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Abstract—In this paper we consider the problem of maximiz-
ing the number of supported connections in arbitrary wireless
networks where a transmission is supported if and only if the
signal-to-interference-plus-noise ratio at the receiver is greater
than some threshold. The aim is to choose transmission powers
for each connection so as to maximize the number of connections
for which this threshold is met.

We believe that analyzing this problem is important both in its
own right and also because it arises as a subproblem in many other
areas of wireless networking. We study both the complexity of the
problem and also present some game theoretic results regarding
capacity that is achieved by completely distributed algorithms.
We also feel that this problem is intriguing since it involves both
continuous aspects (i.e. choosing the transmission powers) as well
as discrete aspects (i.e. which connections should be supported).
Our results are:

• We show that maximizing the number of supported connec-
tions is NP-hard, even when there is no background noise.
This is in contrast to the problem of determining whether or
not a given set of connections is feasible since that problem
can be solved via linear programming.

• We present a number of approximation algorithms for the
problem. All of these approximation algorithms run in
polynomial time and have an approximation ratio that is
independent of the number of connections.

• We examine a completely distributed algorithm and analyze
it as a game in which a connection receives a positive payoff
if it is successful and a negative payoff if it is unsuccessful
while transmitting with nonzero power. We show that in this
game there is not necessarily a pure Nash equilibrium but
if such an equilibrium does exist the corresponding price of
anarchy is independent of the number of connections. We
also show that a mixed Nash equilibrium corresponds to a
probabilistic transmission strategy and in this case such an
equilibrium always exists and has a price of anarchy that is
independent of the number of connections.

This work was supported by NSF contract CCF-0728980 and
was performed while the second author was visiting Bell Labs in
Summer, 2008.

I. INTRODUCTION

In this paper we consider the problem of maximizing the

number of successful transmissions in the physical SINR

model. In our basic model we are given a set of transmitter-

receiver pairs located in the plane and each has an associated

SINR requirement. The aim is to satisfy as many of the

requirements as possible.

Maximizing the transmission capacity in wireless networks

has been studied in many contexts. Typically this work can

be partitioned along two axes. On one axis we have the two

models that are typically used to model channel conditions.

The simplest case is the unit-disk graph (UDG) model in

which transmissions interfere if and only if they are within

distance 1.1 A more complex model is the SINR model in

which each transmission is given a power and we assume a

distance-dependent path loss. A transmission is deemed to be

successful if the signal-to-interference-plus-noise-ratio (SINR)

is more than some specified threshold.

On the other axis is the structure of the networks that are

being considered. One option is to look at random networks

under a certain distribution of node placements and transmitter-

receiver pairings. In this case the typical goal is to calculate the

expected capacity of the system and examine how it changes

as the density of the network increases. Another option is to

simply look at a worst-case topology. In this case it makes

no sense to consider some notion of average capacity since

that could depend greatly on what the topology looks like, and

so we are more interested in the complexity of calculating the

optimum capacity and in determining how close we can come to

optimality via efficient algorithms (both centralized algorithms

and distributed protocols).

For random networks, the problem of calculating transmis-

sion capacity has been examined in both the UDG model and

the SINR model by Gupta and Kumar [10]. They showed

that in both cases the average source-sink capacity scales as

Θ( 1√
n log n

) where n is the number of nodes in the network.2

For UDGs, the maximum cardinality set of transmissions

corresponds to a maximum independent set in the graph.

Maximum independent set in UDGs was shown to be NP-

1We remark that there are many variants of the UDG model. For example in
the Tx model of [23] a transmission from u2 to v2 suffers interference from
a transmission from u1 to v1 if and only if the distance between u2 to u1 is
at most the distance from u1 to v1.

2A difference between Gupta-Kumar and our work (aside from the fact that
they look at random networks whereas we look at worst-case networks) is that
they consider the case of multihop transmissions. (This is of course necessary in
their setting since they consider random source-destination pairs which may not
be supportable with one-hop transmissions.) However, for simplicity we shall
focus on the case of single hop transmissions. (This is for example the case that
arises when we apply our results to the scheduling problems that we discuss
in Section I-E.) We plan to extend our results to multi-hope transmissions in
future work. We believe that this could be done using ideas similar to those used
by Kumar et al. [13] for solving multicommodity flow problems in wireless
networks.



hard in [4]. However, it is known due to arguments about the

geometry of disks that the simple greedy algorithm in which we

continually pick nodes and delete all their neighbors leads to

a 6-approximation for Maximum Independent Set in Unit Disk

Graphs [14]. Morever, for any ε > 0 more complex algorithms

can give a (1+ε)-approximation in polynomial time [12], [17],

[7].

There has been less work on the complexity of calculating

the maximum possible capacity in arbitrary networks under the

SINR model. (We discuss some previous work on this problem

in Section I-D.) We believe that addressing this question is

important for two reasons. First, although analyzing capacity

in random networks is important for determining what level

of transmissions will be possible in completely unstructured

networks, there are many situations where the network will

have some sort of structure and the transmission capacity may

be very different than what is possible in random networks.

In these cases we believe that knowing the complexity of

calculating the maximum number of transmissions is important.

Second, as is well-known the Unit Disk Graph model does

not capture many features of wireless networks. One reason

for this is that receivers will hear interference from all other

transmitters, even if they are far away. A more important reason

is that interference at a receiver is a cumulative effect of

multiple transmitters whereas in the Unit Disk Graph model

interference is simply a local binary property.

Before we can describe our results in detail we must present

our model. We begin with a basic model that allows us to

demonstrate most of our techniques and show what results

can be obtained in this model. We then define a number of

extensions to the model and describe how our results change

in these cases.

