefined, and it could be
any query result that includes our input object and other
objects that are (mostly) inferior to it. Miah et al. [8] aim
at finding a set of attributes that maximize the retrieval
hit of a target tuple given a query workload (again, a
different problem to SMP).

Promotion Analysis. The most related previous work
to ours [15], [16] studies a generalization of SMP: for
each object there could be multiple tuples in the relation
and after applying the selection condition, the tuples that
correspond to each object are aggregated to a single score
based on which the objects are ranked. In contrast, in
our setting, there is a single value for each object in the
measure attribute and selection conditions do not affect
the measure and the ranking. Wu et al. [16] solve this
generalized SMP for the case where all attributes are
binary or categorical. Given the high cost of exploring
the possible selection conditions, they resort to a materi-
alization approach. For each subspace (i.e., combination
of values for a subset of attributes), a summary of the
objects’ ranking score distribution is precomputed and
materialized. Given a query object, every subspace is
examined and the materialized ranking information is
used to derive an lower/upper bound of the query
object’s ranking in the subspace. For subspaces which
cannot be pruned, the exact ranking of the query object
is computed and it is determined whether the subspace
can be returned as a result or not. In [15], this framework
is extended to also consider ordinal attributes. Although
the materialization and exploration approaches of [16]
and [15] can directly be used to solve SMP, they have
very high storage requirements and their cost is ex-
tremely high, as we demonstrate in Section 4. A variant
of the problem, where only a fixed number of subspaces
is considered instead of the whole set of subspaces, is

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING, VOL. XX, NO. XX, XX 2014 3

studied in [17]: an approximate solution to the orig-
inal problem is derived (considering binary attributes
only). All solutions above explore a large number of
subspaces, thus they have a high cost. Finally, a similar
(but different) problem to SMP is studied in [10]: given
an ever-growing append-only table, the problem is to
incrementally answer, for each new tuple entering the
table, the subspaces where this new tuple belongs to
and becomes a skyline object, in the context of multiple
measure attributes. The basic idea is to maintain the set
of skyline tuples by far and compare the new tuple with
each skyline tuple, while in SMP our goal is to identify
the subspaces where the query tuple t is ranked as
high as possible, provided that the size of the subspace
satisfies the support threshold. Moreover, the selection
predicates considered in [10] are all categorical, while in
our work we focus on ordinal selection predicates.

Query Refinement. Given a set of user-specified outliers
in an aggregate query result, Wu and Madden [14] study
the problem of finding predicates that cause the presence
of these outliers; the motivation is to remove the tuples
generated by these predicates and thus eliminate the
outliers. The predicates investigated in [14] only apply
to the tuples that compute the selected outlier results,
while in our work the predicates affect the whole input.
Furthermore, different to our problem settings, [14] focus
on aggregate queries. Mishra and Koudas [9] investigate
how to refine the predicates of a query, in order for the
query results to satisfy certain user-specified cardinality
constraints. This can be done by estimating the selectiv-
ity of predicates. The only constraint considered in [9]
is the query output size, while in SMP, we also aim at
maximizing the percentile rank of a given record.

Reverse top-k queries. A reverse top-k query [12] finds
the weights to be given to attributes of a relation in a
top-k (i.e., preference) query, in order for a given object
to be in the top-k result. Based on the reverse top-k
definition, Vlachou et al. [13] also define and solve the
problem of finding the top-m most influential products
(which appear in the top-k sets of most preference
queries). Arvanitis et al. [1] investigate the similar prob-
lem of finding the set of customers that consider a given
product attractive, based on their preferences. Das et
al. [5] study how to automatically provide a meaningful
interpretation of the average rating of a given item (e.g.,
a movie in IMDB), by identifying the features of the
users that rated the item (e.g., males under 30 gave
consistently high ratings). Lappas et al. [7] introduce
the concept of competitiveness between products based
on the relationships between the sets of their potential
customers, and propose an algorithm for finding the top-
k competitors of a given item. All works above study
different problems; their techniques cannot solve SMP.

3 METHODOLOGY

Before presenting our solutions to SMP, we elaborate on
the problem’s input. The predicate attributes in R.D can

be of three types: (i) ordinal, (ii) hierarchical, (iii) and
binary/categorical. If an attribute is of ordinal type (e.g.,
age), we can define an equality (e.g., age = 28) or a
range predicate on it (e.g., 26 ≤ age ≤ 28). For hierar-
chical attributes, we assume that there is a hierarchy of
values (e.g., derived by joining R with another table). For
example, the location attribute could be hierarchical,
since locations can be generalized. Thus, R may store lo-
cations at the lowest granularity (e.g., city), which could
be generalized (e.g., to county, state, country, continent).
For such attributes, an equality predicate can be applied
at any granularity of the hierarchy which includes the
value of tq (e.g., location = Boston, location =
USA). Finally, for binary and categorical attributes the
only possible predicate is equality on the value of tq .
Going back to our introductory example, a solution to
our problem can include an equality or range predicate
on age and an equality predicate on location and
expertise. If location was hierarchical, the equality
predicate could be applied at any granularity.

3.1 Problem Complexity

To solve SMP we have to consider an exponential
number of predicate combinations. Assume that R
has mo ordinal attributes, mh hierarchical attributes,
and mb binary/categorical ones. The number of pos-
sible predicate combinations C to be considered is
O(Πmo

i=1
(min{|R|, |Di|})

2 ·Πmh

i=1
hi · 2

mb), where |Di| is the
number of discrete values in the domain Di of the i-th
ordinal attribute and hi is the height of the generalization
hierarchy of the i-th hierarchical attribute. For each
ordinal attribute there are O((min{|R|, |Di|})

2) possible
range predicates that contain the value of tq ; for each
hierarchical attribute there are hi possible predicates; and
for each binary/categorical attribute we can choose to
a predicate or not. Any conjunction of predicates can
be the solution of SMP; in other words, in the general
case, the percentile rank of tq can arbitrarily change after
changing the predicates to include more or fewer tuples.
Formally:

Theorem 1: SMP is NP-hard.
Proof: (Sketch): We will show the hardness of SMP

for the case where all attributes are boolean; problem in-
stances with non-boolean attributes are even harder. The
decision version of SMP, denoted as SMP′, is as follows:
“for a given relation R and a query tuple tq , is there a
set of selection predicates C, such that pr(tq, σCR) ≥ λ,
subject to tq ∈ σCR and |σCR| ≥ sup · |R|?”. Obviously
SMP′ is in NP. To prove its NP-hardness, we reduce
the Set Cover Problem (SCP), which is NP-complete, to
SMP′. Given a collection S = {S1, S2, . . . , Sm} of subsets
of a base set X = {x1, x2, . . . , xn} and an integer k, the
objective of SCP is to find if there exists a subcollection
S
′ ⊆ S whose union is X, subject to |S′| ≤ k. We transform

this to an SMP′ instance having λ = 100% and construct
R as follows. R consists of m predicate attributes and
one measure attribute M . Each subset Sj corresponds

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING, VOL. XX, NO. XX, XX 2014 4

TABLE 2

A relation with records of cars

Car MPG Year HP Rating

o1 20 2003 150 89
o2 25 2011 132 85
o3 30 2008 135 78
o4 27 1998 150 71
o5 22 2006 132 67
o6 34 2007 126 64
o7 25 2010 150 61
o8 40 2000 138 57
o9 25 2003 132 56
o10 18 2011 138 51

to a predicate attribute Aj , i.e., a subset Sj is chosen
if and only if C has a predicate Aj = 1. R contains
1 + n +m tuples. The predicate attribute values for the
first tuple t0 are all 1 and t0.M = 0. t0 is followed by n
tuples where each tuple ti(1 ≤ i ≤ n) corresponds to a
variable xi ∈ X. We set ti.Aj to 0 if xi ∈ Sj (1 ≤ i ≤ n),
and 1 otherwise. The measure attribute values for these
tuples are 1. Finally, R contains m more tuples where
ti.Aj = 0 if i − n = j (n + 1 ≤ i ≤ n + m), and 1
otherwise. The measure attribute values for these tuples
are set to 0. We complete building the instance by setting
sup = (m− k+1)/(1 + n+m) and tq = t0. It is not hard
to verify that the SCP instance has a solution if and only
if there exists a set of selection predicates C such that
σCR ≥ sup · |R| and pr(tq, σCR) ≥ 100%.

