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Maximizing Lifetime of Sensor Surveillance Systems
Hai Liu, Xiaohua Jia, Peng-Jun Wan, Chih-Wei Yi, S. Kami Makki, and Niki Pissinou

Abstract—This paper addresses the maximal lifetime scheduling
problem in sensor surveillance systems. Given a set of sensors and
targets in an area, a sensor can watch only one target at a time, our
task is to schedule sensors to watch targets and forward the sensed
data to the base station, such that the lifetime of the surveillance
system is maximized, where the lifetime is the duration that all tar-
gets are watched and all active sensors are connected to the base
station. We propose an optimal solution to find the target-watching
schedule for sensors that achieves the maximal lifetime. Our solu-
tion consists of three steps: 1) computing the maximal lifetime of
the surveillance system and a workload matrix by using the linear
programming technique; 2) decomposing the workload matrix into
a sequence of schedule matrices that can achieve the maximal life-
time; and 3) determining the sensor surveillance trees based on the
above obtained schedule matrices, which specify the active sensors
and the routes to pass sensed data to the base station. This is the
first time in the literature that the problem of maximizing lifetime
of sensor surveillance systems has been formulated and the optimal
solution has been found.

Index Terms—Energy efficiency, lifetime, scheduling, sensor net-
work, surveillance system.

I. INTRODUCTIONS

A
SENSOR SURVEILLANCE system consists of a set of

wireless sensor nodes (sensors for short) and a set of tar-

gets to be monitored. The sensors collaborate with each other

to watch or monitor the targets and pass the sensed data to the

base station. The sensors are powered by batteries and have a

stringent power budget [1], [2]. The nature of the sensor surveil-

lance system requires a long lifetime. In this paper, we discuss a

maximal lifetime problem in sensor surveillance systems. Given

a set of targets, a set of sensors, and a base station (BS) in

an area, the sensors are used to watch the targets and collect

sensed data to the BS. Each sensor has an initial energy reserve,

a fixed surveillance range, and an adjustable transmission range.

A sensor can watch at most one target at a time and a target
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should be watched by a sensor at any time. The problem is to

schedule a subset of sensors to be active at a time to watch the

targets and find the routes for the active sensors to send data

back to the BS, such that the lifetime of the entire sensor net-

work is maximized. The lifetime is the duration up to the time

when there exists one target that can no longer be watched by

any sensors or data cannot be forwarded to the BS any longer

due to the depletion of energy of the sensor nodes. We assume

the positions of targets, sensors, and the BS are given in prior

and static. The location information of both sensors and targets

can be obtained via a distributed monitoring mechanism [3] or

the scanning method [4], [5] by the BS.

The solution to this problem includes two parts: scheduling

the sensors to watch targets and routing the sensed data to the

BS. The schedule and the routes are pre-computed at the BS,

and they are disseminated to sensors by the BS at the system

initialization. When the system starts operation, all sensors work

according to the schedule, such as when and for what duration

to sleep, watch targets, or relay messages.

There are many applications of this type of surveillance sys-

tems. For example, sensors equipped with camera are used to

guard cargo containers to prevent them from being tampered

during the long journey of shipment or during the storage at a

port. Another example is the use of sensors to monitor some

hot spots in a region or in a building. In these examples, sen-

sors and targets are static, and each sensor can only focus on

watching one target at a time. For the applications in which one

sensor can watch multiple targets simultaneously, some work

on sensor scheduling has been done in [2] and [6], where sen-

sors are scheduled to work in turn such that a given area can be

covered fully [2] or partially [6] and the system lifetime is max-

imized.

The rest of this paper is organized as follows. Section II

is related work and Section III is the problem definition.

Section IV presents our solution which consists of three parts.

Section IV-A gives a linear programming formulation that

is used to compute the maximal lifetime of the surveillance

system. In Section IV-B, we show that the maximal lifetime is

achievable, and give the algorithms for scheduling the sensors

to watch targets. Section IV-C discusses surveillance trees for

routing sensed data to BS. Section V gives a numeric example

solved by using our method and simulation results. We con-

clude our work in Section VI.

II. RELATED WORK

There are two major techniques for maximizing the sensor

network lifetime: the use of energy efficient routing and the in-

troduction of sleep/active modes for sensors.

Extensive research has been done on energy efficient data

gathering and information dissemination in sensor networks.

