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Abstract

Until recently, the El Niño–Southern Oscillation (ENSO) was considered a reliable source of winter precipitation predictabil-

ity in the western US, with a historically strong link between extreme El Niño events and extremely wet seasons. However, 

the 2015–2016 El Niño challenged our understanding of the ENSO-precipitation relationship. California precipitation was 

near-average during the 2015–2016 El Niño, which was characterized by warm sea surface temperature (SST) anomalies of 

similar magnitude compared to the extreme 1997–1998 and 1982–1983 El Niño events. We demonstrate that this precipitation 

response can be explained by El Niño’s spatial pattern, rather than internal atmospheric variability. In addition, observations 

and large-ensembles of regional and global climate model simulations indicate that extremes in seasonal and daily precipita-

tion during strong El Niño events are better explained using the ENSO Longitude Index (ELI), which captures the diversity 

of ENSO’s spatial patterns in a single metric, compared to the traditional Niño3.4 index, which measures SST anomalies in 

a fixed region and therefore fails to capture ENSO diversity. The physically-based ELI better explains western US precipita-

tion variability because it tracks the zonal shifts in tropical Pacific deep convection that drive teleconnections through the 

response in the extratropical wave-train, integrated vapor transport, and atmospheric rivers. This research provides evidence 

that ELI improves the value of ENSO as a predictor of California’s seasonal hydroclimate extremes compared to traditional 

ENSO indices, especially during strong El Niño events.

Keywords Precipitation · Hydroclimate · ENSO · Extreme events · Predictability · Western US

1 Introduction

Interannual-to-decadal precipitation variability strongly 

impacts the people, economy, and ecosystems of the flood- 

and drought-prone western US, where excess precipitation 

can lead to infrastructure and property damage through 

flooding and landslides (USGS 1998; CDWR 2017), and 

precipitation deficit can diminish food production (Maupin 

et al. 2014; CDFA 2014; Howitt et al. 2014), strain water 

resources through snowpack reduction (Pierce et al. 2008), 

and fuel wildfires through enhanced forest mortality (Gua-

rín and Taylor 2005; Dennison et  al. 2014; Westerling 

2016). Reliable seasonal to multi-decadal predictions and 

future projections of precipitation are critical to mitigate 

the impacts of flood and drought, and depend on our abil-

ity to understand sources of predictability of hydroclimate 

extremes.

The dominant mode of interannual sea surface tempera-

ture (SST) variability, the El Niño–Southern Oscillation 
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(ENSO), has been repeatedly examined as a potential source 

of predictability for western US precipitation, which shares a 

boreal winter peak with ENSO (e.g., Tziperman et al. 1998). 

By some estimates, ENSO provides minimal predictability, 

driving only 6% of precipitation variability in California 

(Savtchenko et al. 2015). However, other studies indicate 

that certain types of ENSO events can lead to enhanced 

predictability of precipitation and streamflow (Cayan et al. 

1999). In particular, strong El Niño events, characterized 

by warm SST anomalies (SSTAs) in the eastern-central 

equatorial Pacific, substantially increase the probability of 

above-average precipitation in California in observations 

and climate model simulations (Schonher and Nicholson 

1989; Hoell et al. 2016). There is regionality in the ENSO-

precipitation relationship, with El Niño tending to have a 

greater influence on precipitation over southern compared 

to northern California (Jong et al. 2016; Huang and Ullrich 

2017; O’Brien et al. 2019).

Given the documented link between strong El Niño events 

and extremely wet western US winters, the 2015–2016 El 

Niño challenged our understanding of the ENSO-precipita-

tion relationship by failing to drive above-average precipita-

tion throughout California despite exhibiting SSTAs in the 

Niño3.4 region (5°S–5°N and 170°W–120°W) comparable to 

those during the extreme 1997–1998 and 1982–1983 El Niño 

events (Lee et al. 2018; Paek et al. 2017). With the role of 

climate change in modifying ENSO’s teleconnections ruled 

out (Quan et al. 2018), one possible explanation for such 

behavior is internal atmospheric variability (Kumar and Chen 

2017; Chen and Kumar 2018; Deser et al. 2018; Zhang et al. 

2018; Cash and Burls 2019). However, El Niño is known to 

exhibit a wide diversity in spatial patterns of SSTAs (Capo-

tondi et al. 2015; Timmermann et al. 2018), for example with 

maximum warming located in the Eastern or Central equato-

rial Pacific, providing a second possible explanation for the 

precipitation response. Indeed, SSTAs during the 2015–2016 

El Niño were located further towards the central Pacific com-

pared with maximum SSTAs in the eastern Pacific during 

the 1997–1998 and 1982–1983 El Niño events, leading to a 

weaker deep convection response in the eastern Pacific dur-

ing 2015–2016 (L’Heureux et al. 2017). Such differences in 

the zonal shift of tropical deep convection can substantially 

modify the extratropical wave-train response through which 

the ENSO-western US precipitation teleconnection operates 

(Hoerling and Kumar 2002; Yeh et al. 2018).

Therefore, we hypothesize that California failed to experi-

ence above-average precipitation during 2015–2016 due to 

the spatial pattern of El Niño’s warming, rather than inter-

nal atmospheric variability. Furthermore, we propose that 

we can improve ENSO’s potential for western US precipi-

tation predictability by using a single metric that captures 

the diversity and extremes of ENSO. Such a metric—the 

ENSO Longitude Index (ELI)—has been developed recently 

(Williams and Patricola 2018). ELI accounts for the non-

linear response of deep convection to SST and considers 

SSTAs together with the background state, which is charac-

terized by a strong zonal SST gradient associated with the 

East Pacific cold tongue and West Pacific warm pool. ELI 

represents the average longitude of tropical Pacific deep con-

vection and is therefore able to distinguish the 2015–2016 El 

Niño from the extreme 1997–1998 and 1982–1983 El Niño 

events (Fig. 1a of Williams and Patricola 2018).

Here we address the question: how does the magnitude 

and spatial pattern of ENSO influence the probability of win-

ter precipitation anomalies over the western US? We consider 

whether the precipitation response to ENSO is symmetric 

about ENSO phase, as previous studies indicate that La Niña 

favors dry years in the western US (Mo and Higgins 1998) 

whereas others find that the atmospheric response to extreme 

phases of ENSO is non-linear (Hoerling et al. 1997). In addi-

tion, the extremely above-average western US precipitation 

during the ENSO-neutral conditions of 2016–2017 reiter-

ates that strong El Niño events are not the only driver of wet 

extremes. Therefore, we also investigate how the spatial pat-

terns of western US precipitation, as well as the atmospheric 

rivers (ARs) that often deliver it (Payne and Magnusdottir 

2014; Rutz et al. 2014; Mundhenk et al. 2016; Hecht and 

Cordeira 2017; Hu et al. 2017), are constrained by SST and 

atmospheric variability during ENSO and non-ENSO driven 

wet years. We use observations together with a statistical 

model based on Generalized Extreme Value distributions, a 

large-ensemble of global climate model simulations forced 

by historical SST, and decades-long regional climate model 

simulations on a domain encompassing the North Pacific 

Ocean, most of North America, and the ENSO region to 

address these questions, with a focus on daily and seasonal 

precipitation, snowpack, and ARs.