For the rest of the discussion, we assume that only or-
dinal attributes exist, because they offer higher flexibility
in imposing predicates; the other attribute types can triv-
ially be considered as special cases of ordinal attributes.
A running example demonstrating our solutions to SMP
is given in Table 2 (a set of used cars on sale). The table
has three ordinal predicate attributes, i.e., MPG (miles per
gallon), Year (release year) and HP (horse power), and
one measure attribute: Rating. Assume that the support
threshold sup is 0.3, and the query object tq is o6, whose
global percentile rank is only 50%. By running SMP on
this example, we can find that the best set of selection
predicates for o6 are {MPG: (22, 40], Year: (1998, 2007]},
which renders o6 rank the highest (i.e., 100% percentile
rank) among {o6, o8, o9}.

3.2 Baseline Methods

A straightforward approach for solving SMP is to enu-
merate in a depth-first manner all possible subspaces (i.e.,
conjunctions of selection predicates on all attributes) that
contain the values of the query object tq , and report
the subspace where the query object has the highest
percentile rank. Algorithm 1 summarizes the details of
this method. Note that hereafter, when referring to group
G (e.g., line 10 of Algorithm 1), we mean the relation
after applying all selected predicates so far. Also we
define the quality qual(G) of G as the ratio of all tuples
in G whose values on attribute G.M are smaller or equal
to tq.M . Obviously, qual(G) = pr(tq, G).

Time complexity. The worst-case complexity of the

Algorithm 1 Naive Algorithm

1: G := R; Preds = ∅; bestrank := qual(G);
2: bestG := G; bestPreds := ∅;
3: procedure NAIVERANGE(G, Preds)
4: if all attributes are in Preds then
5: if qual(G) > bestrank then
6: bestrank := qual(G);
7: bestG := G; bestPreds := Preds;

8: else
9: Pick any attribute A not in Preds

10: A.preds:=all possible predicates on A for G
11: such that |σpredG| ≥ sup · |R|;
12: for each pred ∈ A.preds do
13: G′ := σpredG;
14: Preds′ := Preds ∪ {pred};
15: NAIVERANGE(G′, Preds′);

16: return {bestG, bestPreds};

Naive Algorithm is O(|R| ·Πmo

i=1
ω2
i). There are O(Πmo

i=1
ω2
i)

subspaces that contain tq , where mo is the number of
predicate attributes and in the worst case all predicate
attributes are ordinal and predicate Ai contains O(ω2

i)
ranges (ωi = min{|R|, |Di|}). For each subspace, we need
O(|R|) time to compute the percentile rank of tq .

Algorithm 2 Materialization Algorithm

1: bestrank := qual(R);
2: bestG := R; bestPreds := ∅;
3: for each subspace Si ∈ S do
4: ubi ← (|Si| − φj)/|Si|, where j satisfies

F i
φj

> tq.M ≥ F i
φj+1

;
5: lbi ← (|Si| − φj + 2)/|Si|, where j satisfies

F i
φj−1

≥ tq.M > F i
φj

;

6: δ := the greatest lbi for 1 ≤ i ≤ |S|;
7: S∗ ← {Si|ubi > max(δ, bestrank)};
8: for each unpruned subspace Si ∈ S

∗ do
9: Derive complete Si from its predicates Preds;

10: if qual(Si) > bestrank then
11: bestrank := qual(Si);
12: bestG := Si; bestPreds := Preds;

13: return {bestG, bestPreds};

An alternative to this naive approach would be to
adopt the solution framework of [15]. The basic idea
is to sample the scores of records at all subspaces and
derive upper and lower bounds for the ranking of objects
there. More precisely, let F i

1, F
i
2, . . . , F

i
n be the complete

ranked list of object scores in a subspace Si, and φ1, φ2,
. . . , φl (1 ≤ l ≤ n) be a sequence of distinct (sampled)
positions, such that 1 ≤ φj ≤ n and φi < φj if i < j. The
scores F i

φ1
, F i

φ2
, . . . , F i

φl
are materialized for subspace Si.

Obviously all the scores are materialized in Si when
l = n. Given a query object tq , if F i

φj
> tq.M , we can

conclude that the rank of tq in Si should be larger than
φj ; if F i

φj
< tq.M , the rank of tq should be smaller than

φj . Based on this observation, we can solve SMP, as
illustrated by Algorithm 2.

Let S be the set of all subspaces in the input rela-
tion, which include tq ; Algorithm 2 first considers each
subspace Si in S and calculates the upper and lower

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING, VOL. XX, NO. XX, XX 2014 5

bound of the ranking that the query tuple tq has in
Si. Then, threshold δ is computed as the minimum
possible percentile rank of tq in any subspace (line 6).
All subspaces whose upper bounds are no greater than
max(δ, bestrank) are pruned, because they cannot be
the optimal subspace. Finally, each remaining subspace
Si ∈ S∗ is verified by computing the exact percentile
rank of tq in it and the one wherein tq has the best
percentile rank is output as the SMP result.

Although the materialization strategy greatly reduces
the number of subspaces to be considered, it is still costly
to verify the exact percentile rank in the remaining sub-
spaces. Besides, the pruning power of the materialization
solution heavily depends on the sampled scores in each
subspace; i.e., there does not exist a sampled position
sequence that is optimal for all possible query tuples tq .

Time complexity. Computing the lower/upper bound
of tq at each subspace (lines 4 and 5) takes O(log l) time
using binary search; after that, we apply for each un-
pruned subspace the corresponding predicates to derive
the result group in O(|mo| · |R|) time and use additional
O(|R|) time to compute the percentile rank. Thus, the
overall time complexity is O(|S|·log l+|S|+|S∗|·(mo·|R|+
|R|)), i.e., O(log l · |S|+mo · |R| · |S∗|), where |S| = Πmo

i=1
ω2
i .

3.3 Single-path Browsing Algorithm

In view of the hardness of SMP, we propose a number of
greedy approaches which compute an approximate so-
lution. Our first method, called browsing algorithm (BA),
is inspired by rule-based classifiers [3], which extract
classification rules from a set of training records with
positive/negative labels. BA adapts and optimizes the
greedy rule selection approach, by iteratively selecting
on each attribute the domain subrange which (i) includes
tq , (ii) includes at least sup · |R| records when applied
together with the predicates selected so far, where sup
is the minimum support constraint, and (iii) maximizes
the ratio of positive to all tuples covered by the rule
(i.e., range). A tuple is labeled positive (negative) if it
ranks lower than or equal to tq (higher than tq). BA
takes its name from the fact that it browses the space
around tq in all dimensions, in order to find the best
multidimensional range that includes tq .

Algorithm 3 BA algorithm

1: G := R; Preds := ∅; bestrank := qual(R); pred := none;
2: for each attribute A not in Preds do
3: A.pred:=best predicate on A for G
4: such that tq.A ∈ A.pred and |σA.predG)| ≥ sup · |R|;
5: if qual(σA.predG) > bestrank then
6: pred := A.pred;
7: bestrank := qual(σA.predG);

8: if pred=none then
9: return {G, Preds};

10: else
11: Preds := Preds ∪ {pred};
12: G := σpredG;
13: goto Line 2;

Algorithm 3 is a high-level description of BA, which
takes a group of tuples G (initialized to the complete
set of tuples in R) and at each step computes a subset
of G that includes tq by applying a new predicate.The
set of predicates selected so far is recorded in Preds.
In the main loop (Lines 2–7), for each attribute A for
which we do not have a predicate in Preds yet, we find
the best predicate A.pred; i.e., the one that maximizes
qual(σA.predG) among all that qualify tq ∈ σA.predG
and |σA.predG| ≥ sup · |R|. Lines 5–7 check whether
A.pred is better than the best predicate pred found so
far and updates pred if so. After all attributes have been
examined, if no predicate is found that can improve the
current G (Line 8), the algorithm terminates reporting
Preds as the final set of predicates. Otherwise (Lines 11–
13), the best predicate found pred is added to the current
set Preds and G is restricted to the set of tuples after
applying pred on G. Then, BA tries to find another
predicate to further improve G if applicable.