Some well-known energy efficient protocols were developed,
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such as Directed Diffusion [7], LEACH [8], PEGASIS [9], and

ACQUIRE [10]. Directed Diffusion is regarded as an improve-

ment over the SPIN [11] protocol that used a proactive approach

for information dissemination. LEACH organizes sensor nodes

into clusters to fuse data before transmitting to the BS. PE-

GASIS improved the LEACH by considering both metrics of

energy consumption and data-gathering delay. In [12], an ana-

lytical model was proposed to find the upper bound of the life-

time of a sensor network, given the surveillance region and a

BS, the number of sensor nodes deployed and initial energy of

each node. Some routing schemes for maximizing network life-

time were presented in [13]. In [14], an analytic model was pro-

posed to analyze the tradeoff between the energy cost for each

node to probe its neighbors and the routing accuracy in geo-

graphic routing, and a localized method was proposed. In [15]

and [16], linear programming (LP) formulation was used to find

energy-efficient routes from sensor nodes to the BS, and approx-

imation algorithms were proposed to solve the LP formulation.

Another important technique used to prolong the lifetime of

sensor networks is the introduction of switch on/off modes for

sensor nodes. J. Carle et al. did a good survey in [17] on energy-

efficient area monitoring for sensor networks. They pointed out

that the best method for conserving energy is to turn off as many

sensors as possible, while still keeping the system functioning.

An analytical model was proposed in [18] to analyze the system

performance, such as network capacity and data delivery delay,

against the sensor dynamics in on/off modes. A node scheduling

scheme was developed in [19]. This scheme schedules the nodes

to turn on or off without affecting the overall service provided. A

node decides to turn off when it discovers that its neighbors can

help it to monitor its monitoring area. The scheduling scheme

works in a localized fashion where nodes make decisions based

on its local information. Similar to [19], the work in [20] defined

a criterion for sensor nodes to turn themselves off in surveil-

lance systems. A node can turn itself off if its monitoring area

is the smallest among all its neighbors and its neighbors will

become responsible for that area. This process continues until

the surveillance area of a node is smaller than a given threshold.

A deployment of a wireless sensor network in the real world

for habitat monitoring was discussed in [21]. A network con-

sisting of 32 nodes was deployed on a small island to monitor the

habitat environment. Several energy conservation methods were

adopted, including the use of sleep mode, energy-efficient com-

munication protocols, and heterogeneous transmission power

for different types of nodes.

We use both of the above-mentioned techniques to maxi-

mize the network lifetime in our solution. We find the optimal

schedule to switch on/off sensors to watch targets in turn, and

we find the optimal routes to forward data from sensor nodes to

the BS.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We consider a set of targets and a set of sensors that are used

to watch targets and collect information. We first introduce the

following notations:

base station whose energy is unbounded.

set of sensors, and .

set of targets, and .

set of sensors that are able to watch target

.

set of targets that are within the surveillance range

of sensor .

set of neighbors of sensor .

initial energy reserve of sensor .

distance between sensor and

.

, energy required for transmitting and receiving one

unit data, respectively.

energy required for watching a target per unit time.

data rate generated from sensors while watching

targets.

Notice that may overlap with for , and

may overlap with for . There are two requirements

for sensors watching targets:

1) Each sensor can watch at most one target at a time.

2) Each target should be watched by one sensor at anytime.

The problem of our concern is, for given , and , to find

a schedule that meets the above two requirements for sensors

watching targets, such that the lifetime of network is maximized.

The lifetime of network is the length of time until there exists

a target such that all sensors in run out their energy or

the sensed data cannot be forwarded back to the BS due to the

disconnection of the network.

IV. OUR SOLUTIONS

We solve the problem in three steps. First, we compute

the upper bound on the maximal lifetime of the system and

find a workload matrix and data flows of sensors. Second, we

completely decompose the workload matrix into a sequence of

schedule matrices without compromising the obtained maximal

lifetime. Finally, we determine a sensor surveillance tree for

each schedule matrix that specifies the active sensors and the

routes to forward sensed data to the BS.

A. Find Maximal Lifetime

We use linear programming (LP) technique to find the max-

imal lifetime of the system. Let denote the lifetime of the

surveillance system. We introduce two variables:

total time sensor watching target .

amount of data transmitted from sensor to sensor

(the receiver can be the BS).

The problem of finding the maximal lifetime for sensors

watching targets can be formulated as the following:

(1)

(2)

(3)
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(4)

(5)

Equation (1) specifies that for each target in , the total time

that sensors watch it is equal to the lifetime of the system. That

is, each target should be watched throughout the lifetime.