2  Data and methods

2.1  Observations and reanalyses

We use observed precipitation data from several sources in 

order to have global coverage, high spatial resolution, a cen-

tury-long record, and as high as daily temporal resolution. First 

we describe the gridded products. Global observations over 

land and ocean are from the 2.5° × 2.5° resolution monthly 

Global Precipitation Climatology Project (GPCP) v2.3 dataset 

(Huffman et al. 1997; Adler et al. 2018), which merges rain 

gauge observations and satellite data and covers January 1979 

through February 2017. Global observations over land are 

from the 1.0° × 1.0° resolution monthly Global Precipitation 

Climatology Centre (GPCC) version 7 dataset covering Janu-

ary 1901 through December 2016 (Schneider et al. 2016). In 

addition, to provide high-resolution, we use the 0.25° × 0.25° 
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resolution Climate Prediction Center (CPC) Unified Gauge-

Based Analysis of Daily Precipitation over the contiguous US 

(CONUS), with daily values from 1 January 1948 through 

28 February 2017. For long-term observed monthly precipi-

tation, we use the US Climate Divisional Dataset (Vose et al. 

2014), which covers the period January 1895 through Decem-

ber 2016 and provides data by climate division.

In addition to the gridded products, we use station data 

consisting of measurements of daily total precipitation from 

the Global Historical Climate Network-Daily (GHCN) over 

CONUS (Menne et al. 2012a, b). In order to utilize a high-

quality network of stations with sufficient spatial coverage 

over the western US, we focus on daily measurements during 

the wet season from 1951 to 2017. Full details on the quality 

assurance procedure are given in Risser et al. (2019); after 

pre-processing, we select the subset of stations that have a 

minimum of 66.7% nonmissing daily precipitation meas-

urements between 1950 and 2017. This procedure yields 

a high-quality set of daily precipitation measurements for 

n = 5202 stations over CONUS (Fig. S1). All subsequent 

analysis of the GHCN data are based on the wet season 

(December through February) daily maxima. Finally, we use 

monthly precipitation data from the California Department 

of Water Resources over the period 1922–2018 (CDWR 

2019). The data include the 8-station index, 5-station index, 

and 6-station index, which include station observations over 

the Northern Sierra, San Joaquin region, and Tulare basin, 

respectively. We analyze 12-month averages over the water 

year, defined as October through the following September.

For analysis of the large-scale circulation response to 

ENSO, we use the monthly ECMWF twentieth century 

reanalysis (ERA-20C), which covers the period 1900–2010 

and assimilates surface pressure and surface marine winds 

(Poli et al. 2016). In addition, we use the Modern-Era Ret-

rospective analysis for Research and Applications, Version 

2 (MERRA-2; Gelaro et al. 2017) to analyze atmospheric 

rivers in the historical record, as described in Sect. 2.6.

2.2  ENSO events

We identify ENSO events using the December–February 

(DJF) average of two metrics, the Niño3.4 index and the 

ENSO Longitude Index (ELI; Williams and Patricola 2018). 

The Niño3.4 index is based on SST anomalies in a fixed 

region (5°S–5°N and 170°W–120°W), and therefore does 

not capture the spatial variations of El Niño events (ENSO 

diversity). The same is the case for the Niño1+2 index, 

which is based on SST anomalies in the far Eastern Pacific 

(0–10°S and 90°W–80°W) and poorly characterizes the 

response of equatorial Pacific deep convection to La Niña, 

neutral ENSO, and Modoki events as indicated by the large 

range of ELI values for Nino1+2 of 1.0 and less (Fig. S2). 

On the other hand, ELI is an SST-based metric that estimates 

the average longitude of equatorial Pacific deep convection, 

and is able to capture ENSO’s diversity. In particular, ELI is 

calculated by first, for each month, calculating the tropical-

average SST over 5°S–5°N, to estimate the SST threshold 

for deep convection, with the basis for this approximation 

described in Williams and Patricola (2018). We then create 

a binary mask, assigning 1 to points where SST is at least 

the convective threshold value, and 0 otherwise. Finally, ELI 

is the average of all longitudes over which this spatial mask 

is 1, within the Pacific basin and over 5°S–5°N. By charac-

terizing ENSO in this way, ELI accounts for the non-linear 

response of deep convection to SST and considers SSTAs 

together with the background state (Williams and Patricola 

2018). This means that ELI is more physically meaningful 

in characterizing the zonal shifts in tropical Pacific deep 

convection that are important for mid-latitude teleconnec-

tions, compared with SSTAs alone.

We compare analyses using these two indices to evalu-

ate whether additional predictability of western US winter 

precipitation can be gained by considering how the spatial 

pattern of El Niño’s warming influences the atmospheric 

deep convection response and its teleconnection with pre-

cipitation. ENSO events are calculated using the monthly 

2.0° × 2.0° Extended Reconstructed SST v5 (ERSSTv5; 

Huang et al. 2017) product over DJF of 1885–2017 (Table 1). 

The definition for strong El Niño (Niño3.4 index ≥ 1.5 °C) 

is based on the analysis in Fig. 1a of Williams and Patricola 

(2018), which demonstrates that this threshold approximates 

the distinction between Modoki and “East Pacific” El Niño 

events, and is the same threshold as used by Hoell et al. 

(2016). Throughout the paper, the year used to name a DJF 

average corresponds to January, following the US Geologi-

cal Survey convention for Water Year.

2.3  Regional climate model simulations

Regional climate model simulations were performed with the 

Weather Research and Forecasting (WRF) model (Skama-

rock and Klemp 2008), version 3.8.1, which is developed and 

maintained by the National Center for Atmospheric Research 

(NCAR). The model is configured with 27 km resolution 

over a domain covering 20°S–60°N and 130°E–60°W, which 

includes CONUS, much of the North Pacific basin, and the 

ENSO region. The simulations consist of year-long hind-

casts from 1981 to 2017, which are initialized in Septem-

ber and run through the full water year (1 October–30 Sep-

tember). Output before 1 October is disregarded as spinup. 

Each year consists of at least a 5-member ensemble, with 

a 22–25-member ensemble for selected wet/drought years 

(i.e., 1982–1983; 1997–1998, 2015–2016, 2016–2017, 

2012–2013, 2013–2014, 2014–2015). Initial and lateral 

boundary conditions are prescribed from 6-hourly 2.5° × 2.5° 

National Centers for Environmental Prediction-Department 
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of Energy (NCEP-DOE) Atmospheric Model Intercompari-

son Project (AMIP)-II Reanalysis (Kanamitsu et al. 2002), 

and SST is prescribed from the daily 0.25° × 0.25° NOAA OI 

V2 SST (Reynolds et al. 2002).