Time complexity. At each iteration, BA conducts for
each remaining attribute Ai a counting sort to com-
pute the best predicate on this attribute in O(|R| + ωi)
time (as we shall discuss in Section 3.3.1); at the same
time BA picks the best attribute. In the worst case, BA
considers all the remaining attributes at each iteration.
Thus, the overall cost of BA is O(m2

o · (|R| + ω)), where
ω = max{ω1, · · · , ωmo

}. Since ωi = min{|R|, |Di|}, the
overall cost of BA can be simplified as O(m2

o · |R|).
Example 3: Consider Table 2 and let sup = 0.3 and

tq = o6 be the query object. In the first BA round,
G = R = {o1, o2, . . . , o10} and bestrank = 50%. The best
predicates and the corresponding percentile ranks of o6
on attributes MPG, Year and HP are (27, 40] (66.67%),
(2006, 2010] (66.67%) and (−∞, 138] (57.14%), respec-
tively. Since the percentile rank of o6 is maximized when
using (27,40] as a range predicate on MPG, BA selects
this range and adds it to the predicates set Preds. Now
G becomes {o3, o6, o8}. Since there are only 3 objects
in G, i.e., as many as the minimum support threshold
sup · |R| = 0.3 · 10 = 3, BA in the next loop cannot find
any other predicate that further improves the quality of
G, therefore it terminates and reports {MPG: (27, 40]}.

3.3.1 Predicate selection on a single attribute

A naive way to select the best range predicate on a
single attribute A (i.e., lines 3–4 of Algorithm 3) is to
enumerate all ranges that include tq.A, which bears a
cost quadratic to the domain size of A. We now propose
a module which performs the same task in time linear to
min{|G|, DA}, provided that the records in G have been
ordered based on their A-values. Our solution considers
an ordered projection G.A of G’s tuples on A. Assume
that G.A contains DA distinct values v1, v2, . . . , vDA

.
Without loss of generality, let vi < vj if i < j. In addition,
we assume that there is a dummy value v0 = −∞ in
the value domain. Let Gij (0 ≤ i ≤ j) be the set of
objects in G whose A values are in range (vi, vj]. In order

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING, VOL. XX, NO. XX, XX 2014 6

to find the best percentile rank of the query object tq ,
we build two counting arrays C and D on the domain
values of G.A. Ci is the number of objects in G0i (i.e.,
Ci = |G0i|), and Di is the number of objects in G0i with
rank lower than or equal to tq (obviously, C0 = D0 = 0).
Given a range (vi, vj] (i.e., [vi+1, vj]) covering tq , the
percentile rank of tq in Gij can be easily derived as
(Dj −Di)/(Cj − Ci).

Example 4: Assume that G is the relation shown in
Table 2 and let sup=0.3 and tq = o6. Consider the ordered
projections of the tuples on MPG, as shown in the second
line of Table 3; tq .MPG = v6 = 34 is shown in bold font. The
C and D values for every distinct value vi in the domain
of the MPG attribute are computed by considering the
tuples in G in increasing MPG order.

TABLE 3

Example of finding the best predicate

DMPG v0 v1 v2 v3 v4 v5 v6 v7 v8
G.MPG -∞ 18 20 22 25 27 30 34 40

C 0 1 2 3 6 7 8 9 10
D 0 1 1 1 3 3 3 4 5

Lemma 1: If (Ci, Di) and (Cj , Dj) are viewed as two
points in the 2D Euclidean space, the percentile rank of
tq in the range (vi,vj] equals the slope of the line that
passes through (Ci,Di) and (Cj ,Dj).

p0

p1 p2 p3

p7

p4 p5 p6

p8

1 2 3 6 7 8 9 104 5

1

2

3

4

5

Fig. 1. Points from Example 4 in Euclidean space.

Our solution is built based on Lemma 1. For each
distinct value vi, we define a point pi(Ci, Di) in the
Euclidean space. Let vk = tq.A, the original problem now
becomes finding two points pb and pe (s < k ≤ e) such
that the slope of line pbpe is maximized and the length of
the horizontal projection of pbpe is not less than sup · |R|.
Figure 1 shows the mapping of the C and D values in
a Euclidean space with x = C and y = D. From the
ranges covering tq .MPG=34 (corresponding to point p7)
and containing at least sup × |R| = 3 points, the one
with the largest slope is (v5, v8], corresponding to points
p5 and p8. We now show some properties that serve as
building blocks to our solution.

Lemma 2: Consider three candidates pb1 , pb2 and pb3
for forming the line with the largest slope with a given
right-end point pe (b1 < b2 < b3 < e). If the slope of
pb2pb3 is smaller than that of pb1pb2 , then pb2pe cannot be
the line with the largest slope.

Proof: Consider three points pb1 , pb2 and pb3 (b1 <
b2 < b3) as shown in Figure 2; the slope of pb2pb3 is

pb2

pb1

pb3

Fig. 2. Pruning case for left endpoint

smaller than the slope of pb1pb2 . Given a fixed right
endpoint pe (e > b3): (i) the slope of line pb2pe is no less
than that of pb1pe only when pe lies in the area above
line pb1pb2 ; (ii) the slope of line pb2pe is no less than that
of pb3pe only when pe lies in the area below line pb2pb3 .
Therefore, the slope of pb2pe is no less than the slopes of
both pb1pe and pb3pe if and only if pe lies in the overlap
area of the aforementioned two ones (the shaded area),
i.e., e < b2. However, this contradicts our assumption
that e > b3; therefore pb2pe cannot be the line ending at
pe with the largest slope.

For a given right endpoint pe, for which we search
for the left endpoint pb, such that the slope of pbpe is
maximized, we can use Lemma 2 to prune all points
pb2 before pe for which there is a preceding point pb1
and a succeeding point pb3 satisfying the condition of
the lemma. The remaining left endpoint candidates (in
sequence) form a polyline Le; the slopes of consecutive
line segments in Le are monotonically increasing (i.e.,
Le is convex). More importantly, as Lemma 2 suggests,
pruning left endpoint candidates to form polyline Le is
actually independent of pe; two different right endpoints
can share common left endpoint candidates. Particularly,
given two right endpoint candidates pe and pe′ (e < e′),
the left endpoint candidates sequence in Le is a prefix
of that in Le′ . The following lemma can be used to
avoid redundant computations, while searching for the
left endpoint for a right endpoint pe′ , based on the best
left endpoint for a previous right endpoint pe (e < e′).

pb+1

pb-1

pb

pb'

pb'+1

pe

pe'

Fig. 3. Best left endpoint

Lemma 3: Consider two right endpoints pe and pe′ (e <
e′). Assume that the best left endpoints for pe and pe′ are
pb and pb′ , respectively. If pb′pe′ has a greater slope than
pbpe, then b′ ≥ b.

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING, VOL. XX, NO. XX, XX 2014 7

Proof: (By contradiction). Consider pe and pe′ as
shown in Figure 3 and assume that there exists some
left endpoint pb′ (b′ < b), which is the best left endpoint
for pe′ and the slope of pb′pe′ is greater than that of pbpe.
Since pb is the best left endpoint for pe, the slope of pbpe
should not be smaller than that of line pb−1pb, otherwise
pb−1 will contribute a larger slope w.r.t. pe. On the other
hand, since pb′ is the best left endpoint for pe′ , the slope
of pb′pe′ should not be greater than that of line pb′pb′+1.
However, due to the fact that the slopes of consecutive
line segments in Lp are non-decreasing, we know that
the slope of pb′pb′+1 is less than or equal to that of pb−1pb.
Therefore, the slope of pb′pe′ is smaller than the slope of
pbpe, which is a contradiction.

