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Maximizing Firm Wind Connection to Security
Constrained Transmission Networks

Daniel J. Burke, Graduate Student Member, IEEE, and Mark J. O’Malley, Fellow, IEEE

Abstract—Prudent use of existing transmission capacity could be
achieved by an optimal allocation of wind capacity to distinct trans-
mission nodes. The statistical interdependency of geographically
separate wind sites and the partially-dispatchable nature of wind
power require a collective analysis of all potential wind farms over
an extended time-frame in any optimized transmission planning
study. The methodology presented in this paper separates this large
optimization problem into smaller subtasks, including a year-long
sequential time series hourly integer unit commitment, a linear dc
load-flow network model with hourly security constraints, and a
linear programming optimization model to estimate the maximum
firm wind energy penetration for a given network. A novel maximal-
vector based constraint redundancy analysis is employed to signifi-
cantly reduce the linear programming optimization dimensionality.
Firm wind capacity connections are facilitated in this paper—i.e.,
those to which wind curtailment to manage congestion is not appli-
cable within a typical system “planning” timeframe analysis. Each
bus is allocated firm capacity on the basis of maximizing the pos-
sible firm wind energy penetration in the transmission system as a
whole, while preserving traditional network security standards.

Index Terms—Computational geometry, linear programming
redundancy, power transmission, wind energy.

NOMENCLATURE AND UNITS
A. Indices

Linear constraint coefficient position

index.

Time series hourly position index.

Network bus position index.

Network branch index.

Potential wind farm network location

index.

DC load flow reference bus position index.

Power flow contingency scenario index.

Maximal-vector redundancy stop-criterion

set index.
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B. Constants

DC load flow power transfer distribution

factors for line “ ” with respect to bus “ ”

under contingency scenario “ ”.

Average system power demand level

(MW).

Thermal capacity for branch “ ” (MW).

Capacity factor of wind farm “ ”.

Capacity factor of system averaged wind

power time series.

Number of generation sites in the power

system.

Number of network branches in the system.

Total number of contingency scenarios

considered.

Length of the wind power time series

(years).

Maximal vector redundancy analysis

stop-criterion.

Discrete wind energy penetration target

increment.

C. Time Series

Nominal 1-MW wind power time series

“ ” in hour “ ” (MW).

Average value of all the nominal 1-MW

wind power time series in hour “ ” (MW).

Geographically smoothed total system

wind power production value in hour “ ”

(MW).

Partial load flow solution of

load/conventional plant in branch

“ ”, hour “ ” under contingency scenario

“ ” (MW).

D. Variables

“ ” wind capacity optimization variables

(MW).

Approximated system total wind capacity

(MW).

Power flow in branch “ ” (MW).
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Minimal-cardinality maximal-vector

subset size.

Wind energy penetration target proportion.

Linear constraint coefficient at position

“ ”.

I. INTRODUCTION

D
UE to its environmentally friendly and cost-predictable

nature, wind power is widely recognized as a promising

alternative electric power generation source at a time of uncer-

tain fossil fuel costs and concern over the harmful effects of cli-

mate change [1]. Many countries are considering ambitious fu-

ture wind energy penetration scenarios [2]. Significant lead-time

and investment are associated with the transmission system ex-

pansion required to facilitate wind connection at sites distant

from traditional load and generation centers however [3]. Fur-

thermore, public acceptance of large scale new-build infrastruc-

ture is currently low [4]. In the short-term, maximum use of ex-

isting transmission system resources could be made by an op-

timal wind capacity allocation strategy.

In some power systems (e.g., Great Britain [5]), wind de-

velopers may request a “firm” connection offer for investment

certainty reasons. A firm connection offer is generally given

if a generator does not cause network overload subsequent

to plausible system security contingencies. Firm connec-

tion feasibility study is usually considered as a “planning”

timeframe problem. System re-dispatch of generation using

“operational” timeframe techniques to manage congestion

[6] is not considered in this context as this would impinge

upon the firm status of other generators connected to the

network, and the true bulk system reliability could be limited

by transmission constraints. Firm connections are therefore

suitable for transmission networks where system operators

prefer to have little or no grid congestion. Large standalone

conventional plant firm connection was traditionally assessed

using heuristic techniques at deterministic “base-case” sce-

narios (e.g., incremental-transfer-capability studies at the

winter-day-peak and/or the summer-night-valley [7]). Given

that the worst-case-scenarios for distributed wind power re-

lated flows could conceivably occur at off-peak conditions,

clearly a more extensive analysis is required. The statistical

interdependence of geographically distinct wind sites, their

fluctuating power output, and the large volume of connection

applications mean that a collective analysis of all potential wind

plant sites over an extended timeframe must be at the kernel of

any optimization approach.

The advantage of transmission analysis carried out over

a wider range of operating points is that the power flow

worst-case-scenarios may be identified without any simplistic

base-case assumptions. Some analytical power flow techniques

have been reported in [8] and [9] modeling a greater variation in

generation power injections and customer demand patterns. As

discussed in [10] however, a multivariate statistical sampling

approach is more accurate for wind-related power-flow studies

given the elaborate nature of power system multidimensional

statistical dependency distributions with high wind penetration.