2.4  Atmospheric global climate model simulations

In addition to the regional climate model hindcast simula-

tions, we also analyzed a 50-member ensemble of climate 

model simulations forced by observed SST, covering Janu-

ary 1959 through February 2018. Contrasting the results 

from the regional model simulations (in which both SST 

and lateral boundary conditions are prescribed) to those 

from the global model (in which just SST is prescribed) 

provides insight into precipitation variability that is driven 

by both SST and the large-scale atmospheric circulation, or 

by SST alone, although we acknowledge that differences 

may also arise from differences between the models in e.g., 

physics, resolution, etc. The global model simulations use 

the 1.0° resolution Community Atmosphere Model version 

5.1 (CAM5.1) and were performed as part of the Interna-

tional CLIVAR Climate of the 20th Century Plus Detection 

and Attribution project (C20C+ D&A) (Stone et al. 2018). 

We note that these are the same global model simulations 

analyzed in Hoell et al. (2016). In addition, the Community 

Climate System Model version 4 (CCSM4) has demon-

strated skill in capturing ENSO—western US teleconnec-

tions (DeFlorio et al. 2013).

2.5  Statistical methods

We apply the spatial data analysis outlined in Risser et al. 

(2019) to characterize the spatially-complete climatological 

distribution of extreme precipitation based on measurements 

from weather stations, as well as to quantify the relationship 

between the ENSO indices and daily extremes. An important 

feature of the Risser et al. (2019) analysis is that it allows 

one to estimate the distribution of extreme precipitation even 

for locations where no data are available. Furthermore, their 

methodology can be used for a large network of weather sta-

tions over a heterogeneous spatial domain like the western 

US, which is critical for the problem at hand.

family of distributions. The GEV family of distributions 

is characterized by three space–time statistical param-

eters: the location parameter �
t
(�) ∈ R which describes 

the center of the distribution; the scale parameter 𝜎
t
(�) > 0 , 

which describes the spread of the distribution; and the shape 

parameter �
t
(�) ∈ R . The shape parameter �

t
(�) is the most 

important for determining the qualitative behavior of the 

distribution of daily rainfall at a given location. If 𝜉
t
(�) < 0 , 

the distribution has a finite upper bound; if 𝜉
t
(�) > 0 , the dis-

tribution has no upper limit; and if �
t
(�) = 0 , the distribution 

is again unbounded and the cumulative distribution function 

is interpreted as the limit �
t
(�) → 0 (Coles 2001).

As described in Sect. 1, the goal of this part of the analy-

sis is to characterize the relationship between daily precipi-

tation extremes and the ENSO indices. As such, we use the 

following statistical model to characterize temporal changes 

in the GEV statistical parameters:

where x
t
 represents a wet-season year measurement of either 

Niño3.4 or ELI. We henceforth refer to �
0
(�) , �

1
(�) , �(�) , and 

�(�) as the climatological coefficients for location � , as these 

values describe the climatological distribution of extreme 

precipitation in each year.

Using station-specific estimates of the climatological 

coefficients, we next apply spatial statistical methods (via 

second-order nonstationary Gaussian processes) to infer the 

underlying climatology over a fine grid via kriging (again 

see Risser et al. 2019 for full details). This approach yields 

fields of best estimates of the climatological coefficients, 

denoted 
{

�̂�0

(

�
�
)

, �̂�1

(

�
�
)

, �̂�
(

�
�
)

, 𝜉
(

�
�
)

∶ �
�
∈ G

}

, where G is 

the 0.25° grid of M = 13,073 grid cells over CONUS. These 

estimates can be used to calculate corresponding predictive 

estimates of the r − year return value for specific values of 

the ENSO indices, denoted �̂∗

r

(

s
�
)

 , which is defined as the 

1 − 1∕r quantile of the distribution of DJF maximum daily 

precipitation for a value x∗ of the ENSO index at grid cell s′ , 

i.e., P
(

Y
∗
(

s
�
)

> �𝜙∗
r

(

s
�
)

)

= 1∕r , where Y∗
(

s
�
)

 represents 

DJF maxima that arise under ENSO conditions quantified 

by a fixed index value of x∗ . The return value can be written 

in closed form in terms of the climatological coefficients:

(1)�
t
(�) = �0(�) + �1(�)xt

, �
t
(�) ≡ �(�), �

t
(�) ≡ �(�),

In short, the essence of the analysis in Risser et al. (2019) 

is to first obtain estimates of the climatological features of 

extreme precipitation based on measurements from the 

weather stations via the Generalized Extreme Value (GEV) 

(2)�𝜙∗
r

(

s
�
)

=
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[
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s
�
)

x
∗
]

−
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�)
]
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(
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�
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s
�
)

x
∗
]
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(

s
�
)

log {− log (1 − 1∕r)}, 𝜉
(

s
�
)

= 0

(Coles 2001). While a return value summarizes the mag-

nitude of an event with fixed frequency (i.e., probability 

1∕r ), we can equivalently quantify the probability of an event 

with fixed magnitude, also referred to as a return probability 
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(in other words, solving P(Y∗(s�) > y) = 𝜌∗
y
(s�) for fixed y ). 

We can again write down an explicit formula for the return 

probability for a fixed ENSO condition x∗ in terms of the 

climatological coefficients (Coles 2001):

We again reiterate that these quantities are predictive in 

the sense that we use the full time series of DJF maxima for 

each station to quantify the relationship between the ENSO 

indices and extreme precipitation and then plug in fixed val-

ues of the ENSO indices to estimate the return value/prob-

ability under such conditions.

Uncertainty measures are quantified nonparametrically 

using data-driven, resampling-based approaches, wherein 

seasons of data are resampled in a consistent manner for all 

weather stations to preserve spatial information in the daily 

precipitation measurements. To estimate the uncertainty in 

our estimated return values (or any other quantity) we use 

the block bootstrap (wherein “blocks” or years of data are 

resampled in the same way for all stations in order to pre-

serve the spatial relationships; see Risser et al. 2019 for fur-

ther details) which is important for quantifying uncertainty 

in this analysis since first estimating station-specific extreme 

climatology and then smoothing spatially does not explicitly 

account for the spatial dependence in the daily measure-

ments of precipitation, or the so-called “storm dependence” 

(dependence due to the spatial coherence of storm systems; 

Risser et al. 2019 verify that this approach appropriately 

accounts for storm dependence).