A. Basic model

We consider a set of n connections in the plane. Each

connection i has a transmitter ti and a receiver ri. We let

d(u, v) be the Euclidean distance between two points u and

v. We use di to denote d(ti, ri) and refer to it as the distance

of connection i. Suppose that a node u is transmitting with

power p. Following [18] we assume that for some parameters

d0 and α the received signal at another point v is given by

p · min{(d0/d(u, v))α, 1}. We refer to min{(d0/d(u, v))α, 1}
as the path loss between u and v and denote it by g(u, v). We

refer to α as the path loss exponent. We make the traditional

assumption that α > 2 since otherwise the total energy received

over the plane would be more than the total energy transmitted.

We assume that for any connection i the distance d(ti, ri) is

either 0 or else lies between dmin and dmax for some parameters

dmax, dmin ≥ d0. The running times and the performance

guarantees of many of our algorithms will depend on the ratio

dmax/dmin. For simplicity in the remainder of the paper we

shall normalize distances so that dmin = 1. Hence in the

following all of our formulas with a dependence on dmax will

in fact depend on dmax/dmin in the unnormalized case.

Let pi be the power used by connection i (which can be

zero). We assume that there is a maximum power pmax with

which any node can transmit. The signal received at receiver

ri is given by pig(ti, ri) and the interference heard from the

other connections is
∑

j 6=i pjg(tj , ri). We also assume that

there is some background noise level W and so the signal-

to-interference-plus-noise-ratio (SINR) is (pig(ti, ri))/(W +
∑

j 6=i pjg(tj , ri)). We assume that each connection is for

a single application type such as Voice-over-IP for which

there is a fixed signal-to-noise requirement that we denote

by τ . In other words, connection i is satisfied if and only if

(pig(ti, ri))/(W +
∑

j 6=i pjg(tj , ri)) ≥ τ .

Our aim in this paper is to maximize the number of satisfied

connections, i.e. we wish to choose the transmission power

levels pi so as to maximize,

|{i :
pig(ti, ri)

W +
∑

j 6=i pjg(tj , ri)
≥ τ}|.

We refer to this problem as MAX-CONNECTIONS and we

denote the maximum achievable value by OPT.

We remark that if OPT equals n, then the optimum powers

can be found using linear programming. This is because all we

need to do is find powers such that pi ≥ 0 and,

pig(ti, ri) ≥ τ(W +
∑

j 6=i

pjg(tj , ri)). (1)

If such powers exist then clearly any linear programming algo-

rithm will find them. Moreover, there are also many distributed

algorithms for finding these powers. See for example the work

of Yates on uplink power control [22]. However, we are mostly

concerned with situations where it is not possible to support all

connections. In this case linear programming will not work

since we need to make the discrete decision about which

connections to support before we make the continuous decision

about what power levels to use for the supported connections.

We can think of the problem as being one of maximizing the

number of satisfied linear inequalities of the form (1). In general

the problem of maximizing the number of satisfied inequalities

in a linear system cannot be approximated to within a factor

better than nδ for some δ > 0. (See Arora et al. [1].) However,

our problem has significant geometric structure. Our aim is to

exploit this structure to get better bounds than the bounds of

[1].

Throughout the paper we shall assume that α and τ are

constants. Hence expressions that utilize O(·) will sometimes

be hiding dependencies on α and τ . In the case when W 6= 0,

we will also make the assumption that dmax is bounded

away from the absolute distance limit with no outside in-

terference, i.e. there is some constant ǫ such that dmax ≤
(1 − ǫ)d0(pmax/τ)1/α.

B. Results from the basic model

• Our first result is a hardness result. In Section II we show

that MAX-CONNECTIONS is NP-hard and so we should

not expect to obtain a polynomial-time exact algorithm.

• Given that the problem is NP-hard, in Section III we

turn our attention to approximation algorithms for MAX-

CONNECTIONS. Our first algorithm runs in polynomial

time and gives an O(log dmax)-approximation. For the

case of zero background noise we describe a second algo-

rithm that gives an O(1)-approximation in time nO(d2

max
).



• The approximation algorithms presented in Section III

are centralized. Although this might be appropriate in a

situation where we are given a network configuration and

we wish to analyze the capacity, centralized algorithms are

unlikely to be useful if we wish to optimize capacity as

a network evolves. Distributed algorithms are much more

likely to be useful. In Section IV we consider the extreme

case of completely decentralized algorithms that do not

exchange any information but instead selfishly maximize

their payoffs in a game that we design in which a strategy

is a transmit power.

We first show that our game does not always have a pure

Nash equilibrium. On the other hand, we show that in

any mixed Nash equilibrium (of which there is always at

least one) the expected number of connections that are

supported is always within a O(d2α
max) factor of OPT (i.e.

the price of anarchy is O(d2α
max)). Thus if a pure Nash

does exist it is close to optimal.

C. Extended model

We now briefly describe some ways to extend our model

together with the results that we can obtain when these new

features are introduced.

• The first extension is to assume that each connection i has

a weight wi and the goal is to maximize the weighted total

of supported connections. In this model we can slightly

modify the proof from the basic model to obtain a similar

O(log dmax)-approximation algorithm.

• Another extension is to assume that there are multiple

carriers in the system that do not interfere. Each connec-

tion must be assigned to a separate carrier. These carriers

might be different channels in an 802.11 system or they

might be different frequency bands in an OFDM system

such as 3GPP’s Long-Term Evolution (LTE) standard.

In this case we have three decisions to make, namely

which connections should be supported, which powers

should they be assigned, and which channels should they

be assigned. We remark that the third problem can be

thought of as providing a frequency reuse pattern for the

connections. In this model all of the results from the basic

model continue to hold other than losing another constant

factor independent of the number of carriers.