However a purely random “Monte Carlo” sampling technique

such as in [11] cannot account for any inter-temporal power

system dependencies. The capability of a year-long multi-

variate sequential time-series method to model the influence of

increased wind power inter-temporal variability on system unit

commitment (applying conventional generation parameters

such as start-up times, minimum up- and down-times, etc.) was

highlighted in [12].

Maintaining an integer unit-commitment solution, while

including the large number of security constraints that ac-

company a year-long system load flow analysis, presents a

significant dimensionality challenge to the optimal wind ca-

pacity placement problem. A simple approach to represent

multi-period wind variations was implemented in [12], using

a multidimensional “binning” technique to group (and thereby

reduce) the number of relevant power flow scenarios—this

did not incorporate network security contingencies however.

Significant dimensionality reduction can be carried out by

investigating the structure of the firm capacity optimization

problem—if linearized load flow methods are used, then many

of the power flow security constraints over the extended time

series are redundant and can be removed by an efficient prepro-

cessing scheme [13].

The approach of [13], with a defined optimization cost func-

tion to minimize a wind turbine infrastructure economic cost

criterion (by choosing the best wind resource sites), assumed

a specific wind energy penetration target was initially feasible

using firm wind capacity connection. This would be unrealistic

in most power systems with significant targets and present trans-

mission limitations—instead this paper attempts to maximize

the firm wind energy potential of the existing system in the

short-term prior to transmission expansion in the long-term. To

this end the approach of [13] is improved and extended, with in-

cremental firm wind energy penetration targets applied from a

lower initial level until a limit is reached when the optimization

model becomes infeasible. Section II of this paper outlines the

methodology in more detail.

II. METHODOLOGY

A. Optimization Methodology Overview

A flowchart of the overall methodology is given in steps in

Fig. 1. It is assumed that the transmission network is initially

uncongested (i.e., existing conventional plant also has firm con-

nection status), and that the addition of new firm wind capacity

should preserve this situation—i.e., generation curtailment due

to network constraints is inapplicable. Year-long nodal load

and nominal 1-MW multivariate wind power hourly production

time series are available as inputs. A low firm wind energy

penetration target is initially selected for investigation—if

this level of firm wind energy integration is feasible (through

optimized allocation of individual wind capacities), the target

can be increased in small discrete steps until additional firm

wind energy connection is not possible without system conges-

tion. For each incremental energy target, the overall firm wind

capacity allocation problem (incorporating linear wind capacity

investment variables, hourly integer unit-commitment/dispatch

variables and hourly security-constrained network limitations)
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Fig. 1. Firm wind energy maximization methodology flowchart.

is separated into more tractable subproblems. An approximated

total system wind time series facilitates the separation of the

existing firm conventional plant mixed-integer scheduling

task from a linear programming firm wind capacity allocation

analysis. This problem decomposition into separate subtasks

reduces the dimensionality and complexity of the overall

firm capacity optimization problem, and allows an improved

solution within practical computing capabilities. Given the sep-

aration of the individual subtasks, absolute global optimality

cannot be guaranteed however.

The required approximate system-total wind power hourly

production time series, (consistent with each incremental wind

energy penetration target, and representing the system wind

inter-hour variability pattern), can be generated using the

multivariate nominal 1-MW wind power time series of the

individual locations (step 1, Section II-B1). Using this initial

wind power time series a sequential mixed-integer program

(MIP) unit commitment and dispatch study is carried out to

determine the MW outputs of existing firm conventional plant

to serve the net load time series (step 2, Section II-B2)—this

integer optimization does not require a network model as the

system is initially assumed uncongested.

A dc load-flow network model subsequently uses this existing

firm conventional plant hourly MW dispatch time series and

the individual wind farm candidate locations’ nominal 1-MW

time series to define linear network security constraints from a

set of critical line and generator contingency scenarios (step 3,

Section II-B3). These linear constraints are formulated so that

the power flows related to the optimized firm wind power capac-

ities are “fitted-around” the power flows resulting from the firm

conventional plant dispatch (step 2), while maintaining network

security and power balance in each hour. The linear inequality

constraints are subsequently preprocessed using a specifically

tailored algorithm to remove any constraint redundancy over the

extended timeframe of operation (step 4, Section II-B-4), and

reduce the model size significantly with no compromise in ac-

curacy [13].

The remaining nonredundant power flow linear constraints

are integrated within a simple linear programming (LP) model

to test the feasibility of this wind energy penetration target level

with respect to the network capabilities (step 5, Section II-B5).

The optimization variables are the individual wind capacity allo-

cations to each candidate node. The resulting total system wind

power output time series (as defined by the LP optimized wind

capacities and their individual nominal 1-MW hourly time se-

ries) may not be precisely consistent with the system-wide ap-

proximate hourly input time series used to carry out the initial

unit-commitment/dispatch of the firm conventional plant (step

6, Section II-B6). Steps 2–5 are therefore reiterated with this up-

dated resultant system-total hourly time series as the input until

power balance converges from one iteration to the next. If a con-

verged solution is feasible, then the wind energy target can be

incremented (step 7, Section II-B7) and the process repeated.

On the other hand, if the LP model is deemed infeasible at any

stage, the algorithm ends with the previous known feasible firm

wind energy capacity allocation solution (step 8).