Finally, we can use the ratio of return probabilities (also 

referred to as the “risk ratio”; see Risser et al. 2017) to com-

pare the likelihood of extreme events occurring under con-

trasting ENSO states, e.g. strong El Niño versus strong La 

Niña. Here, the risk ratio for a particular grid cell is defined 

as RR
(

s�
)

=
�
(EN)
y (s�)
�
(LN)
y (s�)

 where �(EN)
y

(

s
�
)

 is the return probability 

for a strong El Nino (quantified by a particular index value; 

see Table 1) and �(LN)
y

(

s
�
)

 the corresponding return probabil-

ity for a strong La Niña. The interpretation of RR
(

s
′
)

 is as 

follows: a risk ratio of less than one means the event y is 

more common under La Niña conditions, while a risk ratio 

of greater than one means the event is more common under 

El Niño conditions.

2.6  Atmospheric river tracking

We use the Tempest software package (Ullrich and Zarzycki 

2017) to identify ARs in the MERRA-2 and the WRF simu-

lations. Algorithms for AR detection are substantially varied 
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(
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across the literature, with differences in the meteorological 

field used, thresholds on those fields, requirements for the 

geometric footprint of the AR, and object persistence. These 

choices can ultimately affect conclusions about AR activ-

ity, as demonstrated in a comprehensive intercomparison of 

AR detection algorithms (Shields et al. 2018; Ralph et al. 

2019a). In general, these algorithms rely on detection of 

ARs using integrated vapor transport (IVT), which incorpo-

rates both water volume and flow speed. The Tempest AR 

tracking algorithm uses the following criteria to detect AR 

conditions at a grid point:

• The point must be poleward of 20 degrees latitude, to 

mask out tropical vapor fluxes.

• The IVT must exceed 250 kg/m/s—a typical low-bar 

threshold for AR conditions based on the formal defini-

tion of ARs (Ralph et al. 2019b).

• The Laplacian of the IVT, computed using an 8-point 

numerical stencil with a radius of 5 degrees, must be less 

than − 15.23 kg/m/s/deg2 (− 50,000 kg/m/s/rad2). This 

criteria ensures that the AR object is sufficiently long and 

narrow.

• At least 40 adjacent grid points (12.5 deg2) must meet the 

above criteria, determined via a flood-fill algorithm, so as 

to mask out minor detections of localized IVT maxima.

In general, Tempest produces AR statistics that are very 

close to the tracking algorithm ensemble median, which sug-

gests that it does not greatly overestimate or underestimate 

true AR statistics (Rutz et al. 2019).

3  Results

3.1  Winter precipitation

As discussed in the introduction, the 2015–2016 El Niño 

challenged our understanding of the relationship between 

ENSO and western US precipitation. Among the strongest 

four observed El Niño events (as defined by the Niño3.4 

index), it was the only one that did not produce substantially 

above-average precipitation over California (Fig. 1a–d and 

Table S1), resulting in a seasonal forecast bust (L’Heureux 

et al. 2017; Wang et al. 2017a). Specifically, precipitation 

during the water years associated with the 1940–1941, 

1982–1983, and 1997–1998 El Niño events exceeded the 
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90th, 78th, and 88th percentile according to the 8-sta-

tion, 5-station, and 6-station index, respectively, whereas 

the water year centered on the 2015–2016 El Niño event 

ranked in the 69th, 59th, and 51st percentile, respectively 

(Table S1).

We investigate the hypothesis that this unexpected “fail-

ure” of extremely wet conditions during the 2015–2016 

winter was due to the location of El Niño’s SST warming, 

rather than internal atmospheric variability, using the large-

ensemble of SST-forced global climate model hindcasts. An 

ensemble-mean precipitation response that resembles the 

observed suggests that the observed precipitation pattern 

was driven largely by SST forcing, whereas an ensemble-

mean response that does not resemble the observed suggests 

Fig. 1  Observed SST anomalies (K; blue-red shading) and precipita-

tion anomalies (mm/day; brown-green shading) averaged DJF from 

the four strongest observed El Niño events according to the Niño3.4 

index: a 1940–1941, b 1982–1983, c 1997–1998, and d 2015–

2016, and from the neutral-ENSO event e 2016–2017. SST is from 

ERSSTv5 and terrestrial precipitation is from GPCP, except for pre-

cipitation over CONUS which is from CPC when available. Anoma-

lies are relative to the DJF 1950–2016 climatology
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the observed precipitation pattern was driven by internal 

atmospheric variability (in the absence of systematic model 

biases).

The global model reproduces the observed wet condi-

tions over California during the 1982–1983 (Fig. 2a and c) 

and 1997–1998 (Fig. 2d and f) El Niño events, as well as 

the observed near to moderately above average precipita-

tion over California during the 2015–2016 El Niño (Fig. 2g 

and i), indicating that the precipitation pattern in all three 

cases was driven by SST. This finding is supported by Siler 

et al. (2017), who found that SSTAs outside the Niño3.4 

region contributed to the observed precipitation pattern 

during 2015–2016, but it is inconsistent with other studies 

that found internal atmospheric variability played a leading 

role (Chen and Kumar 2018; Deser et al. 2018; Zhang et al. 

2018).

The importance of SST forcing in driving western 

US precipitation during 2015–2016 is in contrast to the 

2016–2017 season, in which the global model reproduces 

the observed precipitation response over the tropics, but fails 

to capture the record-breaking precipitation over the western 

US (Fig. 2j and l), despite demonstrated skill in simulat-

ing other similarly high-precipitation years. On the other 

hand, the regional model hindcast reproduces the observed 

2016–2017 precipitation anomalies well (Fig. 2k), likely in 

part owing to the additional constraint on the atmospheric 

circulation through the lateral boundary conditions. Com-

bined, the global and regional climate model simulations 

provide strong evidence that internal atmospheric vari-

ability drove the western US precipitation pattern during 

2016–2017, which was indeed characterized by neutral 

ENSO conditions.

Fig. 2  Precipitation anomaly averaged DJF of 1982–1983, 1997–

1998, 2015–2016, and 2016–2017 from the (a, d, g, j, respectively) 

GPCP observations, (b, e, h, k, respectively) WRF simulations, and 

(c, f, i, l, respectively) CAM simulations relative to the 1981–2016 

DJF climatology (the longest period of overlap among the datasets)
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Having established SST forcing as the primary driver of 

the western US precipitation pattern during the 2015–2016 

winter, we investigate the idea that the corresponding El 

Niño event’s spatial pattern played a leading role in the near-

average precipitation over California. Although this El Niño 

event was the strongest on record in terms of SST anomaly, 

as measured by the Niño3.4 index, it ranked as a moder-

ate El Niño event by the zonal location of equatorial deep 

convection, as measured by ELI (Table 1). Composites of 

precipitation anomalies corresponding to strong El Niño and 

strong La Niña events, with a comparison for ENSO events 

based on ELI and the Niño3.4 index, are shown from the 

US Climate Divisional observations (Fig. 3), GPCC obser-

vations (Fig. 4a–d), and global climate model simulations 

(Fig. 4e–h). We consider the two observational products so 

that we can include the greatest number of observed ENSO 

events and analyze the precipitation response over both the 

ocean and land, respectively.