D. Related work

As already mentioned, Gupta and Kumar [10] looked at the

problem of maximizing the number of satisfied connections in

random multihop networks in both the SINR model and the

UDG model. For arbitrary networks under the UDG model,

(1+ε)-approximations were obtained in [12], [17], [7]. In terms

of completely distributed algorithms, game theoretic results

have been obtained in a number of different contexts. In [11],

Huang et al. looked at the problem of maximizing an aggregate

network utility in a situation where each connection’s utility is a

concave function of the connection rate and nodes are allowed

to share pricing information. They show that this distributed

algorithm will converge to a local optimum. In [19], Saraydar

et al. look at a game-theoretic algorithm for choosing powers on

the uplink of a single cell wireless system. In [20], Stolyar and

Viswanathan study fractional frequency reuse algorithms for

joint channel assignment and power control in cellular OFDM

systems and provide a game theoretic algorithm that always

leads to a stable solution. In [2], Bahl et al. provide distributed

algorithms inspired by game theory for the problem of sizing

cells and assigning users to basestations. However, none of this

work and to the best of our knowledge no other work studies

the problem of comparing the quality of a stable solution with

the global optimum.

Previous papers that consider the complexity of capacity

maximization in the SINR model include [3], [5], [9], [15],

[16]. Of these, Goussevskaia et al. [9] is the most closely

related to our work. The authors show NP-hardness and provide

O(log dmax) approximation algorithms for a similar objective

to ours. They also consider a related objective of minimizing

the number of “rounds” required to serve all connections.

However, a key distinction between our work and [9] is that [9]

assumes that all transmission powers are fixed. In other words

it only addresses the combinatorial aspects of the problem

(deciding which connections should be scheduled at a given

time) and does not consider that the continuous aspects (which

transmission powers should be used). In contrast, our results in

Sections II and III assume that selection of transmission powers

is part of the problem.

The results of [9] were extended to the multihop case by

Chafekar et al. in [5]. The papers [15], [16] showed that we

can schedule all connections in a number of rounds that is only

an O(log2 n) factor than a lower bound based on an intrinsic

measure of interference at the receivers. In [3], Borbash and

Ephremides present a linear programming formulation of the

problem (but which may not always have polynomial size).

E. Remarks

We remark that throughout this work we focus on a situation

where we are simply trying to maximize the capacity of a set

of conections transmitting at a given time. We do not explicitly

address scheduling issues such as timesharing between different

sets of connections.

However, we note that in many scheduling algorithms, the

scheduling decision involves finding a set of feasible trans-

missions that maximizes some notion of weighted capacity.

For example, the scheme of Kumar et al. [13] for realising

multicommodity flow solutions in multihop wireless networks

involves finding maximum feasible sets of transmissions. In

addition the well-known backpressure algorithm for stabilizing

queues lengths in wireless networks whenever possible (see

[21]) involves finding at each time-step a feasible transmission

set of maximum weight where the weight of a transmission

is derived from the difference between a queue length at the

transmitting node and a corresponding queue length at the

receiver. In Section V-B we mention how our techniques may

be extended to weighted problems. Hence our analysis provides

algorithms for solving these subproblems while at the same

time showing that finding exact solutions to the subproblems

is NP-hard.



Fig. 1. The graph that forms the basis of our NP-hardness reduction.
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Fig. 2. The gadget.

II. NP-HARDNESS

In this section we show that the MAX-CONNECTIONS prob-

lem in arbitrary networks under the SINR model is NP-hard.

Our reduction follows the basic strategy of the NP-hardness

reduction for MIS in unit disk graphs. However, the reduction is

somewhat more complicated since we have to deal with the fact

that interference comes from arbitrary distances. The reduction

starts from the NP-hardness of MIS in planar cubic graphs.

Specifically it is known (see e.g. [4]) that MIS is NP-hard in

graphs where all nodes are on the edges of a grid with squares

of size M , edges are of size 1, all nodes have degree at most

3 and each degree 3 node is incident to linear arrays of size at

least M/4 (see Figure 1). Note that any maximum independent

set will include at most every other node along an edge of the

grid. The proof becomes somewhat complex since we need to

show that all power levels will lead to an infeasible solution

for any non-independent set.

A. Gadget

We now describe a gadget that will be used in the eventual

hardness proof. The purpose of the gadget is to represent a

degree-3 node in our grid. We consider three linear arrays of

nodes. (See Figure 2.) Each node serves as both the transmitter

and receiver for a single connection. The first linear array is at

positions (0, 1.2), (0, 2.2), (0, 3.2), . . .. The second linear array

is at positions (1.2, 0), (2.2, 0), (3.2, 0), . . .. The third linear

array is at positions (0,−1.2), (0,−2.2), (0,−3.2), . . .. Lastly

we have a single node at (0, 0). We let the path-loss exponent

α = 2.05, the signal-to-noise ratio threshold τ = 1.00001 and

the maximum power pmax = 1. We also suppose that each

linear array has a at least ℓ nodes for some parameter ℓ. The

first result about this gadget follows directly from the chosen

value of τ .

Lemma 1: There is no feasible solution that contains adja-

cent nodes from one of the linear arrays.

Proof: Consider two adjacent nodes from a linear array.

The distance between them equals 1. Consider the transmission

with the smallest power. The SINR for that transmission will

be at most 1. Hence the SNR constraint is not satisfied.

Fig. 3. The feasible confi gurations.

Fig. 4. The infeasible confi gurations.

Hence it remains to see what configurations are feasible that

only use alternating members of a linear array. The following

facts can be verified numerically.

Lemma 2: The following configurations are feasible for ar-

bitrarily large ℓ, even when there is a background noise level

of ε = 0.01.