Algorithm 4 Finding the best predicate on attribute A

1: bestrank := −∞;
2: l := 0; ⊲ vl is first possible left-end value (dummy)
3: r := index of first possible right-end value; ⊲ vr = tq.A
4: Q := {}; ⊲ double-ended queue of left endpoints
5: while r ≤ DA do ⊲ vr is a valid right-end value
6: if (vl, vr] satisfies the support constraint then
7: while |Q| ≥ 2 and prune(Qfirst−1, Qfirst, pl) do
8: dequeue Qfirst;

9: enqueue pl at the front of Q;
10: l := l + 1;
11: else
12: while |Q| ≥ 2 and slope(Qlast−1, pr)>slope(Qlast,

pr) do
13: dequeue Qlast;

14: if |Q| > 0 and slope(Qlast, pr) > bestrank then
15: bestrank := slope(Qlast, pr);
16: bestrange := value range of (Qlast, pr);

17: r := r + 1;

18: return {bestrange, bestrank};

Based on Lemmas 2 and 3, Algorithm 4 enumerates
all possible right endpoints in the outer loop (line 5)
in sequence (the first possible right endpoint has the
value tq.A). For each right endpoint pr, it maintains a
polyline Lr as a double-ended queue Q, which contains
the candidate left points pl for the line segment plpr
with the largest slope (the last element of Q is the
leftmost point in Lr). While considering left endpoints
to be added to Q, the algorithm checks whether the
next left endpoint pl can be used to prune the first
element of Q using Lemma 2 (line 7). As soon as no
more left endpoints can be considered for pr (due to the
support constraint), the contents of Q (i.e., the polyline
Lr) are examined in order (from left to right) to find
the left endpoint that forms the largest slope with pr;
the contents of Q which have a smaller slope with pr
are removed from its tail, since, according to Lemma 3,
they cannot contribute larger slopes with the next right
endpoints to be considered (line 13). Then, the algorithm
checks whether largest slope for pr corresponds to the
best range for A found so far and updates the best range
in this case (lines 14–16). In the rest of the paper, when
we say a predicate “satisfies the support constraint” (e.g.,
line 6), we mean that the predicate satisfies the constraint

together with all other predicates selected so far.
Example 5: Consider the problem described in Exam-

ple 4 and the mapping of the C and D arrays to points, as
shown in Figure 1. In the beginning, r = 7 (vr = 34), and
p0, p1 are enqueued into Q successively since both (v0, v7]
and (v1, v7] satisfy the support threshold. The next point
p2 also satisfies the support constraint (range (v2, v7]
contains enough tuples); however, it forms a pruning
case with the previous two objects in Q, i.e., p0 and p1.
As a result, p1 is dequeued from Q (line 8) and p2 is
enqueued. Now Q = {p0, p2}. Similarly, p2 is pruned
by p3 in the next step, resulting in Q = {p0, p3}. The
next point p4 corresponds to a valid range (v4, v7]; in
addition, p0, p3 and p4 do not form a pruning case.
Thus, p4 is simply enqueued into Q, i.e., Q = {p0, p3, p4}.
Since (v5, v7] contains fewer objects than the support
threshold, we stop the enumeration of left endpoints for
p7, and move on to the calculation of the best slope for
segments ending at p7 (lines 11–17). The line with the
best slope (50%) is p3p7 and the corresponding range
(v3, v7] is recorded as the current best for A. Note that
p0 is dequeued from Q according to Lemma 3. Then, we
move on to the next right endpoint (line 17), which is p8,
and continue examining left endpoints from where we
stopped before (pl = p5). Range (v5, v8] contains enough
tuples. However, p3, p4 and p5 form a pruning case;
therefore, p4 is dequeued from Q and p5 is enqueued into
Q, i.e., Q = {p3, p5}. Next, we consider p6; since (v6, v8]
does not satisfy the support constraint, we stop and
find the best range ending at v8, which is (v5, v8] with
slope 66.67%. Since there are no more right-endpoint
candidates, the algorithm reports (v5, v8] as the best
predicate for attribute MPG.

Lemma 4: Algorithm 4 finds the range covering tq
which determines the best percentile rank for tq at time
complexity O(wi), assuming that the values of G.Ai have
been ordered.

Proof: Observe that the operations on Q are only
enqueuing and dequeuing operations that take O(1)
time. Each left endpoint may only be added to Q once
(after been dequeued from Q it is never enqueued again).
Since we have O(wi) endpoints in total, the time spent
on queuing operations is O(wi). For each iteration in the
outer loop, either l or r are increased by one, which
means that after at most O(wi) iterations, the outer
loop will terminate. Thus, the total time spent for the
operations at line 10 and lines 14–17 is O(wi).

3.4 Diversified-path Browsing Algorithm

Although BA is very fast, it may not find a solution
with quality close to the optimal, because it considers
and fixes for each attribute only one range (i.e., the
one of maximum quality). This constrains the possible
choices for the following attributes and the search space
considered by BA. In this section, we propose a more
relaxed variant of BA, which explores a larger portion
of the solution space. This Diversified-path Browsing Algo-
rithm (DBA) selects multiple diversified range predicates

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING, VOL. XX, NO. XX, XX 2014 8

Algorithm 5 Finding DP and best percentile rank

H := ∅ ⊲ keeps all DP indexed by left endpoint
1: Lines 1 to 16 of Algorithm 4
2: . . .
3: if HQlast

already exists
4: if slope(HQlast

) < slope(Qlast , pr) then
5: HQlast

:= (Qlast , pr];
6: else
7: insert (Qlast , pr] to H ;
8: r := r + 1;
9: return H and {bestrange, bestrank};

for each attribute, in order to explore diverse parts
of the solution space, while being fast. Before going
into the details of DBA, we first discuss how to define
and compute a set of diversified predicates for a single
attribute. We define a dominance relationship between
range predicates on the same attribute, as follows.

Definition 1 (p-Dominance): Consider two range pred-
icates [b1, e1] and [b2, e2] on attribute A; [b1, e1] is p-
dominated (predicate-dominated) by [b2, e2] iff either b1
= b2 or e1 = e2, and the quality of [b2, e2] is larger than
the quality of [b1, e1] for tq .

Recall that the quality of an attribute range is defined
by the percentile rank of tq in it. Based on Definition 1,
if, on some attribute A, range predicate α is p-dominated
by another predicate β, then β is considered to be a
more representative predicate for A, because the query
object is more highly ranked in β, and α, β cover similar
sets of objects. Therefore, predicates that are not p-
dominated by any other predicate are intuitively the
most diversified and representative predicates on A. The
set of Diversified Predicates (DP) for a given attribute A
are formally defined as follows.

Definition 2 (Diversified Predicates (DP)): Consider the
set of valid ranges W on a single attribute A (i.e., those
that include tq and satisfy the support threshold together
with all selected predicates so far). The Diversified Pred-
icates (DP) of A are all ranges in W that are not p-
dominated by any other range in W .

Now we show how we can modify Algorithm 4 to
find DP for an attribute A, without adding extra time
complexity. Algorithm 5 extends Algorithm 4 as follows.
For each right endpoint pr, after finding the best range
(pl, pr] considering the current contents of Q as candidate
left endpoints, Algorithm 5 adds (pl, pr] to a hash table
H , which uses the left endpoint of the ranges as a key. If
there is another range in H with the same left endpoint
already in H , then it is compared with the new range
and the best of the two is kept in H only (lines 3–
5). This guarantees that no ranges in H share identical
left endpoints (and that H keeps only the range of best
quality among those that share the same left endpoint).
In addition, since only one range is selected for each
right endpoint, there are no two ranges in H that have
the same right endpoints. The following lemma proves
that the hash table H after a run of Algorithm 5 has
essentially the same content as DP .

Lemma 5: Algorithm 5 finds exactly the correct DP.

Proof: We first denote the set of all valid ranges for
attribute A (i.e., those that include tq.A and qualify the
support threshold) as W . For each right endpoint pri , let
plipri be the segment which has the largest slope among
all plpri ∈ W . Let Wq be the set of all plipri segments.
Obviously, for any range x, such that x ∈ W and x /∈
Wq , x could not be in the DP of A, since x must be
p-dominated by some range in Wq . Thus the DP of A
must be a subset of Wq . Assume all the ranges found
by Algorithm 5 is Wo. We now prove that any segment
(i.e., range) x in Wq −Wo must be p-dominated by some
other segment, and thus not included in DP. Consider
such a range x and let plx and prx be its left and right
endpoints, respectively. (i) If there is another range x′ ∈
Wo, such that plx = plx′

(i.e., x and x′ share the same
left endpoint), then x′ must p-dominate x because no
two ranges with the same left endpoint can be in H .
(ii) If there is no other range x′ ∈ Wo, such that plx =
plx′

, then this means that the best slope for prx found
by Algorithm 5 (i.e., also by Algorithm 4) is not plxprx ,
because plx has been pruned due to Lemma 3. In other
words, the best slope for prx found is pl′xprx , such that
l′x > lx. Since pl′x is surely found as a best left point
for some right point before encountering prx (consider
line 4). Without loss of generality, let us assume such a
right endpoint is pr′x (pr′x < prx). Based on Lemma 3,
given l′x > lx, we can prove by contradiction that the
slope of plxprx is not greater than plxpr′x , i.e., plxprx is
p-dominated by plxpr′x . Therefore, in both cases x is p-
dominated. Similar to (ii), we can prove that any range
in Wo −Wq must be p-dominated by some other range.
Thereby, considering also the fact that any two ranges
in the output H of Algorithm 5 do not share the same
left or right endpoints, H has exactly the same content
as the DP of A.