B. Optimization Methodology Subtasks

1) Approximating System Wind Power Output Time Series:

A total system-wide wind power production time series is nec-
essary to carry out the scheduling and dispatch of conventional
plant. Simultaneous year-long nodal load and nominal 1-MW
capacity wind power time series are available as inputs for each
transmission network location, representing any geographic sta-
tistical and temporal multivariate dependencies independently
of the wind plant capacity to be determined later. Each poten-
tial wind location (be it a single farm or a collection of local
sites) will have its own capacity factor and individual variations
in its nominal time series of power production. Therefore the
total system wind power output time series required for the MIP
conventional generation scheduling subtask (step 2) cannot be
precisely defined prior to completing the individual wind plant
capacity LP optimization subtask (step 5). However it can be
initially assumed that the total system-wide wind power time se-
ries converges to a geographically-smoothened or approximate
time series regardless of where the output wind power capac-
ities are subsequently allocated. This is acceptable as within
a power system of reasonable size and geographical wind ca-
pacity spread, the total wind power output is more influenced
by the significant degree of interdependency contained in the
collection of wind farm time series and the overall weather pat-
tern in the wider geographical region, as opposed to any local-
ized effects. Principle component analysis [14] or independent
component analysis [15] can be carried out to study the inter-
dependency present in the multiple wind power time series and
substantiate this assumption.

In this paper, a simple hourly average of the multivariate nom-
inal 1-MW wind power time series was used to generate
the initial system-wide hourly wind power output time series for
the unit commitment stage of the first wind energy penetration
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target level. An approximate turbine MW capacity re-
quired to serve a proportion of total yearly load energy demand
by wind can be determined in (1) given the average system MW
load of and the average capacity factor of all the poten-
tial wind sites are known. The initial approximate hourly
time series is determined by scaling the hourly average
of the recorded nominal wind farm power time series by

as in (2). This wind power time series satisfies the annual
wind energy penetration target while respecting system-wide
inter-hourly wind variations, and is thus suitable for the initial
unit-commitment and dispatch step:

(1)

(2)

2) (MIP) Unit Commitment and Economic Dispatch: Con-
necting new wind generation will not only impact network flows
by virtue of its own power injections, but also due to the conse-
quential displacement of existing firm conventional plant in the
overall power system operational context. Thus the multivariate
interdependence of customer load, existing/new wind genera-
tion and existing conventional plant must be determined in con-
junction with the task of finding the individual optimal firm
wind capacity allocations. Increased wind penetration will lead
to greater variability in the net power system load to which con-
ventional plant must respond [16]. Investigating significantly in-
creased wind capacity connection to transmission systems may
therefore require an MIP scheduling model [12], with an accu-
rate representation of the conventional plant inter-hourly con-
straints such as starting times, start costs, minimum up- and min-
imum down-times, ramp rate limits, etc. This may be of signif-
icant importance in power systems with inflexible conventional
generation [17].

The geographically-smoothed time series of total wind power
production from Section II-B1 can be subtracted from the
total system load, and the resultant net system load time series
input to a unit-commitment and dispatch model. This scheduling
model can be applied in single-day or multi-day segments as
required, with hourly integer resolution. Net system load vari-
ability effects over a typical year of operation are thus explicitly
accounted for in this algorithm. Provision of primary reserve
is included to respond to any single generation contingencies
modeled in Section II-B3. The unit commitment and dispatch
stage of this algorithm does not apply a network-constrained
re-dispatch as it is assumed the firm connection status of gener-
ation already present in the system should be respected—i.e., it
is assumed that the system is initially uncongested, and should
remain so subsequent to the firm wind capacity addition. The
output variables of this step are the least-cost MW power and
reserve hourly dispatch of each firm conventional generator in
the system for the given wind penetration level .

Stochastic unit-commitment of conventional plant ac-
counting for short-term wind forecast uncertainty information
is not applied in this paper (i.e., perfect forecasting of the wind
power time series is assumed), though could be included if de-
sired—unit commitment methods that account for such forecast
uncertainty by producing flexible conventional plant schedules
have been reported in [18] and [19]. Stochastic scheduling tools
are very computationally expensive however. At lower levels of

wind penetration, operational timeframe wind forecast uncer-
tainty may have little effect on long-term power transmission
planning problems. Longer-term uncertainty relating to input
parameters such as fuel or carbon price, peak customer load
etc., can be reflected in alternative scenarios.

3) Formulating the Load Flow Inequality Constraints: The
“dc” load-flow [6] uses the transmission line reactance values to
determine a set of linear coefficients [or “power transfer dis-
tribution factors” (PTDFs)] that along with a designated power
flow reference bus , define the power flow solution in each
branch as a linear combination of the power injections
at every other bus , as in (3). An important advantage of dc
load-flow is that linear constraints can be formulated to repre-
sent network power flow security criteria at the LP optimization
stage—as will be seen in Section II-B4, this advantage is crit-
ical to reducing the LP wind capacity optimization subproblem
dimensionality to a manageable size:

(3)

The dc load flow is often used in planning studies as a very
good approximation to the transmission network’s active power
transport requirement. Other important network operational
characteristics such as steady-state and dynamic voltage be-
havior, short-circuit levels as well as transient stability are
more suited to detailed in-depth analysis [20], may not be fully
amenable to a manageable optimization process across such
a range of power flow conditions, and are typically assessed
once the grid is known to be thermally secure. The algorithm
outlined in this paper can be viewed as an optimistic total wind
capacity allocation from which to carry out such analyses, with
due consideration of advanced technology solutions [21]. If
desired, spare line capacity can be set aside for related reactive
power flows or known system stability constraints. Fine-tuning
of assumed thermal line capacity limits can be carried out in
each hour with updated information from subsequent system
dynamic and full ac load flow studies—this may be necessary
as wind generators, specifically squirrel-cage induction ma-
chines, can have a high reactive power demand. On the other
hand, studies have shown that the addition of wind capacity
to a network can improve the voltage profile in some areas if
controlled reactive power output is applied using wind turbine
power electronics [10], [22].