• (0, 0), (0, 2.2), (0, 4.2), . . . , (2.2, 0), (4.2, 0), . . . ,
(0,−2.2), (0,−4.2), . . . (See Figure 3 (left).)

• (0, 1.2), (0, 3.2), . . . (1.2, 0), (3.2, 0), . . . ,
(0,−1.2), (0,−3.2), . . .. (See Figure 3 (right).)

For sufficiently large ℓ the following configurations are not

feasible, even if there is no background noise level.

• (0, 0), (0, 1.2), (0, 3.2), . . . , (2.2, 0), (4.2, 0), . . . ,
(0,−2.2), (0,−4.2), . . . (See Figure 4 (left).)

• (0, 0), (0, 2.2), (0, 4.2), . . . , (1.2, 0), (3.2, 0), . . . ,
(0,−2.2), (0,−4.2), . . . (See Figure 4 (middle).)

• (0, 0), (0, 2.2), (0, 4.2), . . . , (2.2, 0), (4.2, 0), . . . ,
(0,−1.2), (0,−3.2), . . . (See Figure 4 (right).)

It is easy to see that by making M sufficiently large we can

guarantee that for any node a the interference caused to a by

nodes at distance at least M/4 from a is at most ε. Note that

M will depend only on ε. It is also easy to see from Lemma 2

that in a single linear array it is feasible for every other node

to transmit at pmax = 1 even with background noise of 0.01.

We can use the above gadget to show NP-hardness in the

following manner. First we can make sure that in the grid

example where MIS is hard every node on the corners of the

grid have degree 3 and every other node has degree 1 or 2. (See

Figure 1.) We then place a copy of the gadget around every

degree-3 node so that the linear arrays correspond to degree 1

or 2 nodes.

For the first direction of the reduction we would like to show

that for any MIS in the original graph, the corresponding nodes

can transmit in our wireless instance. This is easy to see by

using Lemma 2, since close to the center of each gadget we

know that the interference from outside the gadget is at most

ε, so it is still feasible. The only non-obvious case is when

two gadgets meet at the center of a chain, but this is clearly



still feasible since at the center of the chain everything within

distance M/4 is just part of the chain, so is still feasible by

broadcasting at power 1 (which is consistent with the feasible

gadget solution).

Now we need to show that any maximum feasible solution

forms an independent set in the original graph. An important

observation is that we can without loss of generality assume

that in any maximum feasible solution every other node in a

linear array is transmitting. If not, then we could always add to

the number of nodes transmitting in the linear array by turning

off one of the degree 3 nodes. We can repeat this process until

every linear array has half its nodes transmitting. Lemma 2

then implies that we cannot have a degree 3 node transmitting

together with one of its neighbors, and Lemma 1 implies that

no other adjacent nodes are transmitting. This any maximum

feasible set also forms an independent set, completing the

reduction.

III. APPROXIMATION ALGORITHMS

Due to the NP-hardness of our problem we now turn our

attention to approximation algorithms. Ideally we would like

to adapt one of the polynomial time approximation schemes

(that give a (1 + ε)-approximation for any ε) to the SINR

model. However, we are unable to do that, mainly because the

analyses of these algorithms make critical use of the fact that

two transmissions only interfere if the transmitters are close

to each other. However, in the SINR model interference can

occur at arbitrary distances which makes it difficult to directly

adapt these analyses. However, in this section we show that if

dmax is constant then we can obtain constant approximation

algorithms in polynomial time. More generally, we present an

O(log dmax)-approximation that runs in polynomial time, and

for the case in which the background noise W = 0 we give an

O(1)-approximation that runs in time O(nd2

max).
Before we present these algorithms we start with a density

lemma that we shall use both for these results and for our

game-theoretic results in Section IV. This lemma states that any

feasible solution can only have a limited number of receivers

in any fixed area.

Lemma 3: Consider a square S with side-length d0. In any

feasible solution the maximum number of connections with a

receiver in square S is 3α/τ .

Proof: Without loss of generality we assume that the

background noise is 0. Having a non-zero background noise can

only reduce the number of connections that can be supported.

Suppose that all nodes in the feasible solution transmit at

a power such that the received signal is a constant p̄, i.e.

pi min{1, (d0/d(ti, ri))
α} = p̄. Let i and i′ be two connections

such that both ri and ri′ lie in S.

The interference caused by connection i at receiver ri′

is pi min{1, (d0/d(ti, ri′))
α} ≥ pi min{1, (d0/(d(ri, ri′) +

d(ti, ri)))
α} Recall that we assume that either ri =

ti or d(ti, ri) ≥ d0. In addition, by the geome-

try of the square S we know that d(ri, ri′) ≤ 2d0.

This implies that pi min{1, (d0/(d(ri, ri′) + d(ti, ri)))
α} ≥

1
3α pi min{1, (d0/d(ti, ri))

α} ≥ p̄/3α. Hence if there are more

than 3α/τ such connections the inteference experienced by all

of them would be enough to prevent the SINR constraint being

satisfied for all connections.

We now remove the condition that the received powers for

every connection are the same. However, in this case the SINR

value for some connection must be worse than it was when

the received signal powers were the same. This implies that

if there are more than 3α/τ connections, then for any set of

transmission powers there will be some connection whose SINR

constraint is not satisfied.

Corollary 4: Suppose now that square S has side-length d.

In any feasible solution the maximum number of connections

with a receiver in square S is 3αd2/τ(d0)
2.

Proof: Divide square S up into subsquares of size d0 and

then apply Lemma 3.

Lemma 5: Now consider a ball B of radius d. In any feasible

solution the maximum number of connections with a receiver

in ball B is 3α · 4d2/τ(d0)
2.