Attribute Pruning. When choosing a range predicate on
an attribute, a subset of records is selected to become
the group G of records to be considered for the next
attribute. Let pos(G) be the number of tuples in G
that are not better than tq w.r.t. the measure attribute
M . Note that if pos(G) < sup · |R|, then the maxi-
mum possible percentile rank of tq in G regardless the
additional selection predicates to be applied on G is
qual+(G) = pos(G)/(sup · |R|), i.e., less than 100%. While
browsing the search space, DBA uses this upper quality
bound qual+(G) to avoid applying additional predicates
on a set G, if qual+(G) is less than the quality of the best
predicate set found so far.

Algorithm 6 is a pseudocode for DBA, which extends
BA to consider multiple subspaces based on diversified
predicates. The algorithm in lines 4–5, like BA, iteratively
picks the attribute A with the overall best predicate
A.pred among all attributes on the input set G (initially
G = R). If it can no longer find any other predicate
which would satisfy the minimum support threshold,
it checks whether the current set of selected attributes

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING, VOL. XX, NO. XX, XX 2014 9

Preds is the best set found so far (lines 6–10). Otherwise,
the set of diversified predicates for A is computed using
Algorithm 5 and for each such predicate pred′, if not
pruned using the upper quality bound qual+ (line 15),
we (i) append pred′ to Preds and create a extended
predicates set Preds′ and (ii) recursively run DBA after
applying Preds′ on G (line 19). Thus DBA operates
like running multiple instances of BA, one for each
combination of diversified predicates for all attributes
taken in a specific order.

Algorithm 6 DBA algorithm

1: Gbest := r; Predsbest := ∅; bestrank := qual(G);
2: procedure DIVERSERANGE(G, Preds)
3: pred := none;
4: Lines 2 to 6 of Algorithm 3
5: . . .
6: if pred = none then
7: if qual(σPredsG) > bestrank then
8: bestrank := qual(σPredsG);
9: Gbest := G;

10: Predsbest := Preds;

11: else
12: A := the attribute of pred;
13: DPA := Diversified Predicates on A of G;
14: for each predicate pred′ ∈ DPA do
15: if qual+(σpred′G) ≤ bestrank then
16: continue;

17: Preds′ := Preds ∪ {pred′};
18: G′ := σpred′G;
19: DIVERSERANGE(G′, Preds′);

20: return {Gbest, Predsbest}

Note that the number of diversified predicates for
an attribute could be too few or too many, a fact that
makes the performance and cost of DBA unstable. In
order to control the cost and the exploration power
of the algorithm, we introduce a parameter k, which
determines the number of diversified predicates to use
per attribute. If DP for a given attribute is larger than
k, then we simply use the k predicates in DP with the
largest slopes. If DP is smaller than k, then we add back
to DP p-dominated predicates which are pruned from
the hash table H during Algorithm 5 (line 4). For this
purpose, Algorithm 5 is adjusted to maintain in a heap
the best k pruned predicates and in the end add back to
DP the k−|DP| pruned predicates of the highest quality.

Time complexity. DBA differs from BA in that it
chooses k diversified predicates at each iteration for each
attribute. There are at most mo iterations, thus the overall
cost of DBA is O(m2

o · |R| · kmo).
Example 6: Consider again Example 3 and that we run

DBA for query object o6 and k = 2. In the first round, the
percentile rank of o6 is maximized when using (27, 40]
as a range predicate on MPG. Therefore, we select MPG
and find the diversified predicates on MPG, which are
ranges (27, 40] (66.67%) and (22, 34] (50%). Then, for each
predicate, we create an instance G′ of G by applying
the predicate and continue the diversified predicates
selection recursively. Figure 4 illustrates the running

(50.0%) o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

(66.67%)
· · · o3 o6 o8

· · · 30 34 40
(50%)

· · · o2 o7 o9 o4 o3 o6 · · ·

· · · 25 25 25 27 30 34 · · ·

(66.67%)
o4 o9 o6 · · ·

1998 2003 2007 · · ·
(75%)

· · · o9 o6 o3 o7 · · ·

· · · 2003 2007 2008 2010 · · ·

MPG MPG

Y ear Y ear

Fig. 4. Diversified predicates selected by DBA

procedure of DBA by showing the diversified predicates
chosen at each round. The objects in the node are sorted
according to their corresponding attribute values. The
range predicate chosen at each node is underlined, and
the corresponding percentile rank is given for reference
as well. At each leaf of the tree, DBA cannot find an
additional predicate from the remaining attributes and
enters lines 6–10. The best overall predicate-set found
corresponds to the best path, i.e., {MPG: (22,34], Year:
(2000, 2010]} with percentile rank 75%.

3.5 Enumerating Diversified-path Browsing

BA and DBA efficiently identify an approximate solu-
tion to SMP. However, like rule-based classifiers, the
attributes are considered and examined in a single order,
determined by our greedy strategy. For example, BA
iteratively picks the most promising attribute at each
iteration by applying Algorithm 4 on all remaining at-
tributes. In this section, we introduce an approach which
has increased probability of finding a better percentile
rank. We extend DBA to an Enumerating Diversified
Browsing Algorithm (EDBA), which examines all possible
permutations of predicate attributes in order to find a
better approximate percentile rank for the query tuple.

Algorithm 7 EDBA algorithm

1: G := r; Preds = ∅; bestrank := qual(G);
2: bestG := G; bestPreds := none;
3: procedure ENUMATTRIBUTE(G, Preds)
4: if all attributes are in Preds then
5: if qual(G) > bestrank then
6: bestrank := qual(G);
7: bestG := G; bestPreds := Preds;

8: else
9: Q := {} ⊲ priority queue

10: for each attribute A not in Preds do
11: A.pred:=best predicate on A for G such that
12: tq.A ∈ A.pred and |σA.predG)| ≥ sup · |R|;
13: Insert A into Q with priority qual(σA.predG);

14: while Q is not empty do
15: A := next attribute in Q;
16: Lines 13 to 18 of Algorithm 6
17: . . .
18: ENUMATTRIBUTE(G′, Preds′);

19: return {bestG, bestPreds};

Instead of selecting the next attribute to choose at
each level of the search tree in random order, EDBA

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING, VOL. XX, NO. XX, XX 2014 10

(Algorithm 7) prioritizes the available attributes accord-
ing to their improvement qual(σA.predG) to the current
percentile rank qual(G). More specifically, we prioritize
the attributes at each level, based on how much improve-
ment they give to the current percentile of tq , according
to Algorithm 4. This way, we maximize the probability
of finding a good approximate solution Predsbest to SMP
early, which can be used to prune more predicates and
search subtrees, based on the qual+ bound.

Time complexity. EDBA extends DBA by examining
all possible permutations of predicate attributes, instead
of picking the remaining attribute greedily one by one.
Therefore, EDBA takes O(mo! · |R| · kmo) time.

4 EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the efficiency
and effectiveness of our proposed solutions to SMP. All
methods were implemented in C++ and the experiments
were conducted on a 3.40 GHz quad-core machine run-
ning Ubuntu 12.04, with 16 GB of main memory. We use
three real datasets in our evaluation:

NBA: We crawled information about 24,524 NBA play-
ers and their performance per season up to 2012-2013
from NBA & ABA Basketball Statistics1. For each tuple,
Average Points is used as the measuring attribute; 3
ordinal attributes Height, Weight and Born, which are
not correlated to the measuring attribute are extracted
and used as selection attributes. The domain sizes (i.e.,
the number of distinct values) of these attributes are 28,
142 and 83 respectively.