Assessing power system capability with respect to traditional
security criteria across the entire time-length of the time series
study implies a very large number of power flow scenarios. In
the limit this value is defined by (4), for years of hourly data
analysis, considering each contingency at each hour of the year
with respect to each other line’s capacity (any single generator
(G) and/or simultaneous single network branch (N) contingency
state is modeled in this paper):

(4)

The localized impact of any possible branch contingency would
suggest that not all such contingency scenarios realistically need
to be modeled. Comparing the probability density functions of
the initial system’s yearly load flows in each line under in-
tact-network and each other branch-outage condition can be
used as a heuristic contingency screening method—load flow
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probability density functions with wide spreads and the most
extreme maximum values correspond to the most onerous con-
tingency cases for that line. An initial visual check of these load
flow spreads can be carried out to select the network configura-
tions of relevance for subsequent study. Alternatively, network
contingency selection could be carried out in a more automated
manner on the basis of the network’s “line-outage distribution
factors” [6]. For each generation contingency, an appropriate re-
serve response is allocated from the reserve dispatch of step
2 (Section II-B2) in each hour so that load balance is main-
tained. In all, a combined total of network power injection
(i.e., each intact and post-generation-contingency MW power
dispatch) and network branch (i.e., each set of PTDFs for the
intact network and relevant line outage states) contingencies are
applied to each hour of the time series.

As the principle of superposition applies to linear dc load
flow, the power flow contribution from both load and conven-
tional generation can be evaluated as numerical partial load flow
solution value for each hourly security scenario using the
relevant MW dispatch information (step 2) and the dc load flow
coefficients. The collective net contribution of the wind farms
to the power flows as superimposed values in each of hourly
intact/contingency system configurations is as of yet unknown.
The wind capacity allocation optimization variables when
scaled by their respective nominal 1-MW hourly time series
values and the relevant dc load flow coefficients will deter-
mine this. The inequality constraints of (5) are thus included for
each of system configurations in each hour to ensure that
the wind capacity allocations do not overload any of the network
thermal line capacities , in either the forward or backward
flow directions. The optimized firm wind capacity related power
flows are essentially “fitted-around” the existing firm conven-
tional plant production power flows from Section II-B2, en-
suring both network security and power system balance under
each critical contingency. The double-sided inequalities of (5)
can be represented as single-sided inequalities by the algebraic
manipulation of (6), (7). Each wind plant’s capacity is mod-
eled as a continuous optimization variable, as individual turbine
size is relatively small in comparison. The turbine capacity op-
timization variables will of course be non-negative, as specified
by (8). Wind plant contingencies can be modeled by assuming
their wind power time series is zero in the hours of interest,
but the related primary reserve bus power injection required to
replace their power production generation contingency can only
be modeled for subsequent re-iterations (Section II-B6) as the
individual wind plant capacities are initially unknown:

(5)

(6)

(7)

(8)

4) Removing Redundant Linear Constraints: Optimization
algorithm computational requirements are sensitive to both the

Fig. 2. Linear program constraint redundancy—no feasible space intersection.

number of variables and constraints in the mathematical model
applied [23]. A refined version of the algorithm introduced in
[13] is applied here to reduce the LP model constraint dimen-
sionality. An approximate method of contingency selection be-
fore formulation of the hourly line flow constraints was de-
scribed in Section II-B3. Additional model efficiency can be
achieved if redundancy in the inter-hourly behavior of these se-
lected network cases as described by (6) and (7) is also con-
sidered. Constraint redundancy will occur when inequality con-
straints as represented by lines and in Fig. 2 do not in-
tersect the optimization feasible space, as defined by the inner
convex polygon of inequality constraints , and the variable
axes [note the capacity variables cannot be negative as specified
in (8)]. They will thus not influence the solution of any opti-
mization model.

Dulá in [24] gives an extensive mathematical treatment of
linear programming redundancy, outlining the frame or extreme-
point subset of the convex-hull of multidimensional data points
representing the dual problem constraint matrix formulation as
the source of the non-redundancy in the primal representation.
As the convex hull of any general type of multidimensional
point dataset can define every point within its multidimensional
convex volume, it is the minimal complete representation of
the multidimensional dataset [25], and all points interior to the
convex hull may be considered redundant. Dulá et al. in [26]
also describe an efficient computational method to determine
the frame of the convex hull of a point dataset by testing the
feasibility of successively larger linear programs.