Proof: Follows immediately from the fact that any circle

with radius d is contained in a square with side-length 2d.

The following extension of Lemma 3 will also be useful.

Lemma 6: Consider a square S with side-length d. In any

feasible solution the maximum number of connections such that

d(ti, ri) ≥ d and ri is in square S is 3α/τ .

Proof: The analysis is almost identical to that of Lemma 3

once we note that in this case d(ri, ri′) ≤ 2d ≤ 2d(ti, ri) for

all i, i′.
In the next two theorems we present our approximation

algorithms for the MAX-CONNECTIONS problem in the SINR

model.

Theorem 7: There exists a polynomial time algorithm that

always finds a solution to MAX-CONNECTIONS that is within

a factor O(log dmax) of optimal.

Proof: We divide all connections into classes based

on distance. Class Fj contains all connections i such that

dmax/2
j−1 ≥ d(ti, ri) ≥ dmax/2

j . (We remark that a similar

decomposition was used in [9].) Note that in the optimal solu-

tion there must exist a j such that Fj contains OPT/ log dmax

connections. In the following we will consider each j in turn

and obtain a constant approximation for the connections in

Fj only. We focus on a j for which dmax/2
j ≥ dmin. The

connections for which dti,ri
= 0 can be handled similarly.

We now divide the problem into squares of side dmax/2
j .

(See Figure 5.) We refer to these squares as j-squares. From

each j-square S, if there is at least one receiver in S then we

choose one arbitrarily, and restrict ourselves to the problem

on these connections. Note that Lemma 6 implies that each j-

square only contains at most 3α/τ receivers from the optimal

solution on Fj , so as long as we can support at least a constant

fraction of our chosen connections we are still within a constant

of the optimal solution on Fj .

We now restrict our attention to 1 out of every k2 j-squares

in an evenly spaced pattern for some parameter k, i.e. squares

located at the same coordinates mod k. (See Figure 5). We can

partition the plane into k2 such sets of squares. We show that

in each set we can support one connection in each square, so

by taking the best set we are only losing another k2 factor.

Consider some j-square S, and consider the set I of j-

squares in the same pattern set that are offset from S by exactly
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Fig. 5. We form our solution using 1 out of every k2 squares. Here k = 3.

ik in one coordinate and at most ik in the other coordinate

(i.e. the set of j-squares that are on the border of the ℓ∞ ball

of radius ik around S). Since the ℓ∞ distance is at most the

normal ℓ2 distance, it is not hard to verify that the maximum

interference caused by the connection in I to the connection in

S is at most pmax(d02
j/(ik − 3)dmax)

α ≤ pmax(d02
j/(i(k −

3))dmax)
α. It is also easy to see that there are at most 8i squares

in I . This implies that the total interference suffered by the

connection in S is at most
∑∞

i=1 8ipmax

(

d02
j

(i(k−3))dmax

)α

=

8pmax

(

d02
j

(k−3)dmax

)α

ζ(α− 1), where ζ(α− 1) is the Riemann

zeta function, which is constant for constant α > 2.

The connection in S can use power pmax, so if W = 0 then

as long as (pmax/(dmax/2
j−1))/(8pmax

(

d02
j

(k−3)dmax

)α

ζ(α −
1)) is at least τ the connection in S can be supported (and thus

by the same argument so can all of the rest of the connections in

I). So it suffices to choose k such that (k−3)α ≥ 8d02
αζ(α−

1), and thus k is some constant. If W 6= 0 then we have to

increase k by a constant factor depending only on ǫ (recall that

ǫ is a measure of how far dmax is from the physical limit).

The approximation factor that we lose for class Fj due to all

the connections that have been removed is 3α

τ k2 which is a

constant for fixed α and τ . As already mentioned, our overall

approximation ratio is therefore O(log dmax).
If there is no background noise we can obtain another

algorithm whose approximation ratio has a better dependence

on dmax at the expense of a worse dependence in the running

time. Due to space constraints we omit the proof, and note only

that it is similar to the proof of Theorem 7 except for using

squares of size dmax, scaling so total power from a square is

pmax, and dropping half of the connections in each square.

Theorem 8: For the case with no background noise (i.e.

W = 0) we can find an O(1) approximate solution in time

nO(d2

max
).

IV. GAME THEORY

As discussed, the approximation algorithms described pre-

viously are centralized. We would also like to examine highly

distributed algorithms that allow each transmitter to make its

own decision based on limited local information. One extreme

version of this is the setting in which transmitters are not

allowed to exchange any information between themselves, and

instead must make a decision on broadcast power based only

on knowledge of the signal and noise at their receivers (we

r1

r3t1 t3

t2

r2

d

d d

d

dd

Fig. 6. No pure Nash exists

assume that receivers periodically provide this information to

their transmitters). A natural way of viewing this setting is

as a game where the transmitters are the players and the pure

strategies are power settings. In this section we will define such

a game and show that every Nash equilibrium in this game

results in an expected number of successful transmissions that

is close to optimal if there is no background noise.

For simplicity of notation we will without loss of generality

rescale powers and W so that pmax = 1. The game that

the transmitters will be playing is simple. Each transmitter

is a player, whose pure strategies are the reals in [0, 1], with

a nonzero value representing broadcasting at that power and

0 representing not broadcasting. So a mixed strategy is a

probability distribution over [0, 1]. A transmitter gets payoff

0 if it does not broadcast (i.e. has power 0), payoff 1 if it

broadcasts and its receiver has signal to noise ratio at least

τ , and −1 if it broadcasts but its receiver has SINR less that

τ . We note that it is easy to see that the same game without

the −1 penalty can have bad Nash equilibria (in particular,

everyone broadcasting). We first discuss pure Nash equilibria

in this game, and then examine the more general mixed Nash

case.