It is apparent that the positive winter precipitation anom-

aly over the western US during strong El Niño events is 

greater for events based on ELI than on the Niño3.4 index. 

The fact that both observational products (which have a rela-

tively limited sample size) and the large-ensemble global 

model simulations (which can contain model biases) produce 

the same result strengthens confidence in this conclusion.

We note that due to the rarity of strong El Niño as 

revealed by ELI, there are only three observed events in 

the observational composite, compared with 12 events for 

strong El Niño according to the Niño3.4 index. Therefore, 

we examined the sensitivity of the precipitation response to 

“strong El Niño” definition by restricting the observational 

composite analysis to the three strongest events (Fig. S2). 

The results are similar to the threshold-based analysis, pro-

viding support that the precipitation response is related to 

considering ENSO from the physically-based ELI perspec-

tive, rather than an artefact of sample size differences.

Since previous studies have suggested that La Niña is 

favorable for western US drought, we compare the precipi-

tation signals between composites of strong El Niño and 

strong La Niña events. Both observations and the global 

model indicate that the western US winter precipitation 

response is asymmetric about ENSO phase, that is, the mag-

nitude of the wet anomalies during strong El Niño events 

substantially exceeds the magnitude of the dry anomalies 

during strong La Niña events for anomalies both in terms of 

mm/day (Figs. 3 and 4) and percent (Fig. S4).

Fig. 3  Observed precipitation anomalies (mm/day) averaged DJF rel-

ative to the 1979–2016 period from the US Climate Divisional Data-

set for composites according to strong El Niño events as defined by a 

ELI and b the Niño3.4 index and strong La Niña events as defined by 

c ELI and d the Niño3.4 index. ENSO events are listed in Table 1
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Although the focus of this study is the western US, we 

note that the Climate Division observations also indicate a 

stronger precipitation response for ELI-based strong El Niño 

events compared to the Niño3.4 index over the southwestern, 

central, and southeastern US (Fig. 3a and b). Some of the 

precipitation anomalies, especially those over the Central US 

where climatological precipitation is relatively weak (Fig. 

S5), are even more pronounced when expressed in terms of 

percent (Fig. S4).

One of the benefits of using the large-ensemble of global 

climate simulations is that it contains enough data to evalu-

ate the probability density functions (PDFs) of DJF pre-

cipitation conditional on various ENSO conditions (Fig. 5), 

similar to the analysis in Fig. 3 of Hoell et al. (2016), which 

was performed just before the 2015–2016 El Niño event. 

This allows us to understand how the likelihood of wet or 

dry conditions responds to ENSO, accounting for variations 

due to internal atmospheric variability. It is clear from the 

PDFs of winter precipitation that strong El Niño favors wet-

ter than average seasons over southern, central, and north-

ern California. Furthermore, the precipitation distributions 

are shifted even more towards extremely wet seasons for 

strong El Niño events defined using ELI, compared with the 

Niño3.4 index. This indicates that compared with ELI, using 

the Niño3.4 index to define strong El Niño events results 

in a decreased probability of above-average winter precipi-

tation, suggesting that considering ENSO events from an 

ELI perspective provides better seasonal predictability of 

western US precipitation. Likewise, compared with ELI, 

using the Niño3.4 index to define strong El Niño events is 

more likely to result in “unexpected” dry anomalies over 

California. Over western Oregon and western Washington, 

the precipitation distribution during strong El Niño events is 

slightly shifted towards drier seasons, with little dependence 

on ENSO event definition.

As also indicated by the ensemble-mean winter precipi-

tation responses, the response in the precipitation PDFs is 

asymmetric about ENSO phase, with a more substantial PDF 

shift during strong El Niño events compared with strong La 

Niña (Fig. 5). In addition, there is regional dependence in the 

PDFs of winter precipitation, with substantial shifts towards 

wetter-than-average conditions during strong El Niño events 

over all of California, but shifts toward drier-than-average 

conditions during strong La Niña events only over southern 

and central California.

3.2  Daily precipitation extremes

Whereas seasonal precipitation extremes have impor-

tant implications for water resources, daily precipitation 

extremes can pose dangerous and costly hazards including 

flooding and landslides (e.g., White et al. 2019). There-

fore, we evaluate the relationship between ENSO and the 

10-year return value of daily precipitation (i.e., the daily 

precipitation amount that is expected to occur once every 

10 years). We use the GHCN station data which provides a 

long record of point observations best suited for analysis of 

such extremes.

The 10-year return value of daily winter precipitation 

for the full observational record (1950–2017, i.e., includ-

ing all ENSO phases) shows the greatest values over the 

western US, especially over mountain regions, as well as 

the Gulf Coast states of Louisiana, Alabama, and Missis-

sippi (Fig. 6a). Strong El Niño events lead to a substantial 

and meaningfully non-zero increase (i.e., the 90% confi-

dence interval does not include zero; denoted by hatching) 

in 10-year return values over the western US, with a signal 

that is substantially greater for ENSO events defined using 

ELI compared to the Niño3.4 index (Fig. 6c). This suggests 

that ELI may provide better predictability for daily extreme 

precipitation during strong El Niño events compared with 

the Niño3.4 index, as was the case for seasonal precipita-

tion. In addition, strong La Niña events drive a decrease 

in the 10-year return values of western US daily precipita-

tion (Fig. 6b), however the magnitude of the response is 

weaker than that for strong El Niño for events defined by 

ELI. This suggests that although the sign of the response 

of daily precipitation extremes is symmetric about ENSO 

phase, the magnitude of the response is asymmetric in terms 

of anomalies in 10-year return values. Finally, we note that 

although the western US precipitation response to strong 

La Niña is slightly greater for ENSO events defined using 

the Niño3.4 index compared to ELI, the difference between 

strong El Niño and strong La Niña over the western US is 

better described by ELI (as evidenced by risk ratio estimates 

that are larger in magnitude, i.e., greater than 1 and less than 

1; Fig. 6d).

Although the western US is our focus, we note similar 

results over the southeastern and south-central US. In addi-

tion, the results for the 10-year return values are similar for 

20- and 50-year return values (i.e., events that are even more 

extreme), although with greater uncertainty.

3.3  Snowpack

Mountain snowpack, or its snow water equivalent (SWE), 

is one of the primary natural storage mechanisms for water 

resources in the western US (Palmer 1988; Mote et al. 2005, 

2018). However, mountain snowpack is susceptible to large 

Fig. 4  Precipitation anomaly (mm/day) averaged DJF from the GPCC 

dataset over land and the GPCP dataset over ocean for composites 

according to strong El Niño events as defined by a ELI and b the 

Niño3.4 index and strong La Niña events as defined by c ELI and d 

the Niño3.4 index relative to the 1979–2016 DJF climatology. e–h 

As in a–d, but from the 50-member ensemble of CAM simulations. 