The presence of (8) in the LP optimization constraint set al-
lows an intuitively simpler interpretation of the linear constraint
redundancy issue for this paper. Consider two arbitrary linear
constraints as in (9a) and (9b) below. As , are 0 in this
problem, then if all the coefficients and constant of (9a) (i.e., ,

, ) are at least greater than or equal to their equivalents
in (9b), then (9b) (corresponding to line type in Fig. 2) will
intuitively be a less extreme constraint and is thus made redun-
dant by (9a):

(9a)

(9b)

The geometric dual of a line (and thus a linear programming
optimization inequality constraint) is a point [25], and similarly
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Fig. 3. Maximal vector subset of a 2-D dataset.

each constraint such as (9a) and (9b) can be uniquely repre-
sented with the geometric points and —for example

(10a)

(10b)

As outlined by the authors in [13], the complete set of inequality
constraints in (6) and (7) can therefore be equally defined in
this simple manner as a very large cardinality multi-dimensional
point dataset. The problem of quickly removing many redun-
dant linear inequality constraints in this LP optimization model
is analogous to finding points that do not form the “maximal

vector” subset of the geometric point dataset—see the “floating
currency” analogy to (9a) and (9b) in [27]. A data-point is a
maximal vector of a point dataset if it is not dominated by any
other data-point—this concept was first introduced in [27] and
[28]. dominates if , and , and

, etc. Other computational geometry problems such
as the “Pareto set” problem and the “skyline” problem [29] have
direct correspondence to the maximal vector problem. The max-
imal vector subset of an arbitrary two-dimensional point dataset
is graphically illustrated in Fig. 3. The shaded area in Fig. 3 cor-
responds to the area containing points dominated by maximal
vector point .

Maximal vectors with individual point co-ordinate values
that are all greater than average for that dimension will tend to
dominate many other points. Instead of a purely naïve sequen-
tial search and comparison, a much more efficient redundancy
assessment should therefore incorporate an intelligent prepro-
cessing scheme. Godfrey et al. in [30] discussed a data vector
coefficient entropy sum to order an arbitrary dataset of points
prior to the maximal-vector search and comparison process. If
data-points that correspond to very dominant maximal vectors
are cycled through the dataset first, they will remove propor-
tionally a much greater than average number of redundant data
points, and an efficient redundancy removal process will result.
The data-points still present at the end of the comparison
scheme correspond to the dominant maximal vector subset. The
discarded or dominated points correspond back to redundant
constraints in the LP optimization model (e.g., line in Fig. 2)
[13]. However, within the set of remaining maximal vector

points there may remain a small number of constraints of the
type in Fig. 2—i.e., those that do not define the feasible space
yet are not fully dominated by any other single constraint. This
is not critical, as the objective of the LP preprocessing stage is to
remove a lot of redundant constraints quickly, rather than to fully
identify the minimum set of constraints defining the LP feasible
space—refer to [24] and [26] for such an algorithm.

As in [13] this paper uses the product of the “rank” of each
point coordinate (i.e., its ordered hierarchical position with
respect to the other constraint coefficients for that optimization
variable, a term unrelated to linear algebra matrix rank) to de-
termine the ordered position of the data-point at the search
and comparison stage as defined in (11). This is a particularly
efficient preprocessing scheme as coefficient ranks are natu-
rally a good measure of each data-point’s dominance in the
overall dataset. Redundancy removal progress will slow down
as data-points with lower overall coefficient rank product are
tested for maximal vector dominance. However the total time
to carry out the LP optimization stage is the sum of the prepro-
cessing and optimization solver times, so it is wise to implement
a stopping criterion, i.e., when the remaining number of con-
straints is less than a defined number , which is well within
the capabilities of the optimization solver in use:

(11)

5) Linear Programming Firm Wind Energy Feasibility Test:

A linear programming model can be applied to the wind capacity
optimization model feasibility test for each incremental wind en-
ergy penetration target , as all of the constraints are linear in na-
ture and the simple linear cost function of (12) was applied here.
The outputs of this single-stage LP model are the collectively
optimized firm wind capacities that ensure the feasibility of this
wind energy penetration level (i.e. so that the wind energy target
is achieved and that no network branches are overloaded pre- or
post-contingency during the extended time-period of investiga-
tion), while minimizing the chosen cost function. In theory, the
feasibility of each firm wind energy connection target is de-
termined by the linear constraints alone and should not be sensi-
tive to the cost function applied. The cost function choice may
affect the convergence of the overall methodology solution and
individual allocations of wind capacity however.

The energy contribution of a wind farm is defined by its ca-
pacity factor value. The LP wind capacity allocation must sat-
isfy the total system wind energy penetration assumed in the
scheduling stage of Section II-B2. This is ensured with the inclu-
sion of (13), where is each wind farm’s capacity factor, and
the respective wind capacity allocations are the optimization
variables. For the given firm wind energy connection target, the
constraint of (8), as well as the remaining network power flow
inequality constraints set of (14) and (15) [originally a subset of
(6) and (7)] will also apply. The complete linear programming
model is summarized by (8), (12), (13), (14), and (15):

(12)

(13)
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(14)

(15)

6) Updating the System-Total Wind Power Time Series: The
formulation of the MIP unit-commitment/dispatch problem in
Section II-B2 used an approximate geographically-smoothened
total wind power output time series. This may not necessarily
correspond precisely to the total wind power time series re-
sulting from the LP output wind turbine capacities when scaled
by their individual nominal 1-MW wind power time series. In
order to preserve power system balance at each operational hour,
steps 2, 3, 4, and 5 of the methodology can be reiterated (within
each wind penetration target level ) using the new total wind
power time series resulting from the LP model of the last itera-
tion. The LP output wind turbine capacities may change slightly
from one re-iteration to the next; however after a few itera-
tions the total wind power output time series resulting from the
LP model converges to that used as input to the unit-commit-
ment/dispatch subtask, and the turbine capacities from the LP
model will subsequently remain unchanged. This re-iteration
ensures consistency between the separated MIP unit-commit-
ment/dispatch and the LP wind capacity allocation subtasks.