A. Pure Nash Equilibria

A pure Nash equilibrium is a very natural solution concept,

since it would guarantee that everyone broadcasting is doing

so successfully while no one not broadcasting could succeed

even if they went at maximum power. Unfortunately a simple

example shows that pure Nash equilibria do not always exist

in our game.

The bad example is as follows, and is given in Figure 6.

There are three transmitters t1, t2, t3 in an equilateral triangle

with side length 2d for some arbitrary d ≫ d0. The receiver for

t1 (i.e. r1) is located halfway between t1 and t2 (so at distance

d from each). Similarly, r2 is located halfway between t2 and

t3 and r3 is located halfway between t3 and t1. We will set

τ = 2 and α = 2.5, and will assume no background noise so

W = 0.

We first claim that |OPT | = 1. To see this, suppose that there

are at least two successful broadcasts. Without loss of generality

we will assume that connections 1 and 2 are successful, and

are broadcasting at powers p1 and p2 respectively. Then since

connection 1 is successful we know that (p1/d
α)/(p2/d

α) ≥ 2,

and thus that p1 ≥ 2p2. Now we note by simple geometry that

the distance from t1 to r2 is exactly d
√

3, so the SINR of

connection 2 at r2 is (p2/d
α)/(p1/(d

√
3)α) = (p23

1.25)/p1 ≤
(p23

1.25)/(2p2) = 31.25/2 < 2 = τ , which is a contradiction

since we assumed that b was successful.



Now since |OPT | = 1, any pure Nash equilibrium must

have exactly one successful transmission (since obviously it

must have more than 0 and at most |OPT |). Without loss

of generality we will assume that connection 1 is successful

with power p1, so by the definition of a pure Nash it must be

the case that neither connection 2 nor 3 are broadcasting with

power greater than 0. But then the interference at r2 is just

p1/(d
√

3)α, so if t2 broadcasted at power p1 then the SINR at

r2 would be (p1/d
α)/(p1/(d

√
3)α) = (

√
3)α > 3 > τ . So t2

would be successful if it transmitted at power at least p1, and

thus a broadcasting by itself is not a pure Nash equilibrium.

While pure Nash equilibria do not always exist, when they

do exist they have value close to OPT. This is formalized in the

next subsection when we prove the same statement about mixed

Nash equilibria, but we will provide the intuition for the pure

Nash special case. Fix some pure Nash. We will try to find a

receiver whose associated transmitter is not broadcasting in the

Nash but has “small” interference, where our notion of small

is something that increases as the value of the Nash gets closer

to OPT. Since this receiver’s transmitter is not broadcasting,

the interference must be overcoming any possible signal and

thus must actually be quite large, implying that the Nash must

actually have value close to OPT.

B. Mixed Nash Equilibria

While pure Nash equilibria do not always exist, obviously

a mixed Nash does. We now show that any mixed Nash (and

thus any pure Nash, if one does exist) has value close to OPT.

Recall that a mixed strategy is a probability distribution over

the possible powers (i.e. over [0, 1]), and in a mixed Nash there

is no incentive for any transmitter to change its distribution. For

our purposes, for a transmitter i we will only need to consider

the probability qi that i broadcasts with non-zero power. We

begin with a few useful lemmas. Fix some Nash equilibrium.

For each transmitter i, let pgood(i) be the probability (over

the randomness in the strategies of the other transmitters) that

i would be successful if it were to broadcast at power 1.

Let pbad(i) = 1 − pgood(i) be the probability that i would

not be successful. Note that if i has non-zero probability of

broadcasting at some power greater than 0 but less than 1
then the probability of it succeeding at that power must be

equal to the probability of it succeeding at power 1, since

otherwise it could just switch to power 1 and strictly increase its

expected payoff. So S =
∑

i qipgood(i) is the expected number

of successful transmissions (i.e. the value of the equilibrium).

Let T =
∑

i qi be the expected number of transmissions.

Lemma 9: For any Nash equilibrium, for any transmitter i,
if qi < 1 then pbad(i) ≥ 1/2 and if qi > 0 then pbad(i) ≤ 1/2

Proof: Suppose that qi < 1 and that pbad(i) < 1/2,

so pgood(i) > 1/2. Then by broadcasting at power 1 with

probability qi, the expected payoff to i would be qi(pgood(i)−
(1 − pgood(i))) = qi(2pgood(i) − 1). Since 2pgood(i) − 1 > 0,

this is maximized by setting qi = 1, contradicting our choice

of i and our assumption that this is an equilibrium.

Similarly, suppose that qi > 0 and that pbad(i) > 1/2. Then

when i broadcasts it will fail more than 1/2 the time, giving

negative expected payoff, so i would just never broadcast (i.e.

set qi to 0), contradicting our choice of i.

Lemma 10: For any Nash equilibrium, S ≤ T ≤ 2S
Proof: The first inequality is obvious from the definitions,

and the second immediately follows from the second part of

Lemma 9, since T =
∑

i qi = 2
∑

i
1
2qi ≤ 2

∑

i pgood(i)qi =
2S.

Let OPT be the set of receivers that achieve their SINR

requirement in the optimal solution. We can now prove the

main theorem of this section:

Theorem 11: Any Nash equilibrium has an expected number

of successful transmissions at least Ω(|OPT |/d2α
max), where we

assume that α and τ are constants.

Proof: Fix a Nash equilibrium. Let L = {i : qi = 1}
be the set of transmitters that broadcast at power greater than

0 with probability 1. Consider the following procedure (only

for analysis, obviously). For each receiver x in OPT \ L we

will keep track of how much it is “bought” with a variable

b(x), initially all set to 0. Now we order all transmitters in the

instance (or just all transmitters with non-zero qi in the Nash)

arbitrarily. We examine the transmitters one by one in this order.