SONG: We crawled information about 306,297 songs
from the “Million Song Dataset”2. The hotness of a
song is used as the measuring attribute; 5 additional
ordinal attributes: Year, Tempo, Segments Pitches,
Loudness and Duration are extracted as selection
attributes. The domain sizes of these attributes are 85,
261, 216, 57 and 1357 respectively.

PAM: This dataset contains records of different human
physical activities (e.g., walking, cycling, etc.) from the
PAMAP project3. There are 1M tuples in this dataset.
We chose 8 ordinal selection attributes correspond-
ing to statistical measures collected from sensors (e.g.,
acceleration, magnetometer, gyroscope, etc.) and
1 measuring attribute (i.e., temperature). The domain
sizes of the 8 selection attributes are 796, 844, 835, 860,
851, 848, 830, and 834, respectively.

In our comparison, we include our three greedy meth-
ods (BA, DBA, and EDBA) and the NAIVE algorithm
presented in Section 3.2, which finds the exact solu-
tion to SMP but has high cost. We do not include the
Materialization algorithm (MA) [15] (also reviewed in
Section 3.2) because we found that it is 2-3 orders of
magnitude more expensive than NAIVE and it cannot
terminate within reasonable time for our datasets, where

1. http://www.basketball-reference.com
2. http://labrosa.ee.columbia.edu/millionsong
3. http://www.pamap.org

the attributes have relatively large domain sizes. As
an indication, Table 4 compares NAIVE with MA on
our smallest dataset (NBA), using only two attributes
(Weight and Born) for various values of sup.

TABLE 4

Costs of NAIVE and MA on the NBA dataset

sup 1% 2% 4% 8% 16%

NAIVE 0.465 s 0.467 s 0.467 s 0.469 s 0.472 s
MA 191.15 s 253.87 s 275.13 s 306.82 s 329.96 s

Besides measuring the runtime of all tested methods,
we assess our methods based on the quality of the result
they find. The query result quality for an algorithm A is
defined as the relative quality of its result compared to
the optimal result found by NAIVE. More specifically,
given an input object tq , if the percentile ranks of the
subspaces found by algorithm A and NAIVE are rankA
and rankN , respectively, while the original percentile
rank of tq in the whole dataset is rankO, the quality of
A (on tq) is defined by:

quality(A) =
rankA − rankO
rankN − rankO

× 100% (1)

TABLE 5

Query parameters

Parameters Values

k
NBA 2, 3, 4, 5, 6

SONG 3, 4, 5, 6, 7
PAM 4, 5, 6, 7, 8

sup
NBA 1%, 2%, 4%, 8%, 16%

SONG 2‰, 4‰, 8‰, 16‰, 32‰
PAM 1‰, 2‰, 4‰, 8‰, 16‰

For each experimental instance (e.g., for a given
dataset and values of k and sup), we run 100 SMP
queries choosing tq randomly from the corresponding
dataset and average the query execution time and query
result quality. Table 5 summarizes the query parameters
used in our experiments, with the default values in bold.
Recall that k is a parameter to control the number of p-
dominated predicates to be used per attribute in DBA
and EDBA, while sup is the support threshold in SMP.
Note that the sup values used for the NBA dataset are
greater than those used for SONG and PAM, because
the last two datasets are much larger and even a small
support threshold will form a significant peer group.

4.1 Case Study

We first conduct a case study on NBA that illustrates
the usefulness of SMP. Table 6 shows a sample of query
objects, their original ranks in the dataset, and the
predicates that maximize their standings (i.e., found by
NAIVE) together with the achieved ranking by them.
We also show the predicates found by running our
three methods BA, DBA, and EDBA, with corresponding
promoted ranks by them. The sup is set to 4% in all cases.

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING, VOL. XX, NO. XX, XX 2014 11

TABLE 6

A case study on the NBA dataset

Query object
Object description Predicate-sets and promoted ranks

& original rank NAIVE BA DBA EDBA

Yao Ming
(2006)

Height = 7’6”
Weight = 310
Born = 1980

375/24524

Weight: [250, 315]
Born: [1964, 1987]

1/1345

Born: [1979, 1981]

8/1453

Weight: [250, 315]
Born: [1964, 1987]

1/1345

Weight: [250, 315]
Born: [1964, 1987]

1/1345

Nate “Tiny” Archibald
(1971)

Height = 6’1”
Weight = 150
Born = 1948

17/24524

Height: (−∞, 6’4”]

1/7683

Height: (−∞, 6’4”]

1/7683

Height: (−∞, 6’4”]

1/7683

Height: (−∞, 6’4”]

1/7683

Chris Bosh
(2009)

Height = 6’10”
Weight = 228
Born = 1984

477/24524

Height: [6’9”, 6’11”]
Weight: [225, 245]

1/1822

Height: [6’10”, 6’11”]
Weight: [225, 245]

1/1203

Height: [6’9”, 6’11”]
Weight: [225, 235]

1/1326

Height: [6’9”, 6’11”]
Weight: [225, 245]

1/1822

Kevin Durant
(2012)

Height = 6’9”
Weight = 215
Born = 1988

141/24524

Height: [6’9”, 6’12”]

Born: [1964, +∞)

2/4212

Born: [1985, +∞)

2/1559

Born: [1985, +∞)

2/1559

Height: [6’9”, 6’12”]

Born: [1964, +∞)

2/4212

William Sharman
(1952)

Height = 6’1”
Weight = 175
Born = 1926

3001/24524

Height: [5’11”, +∞)
Weight: (−∞, 240]
Born: (−∞, 1927]

23/1317

Weight: (−∞, 236]
Born: [1918, 1927]

25/1304

Weight: (−∞, 236]
Born: [1918, 1927]

25/1304

Height: [5’11”, +∞)
Weight: (−∞, 236]
Born: [1918, 1927]

23/1294

For example, we used tuple tq = “Yao Ming (2006)”
as a query, which is globally ranked 375th out of 24524
tuples (i.e., percentile rank 98.5%). Using NAIVE and
our proposed solutions DBA and EDBA, we can find a
set of two predicates {Weight: [250, 315], Born: [1964,
1987]}, which lift the query tuple to rank 1st among 1345
qualifying tuples (i.e., a percentile rank 100%). BA fails to
find this set of predicates and instead finds {Born: [1979,
1981]}, which lift tq to rank 8th out of 1453 qualifying
tuples (i.e., a percentile rank 99.5%). For tq =“Nate ‘Tiny’
Archibald (1971)”, all our three methods BA, DBA, and
EDBA find the same set of predicates as NAIVE (i.e., the
optimal set). The only query where EDBA found a sub-
optimal predicate set is “William Sharman (1952)”; still,
the quality difference to the set found by NAIVE is tiny.

4.2 Performance Evaluation

We now present experiments on the runtime and quality
of all methods. We first show the average running time
of SMP queries as a function of k and sup on the three
datasets in Figure 5. Note that we exclude the results
for NAIVE on the SONG and PAM datasets, because
it is several orders of magnitude slower than any of
our proposed approaches, and does not terminate within
reasonable time. Also note that, on the PAM dataset, we
use a cheaper variant of EDBA, which uses k diversified
predicates (DP) only on the first two attributes in the
enumeration order and just selects the best predicate
for the remaining ones. The reason is that PAM has a
large number of attributes, so enumerating all orders
and all diversified attributes for them renders EDBA too
slow to be practical. Besides, according to our tests with
the default parameter settings on PAM, using k DP in
EDBA on the first two attributes only already gives a
satisfactory query quality (83.80% on average compared
to the original EDBA, while taking less than 1% of the

2 3 4 5 6
k

10-4

10-2

100

102

Q
u
e
ry

 t
im

e
 (

s) NAIVE
EDBA
DBA
BA

(a) NBA, varying k

1 2 4 8 16
support (%)

10-4

10-2

100

102

Q
u
e
ry

 t
im

e
 (

s) NAIVE
EDBA
DBA
BA

(b) NBA, varying sup

3 4 5 6 7
k

10-2

10-1

100

101

102

103

Q
u
e
ry

 t
im

e
 (

s) EDBA
DBA
BA

(c) SONG, varying k

2 4 8 16 32
support ()

10-2

10-1

100

101

102

Q
u
e
ry

 t
im

e
 (

s) EDBA
DBA
BA

(d) SONG, varying sup

4 5 6 7 8
k

10-2

10-1

100

101

102

103

Q
u
e
ry

 t
im

e
 (

s) EDBA
DBA
BA

(e) PAM, varying k

1 2 4 8 16
support ()

10-2

10-1

100

101

102

103

Q
u
e
ry

 t
im

e
 (

s) EDBA
DBA
BA

(f) PAM, varying sup

Fig. 5. Query time

original EDBA’s time). Thus, we use this cheaper version
of EDBA in all the experimental instances on PAM.