7) Incrementing the Firm Wind Energy Penetration Target:

Estimating the maximum possible wind energy integration
using firm wind capacity can be approached as a series of
simpler LP model feasibility tests—by increasing the wind
energy target in small discrete increments of , steps 2, 3,
4, 5, and 6 of the methodology are repeated until a feasible
solution to the LP model of Section II-B5 using firm wind
capacity allocation to distinct transmission buses no longer
exists. The methodology outlined in this paper is separated into
smaller optimization subproblem steps, as illustrated in Fig. 1.
This ensures the ability to separate the MIP system scheduling
and large-scale LP wind capacity placement tasks and ensure
a practical computational implementation (by exploiting the
linear constraint redundancy as detailed in Section II-B5).
While this overall methodology will improve firm wind energy
connection feasibility, given the inclusion of MIP variables
and the practical separation of the individual subtasks of the
optimization problem, it is unlikely that the absolute global op-
timal solution can be found however, nor any measure defined
with regard to how far the proposed solution is from global
optimality.

III. METHODOLOGY APPLICATION TO A TEST-SYSTEM

The test network used for the illustration of this firm

wind energy connection maximization methodology was a

simple 35-bus, 54-line model as depicted in Fig. 4 (with net-

work parameters based on a subset of the Irish “All-Island”

220/275/400-KV high voltage transmission system). Historical

synchronously recorded wind power output data of one year’s

length, load time series data, and a subset of the existing

conventional plant from the Irish power system were combined

with the test network of Fig. 4 for study. The total conventional

generation capacity was 2256.1 MW. The assumed peak load

for the test system was 1825.2 MW. The average load was

Fig. 4. Test system transmission network schematic.

1246.6 MW. The network branch capacity values chosen were

commensurate with the zero wind integration power flow

scenarios, while providing some extra capacity for subsequent

wind connection. It was assumed that seven potential wind

generation sites were available, at buses 12, 14, 15, 25, 27, 29,

and 30. The synchronously recorded wind time series from

the existing wind farms were normalized to 1-MW capacity

for use in this analysis. High wind capacity factor time series

were arbitrarily located on bus 15, 14, 27, and 12, while lower

capacity factor wind farms are available at bus 30, 29, and 25.

The unit commitment/dispatch step was carried out using the

deterministic scheduling (perfect wind forecasting assumed)

software tool PLEXOS [31] in 24-h segments—conventional

plant was dispatched on the basis of energy cost. Further test

system details are contained in the Appendix.

IV. RESULTS

A. Maximizing the Firm Wind Energy Penetration Level

An initial firm wind energy penetration target of 5% was

found to be feasible using the methodology of Sections II-B2,

3, 4, 5, and 6. The energy penetration target was updated in

small increments until a 10% target was found to be infeasible.

The 9.5% target (i.e., ) was therefore estimated by

this decomposed optimization methodology as the maximized

firm wind energy penetration level. A table of the collectively

optimized firm wind capacity allocations at each wind energy

penetration increment is given in Table I.

The firm capacity allocation to the wind farm at bus 15 in

successive steps is particularly interesting. As the system wind

energy integration target is increased the firm capacity alloca-

tion to this node (which has the highest capacity factor) initially

increases but then decreases. This illustrates the trade-off be-

tween individual wind farm capacity allocation and each farm’s

contribution to facilitating the maximum possible firm wind en-

ergy penetration in the system as a whole. It also underlines the

benefit of collectively considering all potential wind farms with

the formal optimization model as outlined in Section II.
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TABLE I
OPTIMIZED WIND ENERGY PENETRATION CAPACITY ALLOCATIONS (MW)

TABLE II
THE 9.5% WIND ENERGY RE-ITERATED WIND CAPACITY ALLOCATIONS (MW)

Fig. 5. Histogram of power imbalance between methodology re-iterations.

B. Convergence of the System-Total Wind Power Time Series

As described in Section II-B6, the methodology of

Sections II-B2, 3, 4, and 5 was successively repeated using

the updated LP model wind capacity allocation results, to

remove any load/generation mismatches. Some changes in the

integer unit-commitment and linear dispatch variables (e.g.,

for conventional generators at the margin in each hour) do

occur in step 2 from one re-iteration to the next until the solu-

tion converges between iterations. A table of the LP optimal

capacity allocations at each of the methodology re-iterations

for the largest feasible wind energy penetration target (9.5%)

is given in Table II below. Histograms of the load/generation

mismatch error at each hour between successive re-iterations

for this firm wind energy penetration level are also illustrated

in Fig. 5. Reiteration of the subtasks from the first iteration

results gradually converges to a solution preserving consistency

between the assumed input time series for MIP unit commit-

ment/dispatch and the time series determined by the LP wind

capacity allocation model output solution (though as discussed

in Section II-B7, Fig. 5 does not prove convergence to the

global optimum). A similar effect was observed for each of the

other wind energy penetration levels.