Say we are on transmitter i. Let R(i) be the ⌊ |OPT\L|−k
kT ⌋

closest receivers in OPT \L to i (for some parameter k to be

defined later) that are currently bought to less than 1, i.e. have

b(x) < 1. We now increase their b values by qi, so b(x) :=
b(x) + qi.

Since each transmitter increases the sum of the b values

by qi⌊ |OPT\L|−k
kT ⌋, at the end of this process we know that

∑

x b(x) =
∑

i qi⌊ |OPT\L|−k
kT ⌋ ≤ |OPT\L|−k

k < |OPT |
k , since

by definition T =
∑

i qi. This means that there is some receiver

a ∈ OPT \ L that has b(a) < 1/k.

Let M ′ be the set of transmitters that contributed to b(a)
during the above process. Note that since b(a) ≤ 1/k we

know that
∑

x∈M ′ qx ≤ 1/k; we will use this later. Let

M be all other transmitters, and for every distance d let

z(d) =
∑

x∈M :d(a,x)≤d qx be the probability mass from M
located inside B(a, d). Consider some transmitter x ∈ M .

Since a 6∈ R(x) and b(a) < 1, any receiver y ∈ R(x) must

have d(x, y) ≤ d(x, a), or else a would be in R(x). So by the

triangle inequality we know that d(a, y) ≤ 2d(a, x), and thus

that any transmitter x at distance at most d from a must have

its entire R(x) at distance at most 2d from a.

We will now bound z(d). Since every transmitter x in

M ∩ B(a, d) contributes qx⌊ |OPT\L|−k
kT ⌋ to the sum of the

b values, and each receiver that it contributes to must be in

B(a, 2d), the sum of the b values of receivers in B(a, 2d)

is at least z(d)⌊ |OPT\L|−k
kT ⌋. Since a receiver’s b value only

increases if it is less than 1, and then only increases by at

most 1, we know that the b value of any receiver is at most

2. Thus the number of receivers from OPT in B(a, 2d) is at

least
z(d)
2 ⌊ |OPT\L|−k

kT ⌋. By Lemma 5, this implies that cd2 ≥
z(d)
2 ⌊ |OPT\L|−k

kT ⌋ and thus that z(d) ≤ 2cd2/⌊ |OPT\L|−k
kT ⌋ for

some constant c depending only on α, τ , and d0.

Now that we have a bound on the probability mass inside

a ball around a, we want to bound the probability mass in an

annulus of thickness 1 around a. To do this, we note that the

interference at a is maximized if every ball around a actually

meets the above bound. Since in the end we will care about

upper bounding the interference, we can say without loss of



generality that every ball meets the above bound, implying that

the sum of the probabilities of transmitters between distance

d and d + 1 is at most (2c/⌊ |OPT\L|−k
kT ⌋)((d + 1)2 − d2) ≤

6cd/⌊ |OPT\L|−k
kT ⌋ when d ≥ 1, and is at most 2c/⌊ |OPT\L|−k

kT ⌋
when d = 0. Since the expected interference from a transmitter

at distance d from a is at most its probability of broadcasting

times 1/dα, this means that the expected interference at a
caused by transmitters at distance between d and d + 1 from

a is at most (6c/⌊ |OPT\L|−k
kT ⌋) · 1

dα−1 for d ≥ 1. For d = 0,

since the interferenced cauised by a transmitter is at most 1,

the expected interference from transmitters between distances

0 and 1 from a is at most 2c/⌊ |OPT\L|−k
kT ⌋. Using linearity

of expectations, we can sum over the annuli to get that

the expected interference at a is at most 2c/⌊ |OPT\L|−k
kT ⌋ +

(6c/⌊ |OPT\L|−k
kT ⌋)

∑∞
d=1

1
dα−1 ≤ 8cζ(α − 1)/⌊ |OPT\L|−k

kT ⌋,

where ζ(α − 1) is the Riemann zeta function (which will be

constant for α > 2).
This gives us a bound on the expected interference at a

caused by transmitters in M . What about the transmitters in

M ′? Since we know that
∑

x∈M ′ qx ≤ 1
k , we get that they

cause at most 1
k expected interference (which is what would

happen if they were all at distance 1 from a). Thus the total

expected interference is at most (8cζ(α−1)/⌊ |OPT\L|−k
kT ⌋)+ 1

k
So now we have a bound on the expected interference. Let us

assume (for now) that W = 0. By using Markov’s inequality,

we get that the probability that a hears interference at least

twice the expected interference is at most 1/2. But since we

know from how we selected a that the probability that its

transmitter tries to transmit is less than 1, Lemma 9 implies

that pbad(a) ≥ 1/2. Thus (16cζ(α − 1)/⌊ |OPT\L|−k
kT ⌋) + 2

k
must be enough interference to kill the transmission to a; in

particular, it must be the case that 16cζ(α−1)/⌊ |OPT\L|−k
kT ⌋ ≥

1
τdα

max

− 2
k . We will now finally set k, to 4τdα

max, giving us that

16cζ(α − 1)/⌊ |OPT\L|−4τdα
max

4τdα
max

T ⌋ ≥ 1
2τdα

max

.

Solving for T in this equation, and assuming constant α
and τ , implies that T ≥ Ω(|OPT \ L|/d2α

max), and thus

by Lemma 10 we have that S ≥ Ω(|OPT \ L|/d2α
max). If

|OPT \ L| = o(|OPT |) then a superconstant fraction of

transmitters are broadcasting with probability 1 in the Nash,

which by Lemma 9 and Lemma 10 means that the expected

number of successful transmissions in the Nash is at least

Ω(|OPT |), which would prove the theorem. On the other hand,

if |OPT \L| = Ω(|OPT |) then the above equation implies that

S ≥ Ω(|OPT |/d2α
max), thus proving the theorem.