ENSO events are listed in Table 1

◂
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interannual variability due to fluctuations in storm landfall 

location, phase, intensity, and surface temperatures through-

out the water year (Bales et al. 2006; Guan et al. 2010; Kap-

nick and Hall, 2012; Pierce and Cayan, 2013; Guan et al. 

2016; Harpold et al. 2017; Musselman et al. 2017, 2018; 

Rhoades et al. 2018). This large fluctuation is connected 

with ENSO (Cayan 1996) and has considerable socioeco-

nomic impacts associated with water availability and sea-

sonal recreation (Hagenstad et al. 2018). Water resource 

managers often look to predictions of ENSO as an indication 

of upcoming snow season health. However, the connection 

between ENSO and western US snowpack totals remains 

opaque, potentially leaving millions of acre-feet of seasonal 

storage up to chance (Kapnick et al. 2018).

Due to the connections between strong El Niño and west-

ern US precipitation (Sects. 3.1 and 3.2) and IVT and ARs 

(Sect. 3.4), we analyze the influence of strong ENSO events 

on SWE at both seasonal and daily temporal scales. This is 

done to understand the large-scale influence of strong ENSO 

events on mountain snowpack storage as well as daily fluc-

tuations in the accumulation, peak timing, and melt seasons 

of snowpack. Figure 7 shows the DJF SWE anomalies dur-

ing strong El Niño and La Niña years (defined using ELI or 

the Niño3.4 index) relative to the 1981–2017 climatology 

from the ensemble of WRF simulations. We use the WRF 

simulations for analysis of SWE because 27 km resolution 

better represents snow and mountainous terrain compared 

with the 1° global model resolution, and because the large-

ensemble of WRF hindcasts provides a greater sample size 

of ENSO events compared to observations. For context, 

Fig. S7 shows these DJF SWE anomalies as a percentage of 

climatology. The way in which ENSO is defined results in 

major differences in the response of SWE to strong El Niño. 

This difference is most pronounced in the Sierra Nevada, 

the Cascades, and throughout the Intermountain West where 

the sign and strength of the DJF SWE anomaly depends on 

ENSO measure (Fig. 7 and Fig. S7). On the other hand, 

during strong La Niña years there is a consistent spatial pat-

tern in anomalous DJF SWE between the two ENSO indices 

across much of the western US. In the Cascades and Rock-

ies, there is a positive DJF SWE anomaly for both indices, 

whereas in the Sierra Nevada, there is a north–south gradient 

in positive and negative DJF SWE anomalies (that is more 

pronounced according to the Niño3.4 index). However, these 

anomalies are computed for the non-shoulder months of the 

winter season and therefore could be missing important 

early- and late-winter SWE responses to ENSO.

To better understand how ENSO index choice influences 

SWE anomalies, and how this might shape the accumula-

tion, peak timing, and melt season over the water year, Fig. 8 

presents the daily average SWE for strong El Niño, strong 

La Niña, and climatological conditions. For the mountainous 

regions of the western US, ELI exhibits more of an aver-

age snow season during strong El Niño events, whereas the 

Niño3.4 index shows a below-average snow season. In addi-

tion, peak SWE timing occurs earlier (later) during strong 

El Niño (La Niña) events by − 5 (+ 5) days, or February 27 

(March 9), for events defined using ELI compared with cli-

matological conditions. For the Niño3.4 index, differences in 

peak SWE timing are more contrasting with strong El Niño 

(La Niña) events occurring − 14 (+ 4) days, or February 18 

(March 8), from climatological conditions. This difference 

in peak SWE timing between ENSO definitions indicates 

differences in the phase and/or magnitude of precipitation 

and AR landfall location during the accumulation season, as 

demonstrated in other sections.

Fig. 5  Probability density functions of average DJF precipitation as 

percent of 1979–2016 climatology (grey) from the global model sim-

ulations. Strong El Niño events (top/red), and strong La Niña events 

(bottom/blue), defined using ELI (solid) and Niño3.4 (dashed) aver-

aged over various geographical regions of the western US shown in 

Fig S6
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Fig. 6  a 10-year return value for DJF climatology (i.e., averaging 

over 1950–2017); b difference in the 10-year return value for a strong 

La Niña year vs. the climatology (following definitions in Table  1, 

i.e., ELI = 152°E and Niño3.4 = − 1.5 °C); c difference in the 10-year 

return value for a strong El Niño year vs. the climatology (following 

definitions in Table 1, i.e., ELI = 179°E and Niño3.4 = 1.5 °C); d the 

risk ratio for a strong El Niño vs. a strong La Niña (again quantified 

as in b and c) for the 10-year climatological return value. In b–d, 

hatching indicates grid cells where the 90% confidence interval does 

not include 0 (for the return value differences) or 1 (for the risk ratio). 

Data are from the GHCN stations
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Over the California Sierra Nevada, DJF SWE anoma-

lies during a given ENSO phase change sign depending on 

whether events are defined using ELI or Niño3.4 (Fig. 7). 

With ELI, SWE over the Sierra Nevada is more consist-

ently positive (negative) during strong El Niño (La Niña) 

events, whereas the anomaly is mixed for the Niño3.4 index. 

Although the DJF SWE anomalies are not statistically sig-

nificant (p = 0.01), there is an appreciable difference in the 

total water volume of the snowpack. In particular, the differ-

ence in peak SWE over the Sierra Nevada is 61.4 mm during 

strong El Niño events defined using ELI compared with the 

historical climate average (Fig. S8), which translates to 2.6 

million-acre-feet (MAF) in snowpack storage. (The calcula-

tion for MAF is outlined in the Supplemental Information.) 

This is roughly equivalent to half of the total storage capac-

ity of California’s largest reservoir, Lake Shasta, or one-third 

of the 8.3 MAF of annual water demand by the urban sector 

of California (Hanak et al. 2015). Thus, the regional SWE 

response during strong El Niño years translates to consider-

able impacts on the water sector, particularly for California 

and the Pacific Northwest.

3.4  Large‑scale circulation and atmospheric rivers

Given that ENSO drives western US (and global) precipita-

tion and temperature patterns via large-scale atmospheric 

teleconnections (Horel and Wallace 1981; Ropelewski and 

Halpert 1987; Kiladis and Diaz 1989; Dai and Wigley 2000; 

Fig. 7  Anomalies in DJF snow water equivalent (SWE; mm) for 

composites of strong El Niño events as defined by a ELI and b the 

Niño3.4 index and strong La Niña events as defined by c ELI and d 

the Niño3.4 index from WRF hindcast simulations. Anomalies are 

relative to the 1981–2017 WRF simulated climatology. ENSO years 

are defined in Table 1. Stippling represents a z-score > 2.58 (p = 0.01)
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McPhaden et al. 2006), we next investigate how the large-

scale circulation response to ENSO events differs accord-

ing to ENSO definition. During El Niño, anomalously warm 

SSTs in the tropical eastern Pacific shift deep convection 

eastward (Bjerknes 1969). The convective heating anomaly 

excites a Rossby wave-train that propagates into the extra-

tropics and modifies global weather patterns (Held et al. 