Inequality (2) implies that for each sensor in , the total

watching time should not exceed the lifetime of the system.

Inequality (3) implies that the total energy cost of a sensor

node shall not exceed its initial energy reserve. There are three

components of energy cost, which are the cost for sensing data

(i.e., watching targets), the cost for transmitting data (which is

dependent on the transmission distance), and the cost for re-

ceiving data.

Equation (4) is for flow conservation. It implies that for each

sensor in , the total amount of data sensed and data received

should be equal to the amount of data transmitted.

The above formulation is a typical LP formulation, where ,

and , and , , are

real number variables and the objective is to maximize . The

optimal results of , , and can be computed in polynomial

time.

Notice that , obtained from computing the above LP formu-

lation, is the upper bound on the lifetime, and each specifies

only the total time that sensor should watch target in order

to achieve this upper bound . Each specifies only the total

amount of data transmitted from sensor to sensor . We need

to find a schedule that specifies from what time up to what time

which sensor watches which target and through which route to

pass the sensed data to the BS. In the next two steps we will

find the schedule and routes that will finally achieve the optimal

lifetime .

The values of , and , obtained from

the LP, can be represented as a matrix:

We call matrix the workload matrix, for it specifies

the total length of time that a sensor should watch a target. This

workload matrix has two important properties:

1) The sum of all elements in each column is equal to (from

(1) in the LP formulation).

2) The sum of all elements in each row is less than or equal

to (from in (2) in the LP formulation).

In the next step, we will find the schedule for sensors to watch

targets based on the workload matrix.

B. Decompose Workload Matrix

The lifetime of the surveillance system can be divided into a

sequence of sessions. In each session, a set of sensors are sched-

uled to watch their corresponding targets; and in the next ses-

sion, another set of sensors are scheduled to work (some sensors

may work continuously for multiple sessions). Suppose a sensor

will not switch to watch another target within a session. Thus,

the schedule of sensors during a session can be represented as a

matrix. In this matrix, there is only one positive number in each

column, meaning each target should be watched by one sensor

at a time; and at most one positive number in each row, meaning

each sensor can watch at most one target at a time and there is

no switching to watch other targets in a session. Furthermore, all

the non-zero elements in this matrix have the same value, which

is the time duration of this session. Now, our task becomes to de-

compose the workload matrix into a sequence of schedule ma-

trices of sessions, represented as

(6)

where , is the length of time of session , and

the total number of sessions. We call this sequence of matrices

, the schedule matrices. Each schedule ma-

trix, say for session , has three properties: 1) all elements in

it are either “0” or ; 2) each column has exactly one non-zero

element; and 3) each row has at most one non-zero element (it

could be all “0”, indicating the sensor has no watching duty in

this session).

Next, we discuss how to decompose the workload matrix into

a sequence of schedule matrices. In general sensor surveillance

systems, the number of sensors is greater than the number of

targets, i.e., . We first consider a special case of .

Then, we extend the result to the general case of .

1) A Special Case : We consider the case . Let

and denote the sum of row and the sum of column in

the workload matrix, respectively. According to (1) and (2) of

the LP formulation, we have

(7)

(8)

Furthermore, since and

, we have

(9)

Combining (8) and (9), we have

(10)

From (7) and (10), we have

(11)

Equation (11) gives an important feature of the workload ma-

trix when that the sum of each column is equal to the sum

of each row. This feature will guarantee the possibility of decom-

posing the workload matrix into schedule matrices in Theorem 1.
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To decompose the workload matrix into a se-

quence of schedule matrices, our basic idea is to represent

as a bipartite graph , where one side

are sensors and the other are targets

. For each non-zero element in the

workload matrix, there is an edge between and and the

weight of the edge is . Since , every sensor has a target

to watch in any session. This means sensors exactly match

targets in each session, which can be represented as a perfect

matching in the bipartite graph . Thus, each schedule matrix

is corresponding to a perfect matching. The problem of decom-

posing the workload matrix is transformed into the problem of

finding perfect matchings in .