If W 6= 0 the theorem is still true but the details are

slightly more complicated, so we give only a brief sketch. With

background noise, instead of twice the expected interference

being enough to kill the signal it must be that twice the expected

interference plus the background noise must be enough to kill

the signal. But this only causes us to lose another constant,

since we assumed from the beginning that the distance from

any receiver to its transmitter (and thus from a to its transmitter)

is bounded away from the absolute limit by a constant.

V. EXTENDED MODELS

We now give brief sketches of how our results can be adapted

to the extended models discussed in Section I-C.

A. Multiple Carriers

Recall that in the multiple carrier model there are J different

carriers {1, 2, . . . , J} and transmissions on carrier j cause inter-

ference only to other transmissions using carrier j. Obviously

this version is still NP-hard, as it contains the single-carrier

version as a subproblem.

For the approximation algorithms, it is clear that the only

thing we need to modify is how we compute the optimal

solution in each square, and then the rest of the proof will

go through as before. We need to modify the square optimum

computation because if J is large trying all possibilities might

take too long. However, if we regard the connections as a

ground set and each feasible single carrier solution as a subset

of this ground set, it is obvious that finding the best solution

is just an instance of the famous max k-cover problem for

k = J . It is well known (see e.g. Feige [8]) that a simple greedy

algorithm is a (1− 1/e)-approximation, so we can simply use

that algorithm to compute the optimal solution in each square

and lose another constant (e/(e − 1)).
For the game theoretic problem, modulo some technical

details it is not difficult to see that the same results will hold.

This is because we can repeat the analysis of Theorem 11 for

each individual channel, proving that in each channel the Nash

must do nearly as well as OPT. We only end up losing an

extra constant factor due to technical details related to allowing

mixed strategies that randomize over different channels.

B. Weighted Model

Recall that in the weighted model each connection has a

weight, and the goal is to maximize the sum of the weights

of the supported connections rather than just the number of

such connections. In this model it is easy to see that we

can modify the algorithm of Theorem 7 to achieve a similar

O(log dmax)-approximation. In particular, since there are at

most 3α/τ connections in a square we can lose another 3α/τ
and simply pick the single connection in each square with the

largest weight. Since we guaranteed that a single connection in

a square is always feasible, this solution is feasible and is still

an O(log dmax)-approximation. On the other hand, it is trivial

to see that in the weighted model a Nash equilibrium can be

arbitrarily far from optimal, e.g. if τ is greater than 1 and there

are two co-located transmitters of which one has weight 1 and

the other has arbitrarily large weight.

VI. SIMULATIONS

In light of our proof that Nash equilibria are reasonably good

approximations to OPT, one natural question is whether normal

best response dynamics will converge to a Nash equilibrium.

It is easy to see that in the worst case the answer is no, but

this naturally leads to the question of what the best response

dynamics do on random instances.

To test this we ran simulations with various parameters. Our

random instances were created as follows: first, each transmitter

was given a random location in a 100 by 100 square by drawing

two coordinates uniformly from [0, 100]. For each transmitter

we drew a distance from [1, dmax] uniformly at random, as

well as a random direction by drawing two coordinates indepen-

dently from the normal Gaussian distribution. The receiver was
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Fig. 7. Convergence probability vs. n for various values of dmax

then placed in this direction from the transmitter at the random

distance. We assumed no background noise and set pmax = 1.

We started out with random powers for each connection, and

then iterated the best response either 50 times or until it

converged, whichever occurred first. We only allowed powers 0
and 1, and did not allow mixed strategies, so any convergence

was to a Nash equilibrium in which some connections were

using full power and all others were using none.

For different settings of α, τ , dmax, and n we ran 100 of the

above simulations. Varying α and τ within reasonable ranges

did not have a large effect – instead, the dominant trends were

the effects of dmax and n on the probability of convergence.

See Figure 7, which uses α = 2.3 and τ = 0.5. This makes

intuitive sense, as when dmax is small and/or n is small each

receiver is likely to be close to its transmitter, so there is less of

a chance of a cycle similar to the example from Section IV-A.

VII. CONCLUSIONS

In this paper we have examined the complexity of max-

imizing the number of supported connections in a wireless

SINR model and we have studied the performance that can be

achieved by completely distributed algorithms operating under

an appropriate incentive structure. A number of open problems

remain. First we would like to know if it possible to remove

the dependence on dmax from the performance guarantees and

running times of our algorithms.

Second, throughout this work we have assumed that each

connection must satisfy a strict SINR constraint. However,

for best-effort types of flows we might by willing to tolerate

different SINR values and transmit at a smaller rate. In this case

we would have a utility ui for each connection i and the goal

is to maximize the sum of the utilities across all connections. If

we denote the SINR for connection i by SINRi then a natural

definition of utility is log log(1 + SINRi). We believe that an

extremely interesting open problem is to resolve the complexity

of the resulting utility maximization problem. It is known to be

non-convex in general and so standard optimization algorithms

do not apply. However, as far as we are aware it is also not

known to be NP-hard.3 We would also like to resolve to price

3However, we remark that if the connection utility is given instead by
log(SINRi) then Chiang et al. [6] showed that the resulting problem is
feasible via Geometric Programming.

of anarchy due to distributed approaches. Huang et al. [11]

showed that if nodes can exchange pricing information then

we can obtain distributed algorithms that converge to local

optima. However, we are unaware of any work that bounds

the difference between local and global optima in this context.
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