Fig. 6. Load flow distribution for branch 6–12 under branch 11–17 failure.

C. Investigating the Solution Load Flow Results

At the end of the firm wind capacity allocation methodology,

the optimized wind farm capacities can be used to carry out the

resultant time series load flow to ensure that system security is

indeed maintained at each of the individual hours. For complete-

ness, this should include all possible line and generation con-

tingencies from (4), irrespective of both the initial contingency

screening of Section II-B3 and the mathematically rigorous con-

straint redundancy elimination of Section II-B4. The histogram

of the year-long power flows in the network branch from bus 6 to

bus 12 under all possible single generation contingency events

and a single outage contingency in the branch from bus 11 to

bus 17 is illustrated in Fig. 6. No cases result in power flow

exceeding the thermal line capacity of 100 MW—hence the ad-

vantage of the year-long extended timeframe analysis. As the

very edge of the line flow distribution corresponds to the branch

thermal capacity 100 MW, it is clear that this line is a binding

constraint on the firm wind energy connection process.

D. Computational Requirements

The year-long conventional generation scheduling and dis-

patch task, using a rounded-relaxation solution method in

PLEXOS, took approximately 20 min on average for each of the

iterations on the test system’s generation portfolio, implemented

on a 3.6-GHz Pentium dual-core driven, 4 GB of RAM enabled

Dell Optiplex GX620 desktop PC. Considering the initial LP

problem dimensionality of (4) for the simple test system in

Section III would have resulted in line power

flow security cases for the entire year of study. The contin-

gency screening technique based on the initial zero-wind time

series load flow investigation of Section II-B3 reduced this to

constraints using a simple visual test—this con-

tingency set was identified and applied to all of the subsequent

optimization row iterations in Table I. The MATLAB [32] soft-

ware environment was used to implement the efficient constraint

redundancy preprocessing stage of Section II-B4, trimming

the original possible line flow constraints to

a practical user-defined stopping criterion of in

approximately 14 min (on average) for each of the iterations.

Scaling of the constraint coefficients by the magnitude of the

constant terms [as in (10a) and (10b)] was found to refine the

computational time efficiency of this paper’s investigation by
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Fig. 7. Typical graph of ordered rank-product values for preprocessing.

40% with respect to the original approach in [13]. The benefit

of a preprocessing stopping criterion was also investigated.

At the 3rd iteration of the final feasible 9.5% wind energy

penetration, when the constraint redundancy analysis was al-

lowed to generate the absolute minimal cardinality set of

non-dominated maximal vectors, only constraints

remained, though the computational time trade-off of 149.37

min was substantial. The LP optimization solver employed was

the MATLAB LINPROG medium-scale interior-point algo-

rithm. This determined an optimized solution to the reduced

LP problem of Section II-B5 (with constraints) in

approximately 3.14 s (the minimal set of constraints

was solved in 0.47 s in comparison). Post-optimal processing

indicated that only four of the line flow constraints were binding

on the output solution for the 9.5% firm wind energy connection

level, i.e., four of the lines’ maximum flow values reached their

defined capacity levels at some stage over the year of analysis. A

typical graph of the increasing order of constraint rank-product

values from (11) can be seen in Fig. 7. As Fig. 7 illustrates,

the sparsity of extreme constraints in the firm wind capacity

power system planning problem investigated here suggests that

relatively few constraints will dominate most of the others,

underlining the benefit of applying the ordered maximal-vector

redundancy preprocessing step of Section II-B4.

V. DISCUSSION

A methodology to estimate the maximum firm wind energy
that can be integrated to a given power transmission network is
outlined in this paper. Wind fluctuations and statistical depen-
dence have been explicitly accounted for through the use of mul-
tivariate year-long historical recorded time series. This paper ap-
plied fixed contingency security criteria for each of the hours of
the yearly duration time series. This generated a very large di-
mensionality system power flow model. A decomposition of the
firm capacity allocation problem into separate MIP unit-com-
mitment/dispatch and LP wind capacity placement steps using
a geographical-smoothing approximation of system-total wind
power output allowed the design of a preprocessing algorithm
to exploit the overwhelming redundancy in the structure of the
associated LP model subtask. Decomposing the overall firm ca-
pacity optimization problem into separate subtasks reduces the
problem complexity and allows a practical implementation with
standard computing resources to achieve improved feasible firm

wind energy integration solutions. An associated difficulty how-
ever is the inability to guarantee global optimality or determine
the solution optimality gap.