The decomposing process is as follows. Each time, we com-

pute a perfect matching in the bipartite graph. has exactly

edges, which defines the pairs of sensor-target watching. Let

be the smallest weight of the edges in . We deduct from

the weight of the edges in and remove the edges whose

weight becomes zero. The schedule matrix , corresponding

to this matching , can be represented as , where is

the permutation matrix of . (A permutation matrix is a square

matrix that has only “0” and “1” elements, and each row and

each column has exactly one “1” element). The schedule matrix

defines the sensor-target watching of a session and

is the duration of this session. This decomposing process is re-

peated until there is no perfect matching can be found any more

in the bipartite graph.

For example, suppose we obtained a workload matrix

for a system with three sensors and three targets

from the LP (1)–(5). The matrix is first represented as a bipartite

graph shown in Fig. 1(a). We compute a perfect matching in

as shown in Fig. 1(b) and the smallest edge weight

in the matching. The schedule matrix corresponding to this

matching is . Then we deduct from the weight

of the three edges in the perfect matching and remove the edges

and whose weight become zero. The resulting

bipartite graph is shown in Fig. 1(c). We repeat the operation

until all edges are removed from .

The details of the algorithm for decomposing a workload ma-

trix when are given below.

DecomposeMatrix-nn Algorithm

Input: a workload matrix .

Output: a sequence of schedule matrices .

Begin

Construct a bipartite graph from

while there exist edges in do

Find a perfect matching on ;

Represent as ;

(a)

(b)

(c)

Fig. 1. (a) The bipartite graph. (b) A perfect matching. (c) The graph after
deducting c .

Deduct from the edges in and remove edges

whose weight is 0;

endwhile

Output ;

End

The above algorithm tries to decompose the matrix by using

the technique of finding perfect matchings. There are two ques-

tions about this decomposability:

1) Does it guarantee that there exists a perfect matching in

every round of the decomposition?

2) Does it guarantee that the number of decomposition rounds

is bounded?

Theorem 1 and Theorem 2 will give answers to these two

questions, respectively. To prove Theorem 1, we need the fol-

lowing lemma.

Lemma 1: For any square matrix of nonnegative real

numbers, if for , , there exists a perfect

matching in the corresponding bipartite graph, where and

are the sum of row and the sum of column of ,

respectively.

Proof: Let be the sum of all elements in a row in ,

and denotes matrix . It is obvious that

is a doubly stochastic matrix [22], [23], where the sum of

all elements in any row or column is equal to 1.
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Now we prove the lemma by contradictory. Assuming there

does not exist a perfect matching in the corresponding bipartite

graph of , there does not exist positive entries in

that no two entries in the same column or row. According to the

König theorem [24], [25], we can cover all of the positive entries

in the matrix with rows and columns, such that .

However, since the sum of all lines of is equal to 1, it

follows . This contradicts to the assumption.

Lemma 1 is proved.

Theorem 1: The DecomposeMatrix-nn algorithm can always

find a perfect matching so long as there are edges in .

Proof: For any workload matrix , according to (11),

we have for , . According to Lemma 1,

there exists a perfect matching on the corresponding bipartite

graph .

Since in each round , the DecomposeMatrix-nn algorithm

computes a perfect matching and deducts from the weight

of the edges in the perfect matching. It is equivalent to

deducting a schedule matrix from the workload matrix

. Thus, the resulting matrix (after deducting )

still holds the condition for , . According

to Lemma 1, there exists a perfect matching on in every

round of the decomposition process. This process stops at

the last round where all the remaining edges in make up

an exact perfect matching, and they are all removed at this

last round. Theorem 1 is proved.

The following theorem states that the number of decomposi-

tion rounds can be bounded by using the DecomposeMatrix-nn

algorithm.

Theorem 2: The workload matrix can be exactly decomposed

into a sequence of schedule matrices by using the Decompose-

Matrix-nn algorithm and the time complexity is ,

where is the number of non-zero elements in .

Proof: According to theorem 1, a perfect matching can be

found in at each round of decomposition until there is no edge

left in .

Since at each time of finding a perfect matching, at least one

edge in is removed. Therefore, it takes at most number

of rounds to remove all edges in , where is the number

of edges in , which is the number of non-zero elements in

. Furthermore, it takes to find a perfect matching

if we use depth-first search [26]. So the total time complexity is

. Theorem 2 is proved.

Thus, the workload matrix can be successfully decomposed

into a sequence of schedule matrices when , where ,

are the number of sensors and the number of targets, respec-

tively. In Section IV-B5, we will discuss the general cases of

and propose a complete decomposition algorithm.