1989; Alexander et al. 2002; Deser et al. 2017).

Figure 9 shows the response in DJF geopotential height at 

250-hPa from the ERA-20C reanalysis for composites cor-

responding to strong El Niño and La Niña events defined 

by ELI and the Niño3.4 index, with marks representing the 

average longitude of deep convection as estimated by ELI 

for the years making up each composite. The large-scale 

circulation response to strong El Niño events is qualitatively 

similar for events defined by ELI and the Niño3.4 index, 

with an anomalous anticyclone over the subtropical Pacific 

and Northeastern North America and an anomalous cyclone 

over the Northeast Pacific (corresponding to a southward 

shift of the climatological winter Aleutian Low; Fig. S9) 

and Southern US. However, strong El Niño events as defined 

by ELI (Fig. 9a) exhibit a deepening and an eastward exten-

sion of the Aleutian Low relative to events defined by the 

Niño3.4 index (Fig. 9b). (We note the caveat that there is 

some uncertainty in comparing the magnitudes of the geo-

potential height responses between the composites of strong 

El Niño events as defined by ELI and Niño3.4, as the sample 

sizes in the composites are 3 and 12 events, respectively.) 

The differences in geopotential height responses due to 

ENSO definition highlight a pronounced deepening of the 

extratropical wave-train associated with an approximately 

1600 km eastward shift in the center of tropical Pacific deep 

convection (from 175°E according to the Niño3.4 index to 

189°E according to ELI for strong El Niño events; Fig. 10a). 

In addition, the anomalous anticyclones associated with El 

Niño are stronger when defined by ELI. Altogether, ELI cap-

tures a stronger El Niño-driven Rossby wave-train response, 

providing increased predictability of extremes associated 

with this tropical-extratropical teleconnection. On the other 

hand, the extratropical teleconnection during La Niña is 

weaker, asymmetric, and relatively insensitive to ENSO defi-

nition (Fig. 9c and d; Fig. 10b). Additionally, the extratropi-

cal response is weaker during La Niña compared to El Niño.

Together with this circulation response, ENSO can sub-

stantially modify moisture transport. Figure 11 shows com-

posites of IVT anomalies for strong El Niño and La Niña 

events defined by ELI and the Niño3.4 index. Strong El Niño 

events show enhanced trans-Pacific IVT when defined by 

ELI (Fig. 11a) compared to the Niño3.4 index (Fig. 11b). 

In addition, the IVT extends further eastward toward the 

western US during strong El Niño events as defined by ELI 

compared with Niño3.4 (Fig. 10a) supporting the observed 

(Fig. 3) and simulated (Fig. 5) precipitation response to 

strong El Niño that is greater for ELI-based compared to 

Fig. 8  WRF simulated daily average snow water equivalent (SWE; 

mm) across water years 1981–2017. Blue (red) lines indicate strong 

La Niña (El Niño) events defined using a ELI and b the Niño3.4 

index. Gray lines represent individual years and the black line rep-

resents the daily climate average across all water years. SWE daily 

averages are computed over the area represented in the upper right 

hand corner of each plot. The average peak SWE date is shown by a 

vertical line for strong El Niño (red), strong La Niña (blue), and the 

climatology (black)
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Fig. 9  Composites of DJF height anomalies (m) at 250-hPa relative 

to 1979–2010 climatology from the ERA-20C reanalysis for strong El 

Niño events as defined by a ELI and b the Niño3.4 index and strong 

La Niña events as defined by c ELI and d the Niño3.4 index. ENSO 

events are listed in Table 1. The dots/stars represent the DJF average 

ELI longitude as estimated by ELI for the years making up each com-

posite

Fig. 10  The difference in DJF IVT (shaded; kg  m−1  s−1) and 250-

hPa geopotential height (contour; m; solid denotes positive, dashed 

denotes negative) from the ERA-20C reanalysis for composites of a 

strong El Niño events and b strong La Niña events between ENSO 

events defined using ELI minus events defined using the Niño3.4 

index. The dots and stars represent the average DJF ELI longitude 

according to events defined using ELI and the Niño3.4 index, respec-

tively
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Niño3.4-based events. Similar to the upper-level geopoten-

tial height anomalies (Fig. 9c and d), the IVT response to 

strong La Niña events is similar regardless of ENSO defini-

tion (Fig. 11c and d).

There is a strong link between western US precipita-

tion, IVT, and ARs, with ARs accounting for ~ 90% of the 

poleward moisture transport (Zhu and Newell 1998) and 

delivering 30-50% of California’s winter precipitation (Det-

tinger et al. 2011), specifically about 65% at the coast and 

30% inland (Gershunov et al. 2017). Indeed, the increased 

IVT (Fig. 11a and b) and extratropical wave-train response 

(Fig. 9a and b) observed in the North Pacific during strong El 

Niño events is connected with an increase in AR frequency 

during individual strong El Niño events in MERRA-2 

(Fig. 12a and b), consistent with analysis of observations and 

hindcast simulations (Kim et al. 2019; Zhou and Kim 2018). 

The sign of anomalies in winter AR activity over the western 

US (Fig. 12a–d) corresponds well with the observed western 

US precipitation patterns (Fig. 1b–e). We highlight that this 

good correspondence is present during extremely wet Cali-

fornia winters driven by strong ELI-based El Niño events 

(i.e., 1982–1983 and 1997–1998), winters characterized by 

precipitation that is near-average over California and above-

average over the Pacific Northwest driven by moderate ELI-

based El Niño events (i.e., 2015–2016), and extremely wet 

California winters driven by internal atmospheric variability 

(i.e., 2016–2017). This suggests that ARs contribute sub-

stantially to positive winter precipitation anomalies over 

the west coast regardless of the physical driver of the wet 

conditions, whether it be strong or moderate El Niño (i.e., an 

strong or moderate eastward shift in equatorial deep convec-

tion, respectively) or internal atmospheric variability. The 

WRF hindcasts (Fig. 12e–g) tend to capture the observed 

response in winter AR frequency well, regardless of whether 

the wet season was driven by strong or moderate El Niño 

or internal atmospheric variability, with the exception of 

a weakly negative simulated AR anomaly over California 

during 1997–1998. Despite this relatively poor regional AR 

representation during this specific season, the WRF hindcast 

reproduced the observed precipitation anomalies, suggest-

ing that precipitation from other types of events, possibly 

Fig. 11  Composites of DJF IVT anomalies (kg  m−1  s−1) relative to 

1979–2010 climatology from the ERA-20C reanalysis for strong El 

Niño events as defined by a ELI and b the Niño3.4 index and strong 

La Niña events as defined by c ELI and d the Niño3.4 index. ENSO 

events are listed in Table 1. The dots/stars represent the DJF average 

ELI longitude as estimated by ELI for the years making up each com-

posite
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associated with mid-latitude cyclones, may be compensating 

for the weak AR activity.