From Figure 5, we observe that our proposed methods
are much faster compared to NAIVE on all settings.
In addition, as expected, BA is significantly cheaper
than DBA, and DBA is significantly cheaper than EDBA.
BA’s cost is not sensitive to k, because BA just greedily
selects one permutation of attributes and one predicate

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING, VOL. XX, NO. XX, XX 2014 12

2 3 4 5 6
k

60

70

80

90

100
Q

u
e
ry

 q
u
a
lit

y
 (

%
)

NAIVE
EDBA
DBA
BA

(a) NBA, varying k

1 2 4 8 16
support (%)

60

70

80

90

100

Q
u
e
ry

 q
u
a
lit

y
 (

%
)

NAIVE
EDBA
DBA
BA

(b) NBA, varying sup

3 4 5 6 7
k

60

70

80

90

100

Q
u
e
ry

 q
u
a
lit

y
 (

%
)

EDBA
DBA
BA

(c) SONG, varying k

2 4 8 16 32
support ()

60

70

80

90

100

Q
u
e
ry

 q
u
a
lit

y
 (

%
)

EDBA
DBA
BA

(d) SONG, varying sup

4 5 6 7 8
k

20

40

60

80

100

Q
u
e
ry

 q
u
a
lit

y
 (

%
)

EDBA
DBA
BA

(e) PAM, varying k

1 2 4 8 16
support ()

20

40

60

80

100

Q
u
e
ry

 q
u
a
lit

y
 (

%
)

EDBA
DBA
BA

(f) PAM, varying sup

Fig. 6. Query quality

for each of them. DBA multiplies a km factor to BA’s
cost, where m is the number of attributes, because it
tries k predicates per attribute. Finally, EDBA has m!
times higher cost than DBA because it considers all
permutations of attributes.4

The costs of all methods increase slightly with sup for
the following reason. Recall that all our methods use
either Algorithm 4 or Algorithm 5 as a module to find
the best predicate (or the DP set) for a given attribute;
this module is a significant cost factor, because it is
called at each node of the search tree. The cost of this
module directly depends on the size of its input; first the
module has to scan the number of records in the input
to construct arrays C and D, and then performs another
scan on these arrays to compute its result. Smaller sup
values are likely to select predicates at the higher levels
of the search tree that are qualified by fewer records
compared to large values of sup (recall that |G| should be
lower-bounded by sup · |R|). Thus, the input size of the
predicate search module becomes smaller at the lower
levels of the search tree.

Figure 6 plots the average query quality of all methods
when varying k and sup, on all three datasets. Note
that the exact algorithm NAIVE obtains the optimal
solution, so its quality is always 100%. On the other
hand, we could only run this algorithm on the NBA
dataset, because of its extreme runtime cost on the other

4. EDBA on PAM uses k DP only for the first two attributes, so its
cost difference to DBA is similar with that in the case of SONG.

two sets. For this reason, in Figures 6(c)–6(f), we consider
as optimal the best solution found by any of our methods
(i.e., the output of EDBA, which finds the best solution
in all cases). BA does not use k, so its quality is not
affected by this parameter. As expected, the quality of
DBA and EDBA increases with k, because they consider
additional diversified predicates on each attribute and
therefore explore more search space. Regarding the sup-
port threshold sup, when it increases, the search space
is decreasing. Thus, all of our methods explore a larger
portion of the search space and are more likely to find
a solution with quality close to the optimal one.

In Section 3.3.1, we proposed linear-time algorithms
(i.e., Algorithms 4 and 5) for finding the best predicate
(or diversified predicates) for a given attribute. Now, we
study the performance benefits obtained by this module,
in practice, when used in our proposed solutions, i.e.,
BA, DBA, and EDBA. Figures 7 and 8 show the runtime
improvement obtained by the linear module compared
to using a quadratic algorithm for predicate selection, on
SONG and PAM, respectively (NBA is too small and has
attributes of small domains). The quadratic algorithm
performs a scan on the input to construct arrays C and
D (just like Algorithm 4), but then considers all possible
ranges on the attribute’s domain and uses C and D to
measure their quality. BA′, DBA′, and EDBA′ denote
the methods where the quadratic predicate selection
module was used. Figures 7(a), 7(b), 8(a), 8(b) illustrate
the difference between using the linear module and the
quadratic module for DBA and EDBA, when varying k
(we omit BA because it does not use k). The relative cost
difference between DBA and DBA′ (also between EDBA
and EDBA′) is maintained for different values of k, as
expected, because DBA and DBA′ call the same module
the same number of times for a given k.

Figures 7(c)–7(e), 8(c)–8(e) show the difference of using
the two modules on BA, DBA, and EDBA, on different
sup values. First, note that the costs of BA and BA′ are
similar. The reason is that BA only explores a single
path of the search tree and its cost is dominated by the
selection of the first few predicates. For the first pred-
icate, the input size to the predicate selection module
is the whole dataset which is very large compared to
the attribute domain sizes. Therefore, the construction of
arrays C and D dominates the cost of both Algorithm 4
and the quadratic module. DBA and EDBA have a
large search tree; therefore the great majority of search
tree nodes have a small input size (at the scale of
sup · |R|), meaning that the cost of preprocessing the
input into arrays C and D becomes lower than the cost
of computing the DP set at each node, especially by the
quadratic algorithm. Therefore, there is a performance
gap between Algorithm 5 and the quadratic module
in this case. Finally, the cost of all methods is more
insensitive to sup on the PAM dataset because PAM
contains more attributes (resulting in a larger search tree
with more calls to the linear/quadratic module), and the
cardinalities of these attributes are large as well (making

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING, VOL. XX, NO. XX, XX 2014 13

3 4 5 6 7
k

0.0

0.5

1.0

1.5

2.0
Q

u
e
ry

 t
im

e
 (

s)

DBA'
DBA

(a) DBA (k)

3 4 5 6 7
k

0

100

200

300

400

Q
u
e
ry

 t
im

e
 (

s)

EDBA'
EDBA

(b) EDBA (k)

2 4 8 16 32
support ()

0.000

0.005

0.010

0.015

0.020

0.025

Q
u
e
ry

 t
im

e
 (

s)

BA'
BA

(c) BA (sup)

2 4 8 16 32
support ()

0.0

0.2

0.4

0.6

0.8

1.0

Q
u
e
ry

 t
im

e
 (

s)

DBA'
DBA

(d) DBA (sup)

2 4 8 16 32
support ()

0

40

80

120

160

Q
u
e
ry

 t
im

e
 (

s)

EDBA'
EDBA

(e) EDBA (sup)

Fig. 7. Comparison of applying different predicate selection modules on SONG

4 5 6 7 8
k

0

2

4

6

8

10

Q
u
e
ry

 t
im

e
 (

s)

DBA'
DBA

(a) DBA (k)

4 5 6 7 8
k

0

200

400

600

800

Q
u
e
ry

 t
im

e
 (

s)

EDBA'
EDBA

(b) EDBA (k)

1 2 4 8 16
support ()

0.00

0.04

0.08

0.12

0.16

Q
u
e
ry

 t
im

e
 (

s)

BA'
BA

(c) BA (sup)

1 2 4 8 16
support ()

0

1

2

3

4

5

Q
u
e
ry

 t
im

e
 (

s)

DBA'
DBA

(d) DBA (sup)

1 2 4 8 16
support ()

0

200

400

600

Q
u
e
ry

 t
im

e
 (

s)

EDBA'
EDBA

(e) EDBA (sup)

Fig. 8. Comparison of applying different predicate selection modules on PAM

the performance gap between the linear and quadratic
modules more significant).