Using initial contingency screening combined with an effi-
cient and rigorous maximal-vector based redundancy algorithm,
a reduction of the test-system’s original constraint dimension-
ality by 99.9% (to ) was possible. Similar computation
efficiency should be achievable in larger power systems, with
the possible use of parallelized preprocessing. Implementation
of the preprocessing algorithm in a faster execution environ-
ment than MATLAB could also produce greater efficiency.
Commercial optimization solvers such as CPLEX also use
some model preprocessing approaches and report that they can
handle “millions” of constraints and variables [33]. The linear
inequality constraint dimensionality in even a medium-sized
power system could stretch to the order of billions however, as
suggested by (4), so one would expect some user preprocessing
may need to be carried out before attempting a solution. The
algorithm of Section II-B4 was tailored specifically for the LP
model in this paper, though other linear constraint redundancy
removal algorithms have also been proposed previously [26],
[34]. While the maximal-vector method in this paper illustrates
the overwhelming redundancy present in the LP constraint
structure of the applied problem, future work could benchmark
its performance against alternative algorithms to evaluate its
efficiency. The maximal-vector method is by no means restricted
to LP optimization problems in the power systems domain—as
long as the conditions of Section II-B4 are satisfied then it
should be applicable to other problems.

While the overall goal of the paper is the integration of wind
energy, the methodology uses firm wind capacity only to achieve
this (i.e., no transmission congestion allowed). While the max-
imal-vector subset cardinality of constraints was
less than 0.000017% of the total constraint set, a post-optimal
analysis of the linear programming steps furthermore indicated
that only a handful of these constraints were actually binding
on the solutions obtained. This would suggest that wind plant
behavior in a few hours of the year determined the firm wind
capacity allocation in the entire system. Given the particularly
low capacity credit of wind power, and acknowledging the rarity
of such worst-case scenarios with a low capacity factor source
of generation such as wind (see the relative spread of the ex-
tremities of Fig. 6 and the ordered shape of Fig. 7), the results
of this paper suggest it would be more prudent in future study to
have the connection of “non-firm” wind capacity (that can eco-
nomically accept a defined level of energy curtailment over a
fixed time period [35]), as the central optimization variables of
interest. However that optimization problem complexity is cer-
tainly of a non-trivial nature—it would imply a very large scale
hourly security-constrained-OPF problem with linear dispatch
variables, solved within a daily mixed integer unit-commitment
problem, both of which are furthermore coupled to the overall
wind capacity investment variables spanning the entire length
of the applied time series.

The results of the algorithm application to the test system
network in this paper are based on a representative set of mul-
tivariate historical wind power time series of 1 year’s length
(though obviously multiple years of data could be used if avail-
able). Wind power output profiles may change from year to
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year—using a number of years wind data will improve accuracy
and solution robustness. Wind data growing techniques such as
those proposed in [36] could also be applied. Any successful
wind data growing technique must preserve both the individual
wind plant cross-correlative behavior (for accurate load-flow)
but also the auto-correlative trends of total system wind power
output (for system unit commitment). Diurnal or seasonal influ-
ences in wind production patterns should also be accounted for.
The nominal 1-MW wind time series required in Section II-B1
are assumed to be independent of the optimized wind capacity
solution outputs determined by Section II-B5. This is acceptable
in reality as the optimized wind capacity to be allocated to each
transmission system bus would likely be the sum of capacities
of dispersed (possibly distribution-connected) wind farms in the
nearby area, and as the hourly nominal wind time series data de-
scribed in Section III was scaled from existing large multi-MW
wind farms installed on the Irish power system.

A connection queue is typically used in modern deregulated
power systems for generation project connection sequencing.
The algorithm outlined in this paper attempts to estimate the
maximum possible wind energy connection with firm capacity
as new transmission projects are implemented. A larger subset
of the original firm connection queue projects can be satisfied,
though not necessarily in accordance with their actual position
in the queue. It may therefore seem more related to the com-
posite system planning techniques of the traditional vertically
integrated utility. Until significant new transmission capacity is
built however, optimal use of networks could be made in the
interest of accelerating wind power connection in the short to
medium term. Recognising the fundamentally different charac-
teristics of wind energy, a return to some level of integrated plan-
ning may be required [37].

VI. CONCLUSION

This paper presents a methodology with the aim to maximize

the firm wind energy penetration to any given power transmis-

sion network. Applying security criteria over the extended se-

quential timeframe required to model wind power variations

generates a high-dimensionality optimization model—separa-

tion of the MIP unit-commitment/dispatch and LP firm wind

capacity placement problems allows a maximal-vector based

preprocessing technique to filter out a substantial proportion of

constraint redundancy present in the LP model. While solution

global optimality is not guaranteed with this approach, a signif-

icant advantage is the reduction in model complexity. The op-

timized capacity results indicate a balance between each wind

site’s capacity factor (or position in a connection queue), and

the overall goal of maximizing the total firm wind capacity con-

nection potential of the power system as a whole, is prudent.

Post-optimal analysis underlines the importance of considering

wind as a “non-firm” energy source rather than a firm capacity

source in future methods—i.e., for currently congested systems

where much more wind might be integrated if limited curtail-

ment is acceptable.

APPENDIX

Tables III–VI list the wind farm time series capacity factors,

branch reactance parameters and capacity limits, maximum bus

TABLE III
WIND FARM TIME SERIES CAPACITY FACTORS

TABLE IV
BRANCH REACTANCE PARAMETERS AND CAPACITY LIMITS

TABLE V
MAXIMUM BUS LOAD VALUES

load values, and conventional plant information, respectively,

for the test system described in Section III.
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TABLE VI
CONVENTIONAL PLANT INFORMATION
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