4  Conclusions

ENSO can provide valuable predictability of daily to sea-

sonal hydroclimate extremes in the western US, although 

recent estimates attribute only 6% of precipitation variability 

in California to ENSO (Savtchenko et al. 2015) and only 

20% of variance in western US winter precipitation to SST 

forcing (Dong et al. 2018). However, by focusing on a spe-

cific source of predictability, namely strong El Niño events, 

and by considering their spatial variations, we found that 

we can improve the skill of ENSO as a predictor of western 

US hydroclimate variability (given a skillful ENSO forecast, 

typically after passing the spring predictability barrier (e.g. 

McPhaden 2003; Duan and Wei 2013; Lopez and Kirtman 

2014; Ren et al. 2016)). An analysis of station and gridded 

Fig. 12  Anomalies in AR activity (AR-days/season) during DJF of a, 

e 1982–1983, b, f 1997–1998, c, g 2015–2016, and d, h 2016–2017 

from MERRA-2 and the ensemble mean of the WRF simulations, 

with the DJF full-field IVT (kg m−1  s−1) shown in dashed contours, 

respectively. Anomalies are calculated relative to the 1981–2016 DJF 

climatology of the corresponding data source
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observations together with large-ensembles of SST-forced 

regional and global climate model simulations reveals that:

• SST forcing was the main driver of the extremely wet 

seasons over California during the strong 1982–1983 and 

1997–1998 ELI-based El Niño events and the near-aver-

age California precipitation during the moderate ELI-

based/strong Niño3.4-based 2015–2016 El Niño event. 

In addition, winter precipitation over California is highly 

sensitive to the diversity of El Niño’s spatial patterns. 

California did not experience an extremely wet winter 

during 2015–2016 due primarily to ocean warming that 

was located more towards the central Pacific compared 

to the 1982–1983 and 1997–1998 events, with little con-

tribution from internal atmospheric variability. SSTAs in 

other tropical regions may also have played a role (Siler 

et al. 2017).

• By defining ENSO events using the ENSO Longi-

tude Index (ELI; Williams and Patricola 2018), which 

uniquely captures the diversity and extremes of ENSO, 

we can extract more predictive value for California 

precipitation from strong El Niño events, compared to 

using the traditional Niño3.4 index, which measures SST 

anomalies in a fixed region and does not capture ENSO’s 

diversity. Strong ELI-based El Niño events drive a sub-

stantial increase in the probability of extremely positive 

winter precipitation anomalies over the entirety of Cali-

fornia, whereas strong La Niña events produce weaker 

regional drying.

• Internal atmospheric variability can also drive extremely 

wet winters in California, as was the case during 2016–

2017. This is confirmed by comparing SST-forced global 

model simulations, which do not reproduce the observed 

western US precipitation anomalies during 2016–2017, 

with regional climate model simulations that are driven 

with observed SST and lateral boundary conditions, 

which do reproduce the observed precipitation patterns. 

Given the strong Madden–Julian Oscillation (MJO) 

activity near the Maritime Continent during early 2017, 

together with the documented links between MJO, west-

ern US precipitation, and the mid-latitude circulation 

(Zhou et al. 2012; Tseng et al. 2018), MJO may have 

contributed to California’s extremely wet 2016–2017.

• Strong El Niño events lead to a significant increase in 

observed 10-year return values over the western US, with 

a signal that is substantially greater for ENSO events 

defined using ELI compared to Niño3.4, suggesting that 

ELI may provide better predictability for extreme daily 

precipitation.

• The way in which ENSO is defined results in major 

differences in the response of SWE to strong El Niño, 

including a change in sign over the Sierra Nevada and 

Cascades. In addition, SWE anomalies during strong 

ELI-based El Niño years translate to considerable 

impacts on the water sector, particularly in California 

where a difference in peak SWE was equivalent to half of 

the total storage capacity of the state’s largest reservoir, 

Lake Shasta.

• ELI can better describe El Niño-driven variability in 

western US precipitation primarily due to its ability 

to track the zonal shifts of equatorial Pacific deep con-

vection, which is the source of anomalous atmospheric 

heating and resultant extratropical wave-train that drives 

anomalies in IVT and AR frequency. ARs contribute 

substantially to positive winter western US precipitation 

anomalies regardless of whether they are driven by strong 

or moderate El Niño or internal atmospheric variability.

This research indicates that (1) ENSO is a valuable source 

of winter hydroclimate predictability, especially during 

strong ELI-based El Niño events and (2) we can improve the 

value of ENSO as a hydroclimate predictor by considering 

the spatial diversity of ENSO events using the ENSO Lon-

gitude Index. ELI does not require the common practice of 

categorizing El Niño events (Ashok et al. 2007; Capotondi 

et al. 2015; Timmermann et al. 2018), and offers an effective 

yet simple way to improve ENSO as a source of subsea-

sonal to seasonal hydroclimate predictability. In addition, it 

is important to note that although strong ELI-based El Niño 

events have a high probability of producing extremely wet 

conditions over California, ENSO is not the only driver of 

such seasons, which can also arise due to other SST vari-

ability and internal atmospheric variability (e.g. associated 

with MJO). Additional research on this topic, as well as on 

ENSO’s relationship with the genesis location, intensity, 

and landfall location of ARs (Gershunov et al. 2017) and 

mid-latitude cyclones, and the implications for peak SWE 

and extreme streamflow events, is planned for the future. 

Finally, this research highlights that climate model repre-

sentation and projection of ENSO extremes and diversity is 

a substantial source of uncertainty in future projections of 

western US hydroclimate (e.g., Guilyardi et al. 2009; Collins 

et al. 2010; Bellenger et al. 2014; Yeh et al. 2014; Taschetto 

et al. 2014; Wang et al. 2017b; Karamperidou et al. 2017; 

Chen et al. 2017), as models that project increases in strong 

El Niño and La Niña events (Williams and Patricola 2018) 

also produce increased seasonal precipitation extremes over 

California (Swain et al. 2018).

In summary, using a physically-based ENSO metric that 

fully captures ENSO diversity—in a single metric and for 

any climate state—better explains the teleconnected western 

US precipitation response compared to SSTA-based metrics. 

ELI addresses the challenges with SSTA-based metrics that 

each capture only a portion of the ENSO spectrum, by (1) 

eliminating the need to choose which SSTA-based metric 

to use to understand teleconnections to a particular region 
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and (2) eliminating the uncertainty as to whether that SSTA-

based metric will be informative in a changing climate. The 

broader implication of this research is that considering 

ENSO diversity from the physically-based, atmospheric 

perspective of ELI (Williams and Patricola 2018; Okumura 

2019) provides a powerful capability for understanding the 

response of a variety of extreme events, including mid-lati-

tude precipitation and tropical cyclones, to ENSO diversity 

in a changing climate.
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