4.3 Scalability and Progressiveness

5K 10K 15K 20K 25K
Dataset size

10-4

10-2

100

102

Q
u
e
ry

 t
im

e
 (

s)

NAIVE
EDBA
DBA
BA

(a) NBA, # of objects

2 3
Number of attributes

10-6

10-4

10-2

100

102

Q
u
e
ry

 t
im

e
 (

s) NAIVE
EDBA
DBA
BA

(b) NBA, # of attributes

60K 120K 180K 240K 300K
Dataset size

10-4

10-3

10-2

10-1

100

101

102

Q
u
e
ry

 t
im

e
 (

s)

EDBA
DBA
BA

(c) SONG, # of objects

2 3 4 5
Number of attributes

10-4

10-2

100

102

Q
u
e
ry

 t
im

e
 (

s)

EDBA
DBA
BA

(d) SONG, # of attributes

0.2M 0.4M 0.6M 0.8M 1.0M
Dataset size

10-4

10-2

100

102

Q
u
e
ry

 t
im

e
 (

s)

EDBA
DBA
BA

(e) PAM, # of objects

4 5 6 7 8
Number of attributes

10-4

10-2

100

102

Q
u
e
ry

 t
im

e
 (

s)

EDBA
DBA
BA

(f) PAM, # of attributes

Fig. 9. Scalability tests

Next, we conduct scalability experiments by applying
our methods on randomly selected samples of the orig-
inal datasets of various sizes, which results in a series

of datasets having different cardinalities (i.e., 5K–25K
records from NBA, 60K–300K from SONG, and 0.2M–
1M from PAM). Figures 9(a), 9(c), and 9(e) show the
average runtime of tested methods, on subsets of NBA,
SONG, and PAM, respectively. Observe that all our
methods scale well with the database size, indicating
their applicability to larger datasets.

We also study the scalability of our methods to the
number of predicate attributes. Again, for each dataset
and for each tested value of m (number of attributes), we
choose a subset of attributes and apply SMP considering
only them. For each m, we choose the m-sized subset
attributes with the largest domain sizes from the cor-
responding dataset. Figures 9(b), 9(d) and 9(f) illustrate
the average query time as a function of the number of
attributes m on NBA, SONG, and PAM, respectively.
BA and DBA are less sensitive to m because they only
consider one permutation (i.e., attributes ordering) when
selecting predicates. On the other hand, EDBA considers
all m! permutations, therefore it does not scale that well.
As mentioned in the beginning of Section 4.2, for large
values of m, we can use a version of EDBA which selects
k diversified predicates only for the first few attributes
in each attributes ordering and finds a solution of good
quality in practice.

In our last experiment, we assess how fast EDBA
converges to a good solution, compared to NAIVE,
which does not explore the search space in any particular
order and does not consider the best predicates per
attribute first. For each method, we plot the average
quality of the best solution found as a function of time
for 100 queries using the default settings. For queries on
the NBA dataset, we let NAIVE to terminate, while for
SONG, we stop it at the point where EDBA terminates
and plot the quality of its best solution as a ratio of the
quality of the best solution found by EDBA.

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING, VOL. XX, NO. XX, XX 2014 14

0.0001 0.01 1 100
Run time (%)

0

20

40

60

80

100
P
ro

g
re

ss
iv

e
n
e
ss

 (
%

)

EDBA
NAIVE

(a) NBA

20 40 60 80 100
Run time (%)

0

20

40

60

80

100

P
ro

g
re

ss
iv

e
n
e
ss

 (
%

)

EDBA
NAIVE

(b) SONG

Fig. 10. Progressiveness

Figure 10(a) shows that EDBA on NBA converges
much faster to a good solution compared to NAIVE
and terminates after spending only a small fraction of
NAIVE’s time (note that the x-axis is in log-scale). In
order for NAIVE to find a solution as good as that
of EDBA, it should run about 104 times longer. As
Figure 10(b) shows, EDBA converges relatively fast to
good solution, while NAIVE progresses slowly and the
quality of its solutions found early is low. Thus, EDBA
can also be used as a progressive algorithm that can
provide to the user a good solution early and gradually
improve it; the user can terminate EDBA as soon as s/he
is happy with the result.

5 CONCLUSION

We studied the problem of finding a set of selection
predicates on a relation that maximize the rank of a
given tuple in the selection result, according to a mea-
sure attribute. The problem finds application in object
promotion and characterization, however, as we show,
it is NP-hard. We proposed greedy methods that find
an approximate solution fast, by exploring the most
promising part of the search space. Our experiments
confirm the usability and efficiency of our methods on
three real datasets. In the future, we plan to study
the evaluation of SMP on databases with incremental
updates and attributes with partially-ordered domains.
We also plan to investigate the merging of multiple
solutions by EDBA in a disjunction of predicate-sets
that could improve the ranking of a given tuple even
more (i.e., a definition of SMP that allows disjunctions).
Moreover, the dual problem of SMP, which maximizes
the group population while satisfying a user-specified
rank threshold, is worth investigating. Although our
algorithms and heuristics can be extended to solve this
variant, alternative heuristics are also applicable.

REFERENCES

[1] A. Arvanitis, A. Deligiannakis, and Y. Vassiliou. Efficient
influence-based processing of market research queries. In CIKM,
pages 1193–1202, 2012.

[2] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator.
In ICDE, pages 421–430, 2001.

[3] W. W. Cohen. Fast effective rule induction. In ICML, pages 115–
123, 1995.

[4] G. Das, V. Hristidis, N. Kapoor, and S. Sudarshan. Ordering the
attributes of query results. In SIGMOD, pages 395–406, 2006.

[5] M. Das, S. Amer-Yahia, G. Das, and C. Yu. MRI: Meaningful
interpretations of collaborative ratings. PVLDB, 4(11):1063–1074,
2011.

[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms
for middleware. In PODS, pages 102–113, 2001.

[7] T. Lappas, G. Valkanas, and D. Gunopulos. Efficient and domain-
invariant competitor mining. In KDD, pages 408–416, 2012.

[8] M. Miah, G. Das, V. Hristidis, and H. Mannila. Standing out in
a crowd: Selecting attributes for maximum visibility. In ICDE,
pages 356–365, 2008.

[9] C. Mishra and N. Koudas. Interactive query refinement. In EDBT,
pages 862–873, 2009.

[10] A. Sultana, N. Hassan, C. Li, J. Yang, and C. Yu. Incremental
discovery of prominent situational facts. In ICDE, pages 112–123,
2014.

[11] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query by output. In
SIGMOD, pages 535–548, 2009.

[12] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Nørvåg. Reverse
top-k queries. In ICDE, pages 365–376, 2010.

[13] A. Vlachou, C. Doulkeridis, K. Nørvåg, and Y. Kotidis. Identifying
the most influential data objects with reverse top-k queries.
PVLDB, 3(1):364–372, 2010.

[14] E. Wu and S. Madden. Scorpion: Explaining away outliers in
aggregate queries. PVLDB, 6(8):109–120, 2013.

[15] T. Wu, Y. Sun, C. Li, and J. Han. Region-based online promotion
analysis. In EDBT, pages 63–74, 2010.

[16] T. Wu, D. Xin, Q. Mei, and J. Han. Promotion analysis in multi-
dimensional space. PVLDB, 2(1):109–120, 2009.

[17] Y. Zhang, Y. Jia, and W. Jin. Promotional subspace mining with
EProbe framework. In CIKM, pages 2185–2188, 2011.

Yilun Cai is a PhD student at the Department
of Computer Science, University of Hong Kong.
He received his BSc and MEng in Computer
Science from Sun Yat-sen University, China. His
research interests include spatial and temporal
query processing, text data management and
mining, and query optimization.

Yu Tang is an MPhil student at the Department
of Computer Science, University of Hong Kong.
He received his BSc in Computer Science from
Jilin University, China. His research interests
include query processing and optimization over
complex forms of data and crowdsourced data,
uncertain and probabilistic data management,
data extraction, integration and cleaning, algo-
rithms and indexing data structures.

Nikos Mamoulis received a diploma in Com-
puter Engineering and Informatics in 1995 from
the University of Patras, Greece, and a PhD
in Computer Science in 2000 from the Hong
Kong University of Science and Technology. He
is currently a professor at the Department of
Computer Science, University of Hong Kong,
which he joined in 2001. His research focuses on
management and mining of complex data types,
privacy and security in databases, and uncertain
data management. He served as PC member

in more than 80 international conferences on data management and
mining. He is an associate editor for IEEE TKDE and the VLDB Journal.