2) General Case : When , our idea is to trans-

form the case to by introducing some dummy targets

into the system. That is to “fill” the matrix with some

dummy columns to make it a square matrix of order , such

that the sum of all elements in each row is equal to the sum of

all elements in each column.

Let be the dummy matrix, which has

columns. By appending the columns of the dummy matrix to

the right hand side of , the resulting matrix, denoted by

, is in the form

To make matrix having the features of (7) and (10),

i.e., the sum of each column is equal to the sum of each row and

equal to , the dummy matrix should satisfy the

following conditions:

(12)

(13)

We propose a simple algorithm to compute the dummy ma-

trix . The algorithm starts to assign values to the

elements of from its top-left corner. Let and

record the sum of the remaining undetermined elements

of row and column , respectively, for and

. Initially, and ,

where and are computed from matrix . The strategy

of the algorithm is to assign the remaining sum of the row (or

column), as much as possible, to an element without violating

conditions (12) and (13), and assign the rest elements of the row

(or column) to 0. Then, we move down to the next undetermined

element from the top-left of the matrix. For example, we start

with . Now is and is , i.e., .

Thus, we can assign to , and assign 0 to the rest of ele-

ments of row 1 (so condition (12) is met). Then, should be

updated to , because the remaining sum of column

1 now becomes and this value is used to ensure that

condition (13) will be met during the process. Suppose we now

come to element , (i.e., elements of , for

and , are already determined so far). We com-

pare with . There are three cases:

1) : it means can use up the remaining value the

sum of row , i.e., . Thus, and the rest ele-

ments of this row should be assigned to 0. So, all elements

of row have been assigned and condition (12) is met for

row .

2) : it means can use up the remaining value

the sum of column , i.e., . Thus, and the

rest elements of this column should be assigned to 0, i.e.,

, . By doing so, all elements of

column have been assigned and condition (13) is met for

column .

3) : we can determine elements in both row and

column by and setting the rest elements in row

and in column to 0. It is easy to see that condition (12)

is met for row and condition (13) is met for column .

After determining each row (or column), we need to update

(or ), before moving to the next row (or column). Each

step, we can determine the elements in one row (or column).
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This process is repeated until all elements in are de-

termined. The details of the algorithm are given below.

FillMatrix Algorithm

Input: a workload matrix .

Output: a filled matrix .

Begin

, for to ;

, for to ;

; ;

while && do

if then

// determine elements in row .

;

, for to ;

// set the rest of row to 0.

;

;

else if

//determine elements in column .

;

, for to ;

// set the rest of column to 0.

;

;

else

//determine elements in both row and column .

;

, for to ;

, for to ;

; ;

endwhile

Output ;

End

The following theorem claims the correctness of the FillMa-

trix Algorithm.

Theorem 3: For a given workload matrix , the FillMa-

trix Algorithm can compute the filled matrix , such that

the sum of each column and the sum of each row have the prop-

erties defined in (7) and (10).

Proof: At the beginning of the FillMatrix Algorithm, row

sums and column sums of the dummy matrix are initialized,

and then the dummy matrix is worked out step by step to sat-

isfy conditions (12) and (13). So we can prove a general case:

given row sums and column sums of a matrix ,

, , the proposed algorithm can

compute all elements that satisfy conditions (12) and (13).

We use the induction method to prove the theorem.

1) When , , according to the FillMatrix algo-

rithm, since , we have

. The conditions (12) and (13) are both met.

2) We assume when , , the proposed al-

gorithm can compute , such that the conditions (12)

and (13) are both met.

3) When , , according the algorithm, we first

compare with , there are three cases.

a) If , then set , ,

and , . For

the row 1 and column 1 where have been deter-

mined, we have and

. So the conditions (12)

and (13) are both met in row 1 and column 1. The re-

maining undetermined elements , ,

, are in the matrix .

According to assumption 2), the remaining matrix

can be correctly worked out.

b) If , then set , ,

and . For the

row 1 where have been determined, we have

, condition (12) is

met. For the column 1 which is updated, we have

, it does not violate condition

(13). The remaining undetermined elements ,

, , are in the matrix

. We continue run the algorithm to compute

the remaining elements in that satisfies

the conditions (12) and (13). Note that monoto-

nously decreases after each round of assignment and

. There must exist

in round , we set , ,

and . Then the

remaining matrix is . According to

assumption 2), the remaining matrix

can be correctly worked out.

c) If , similar to b), we can prove this case.

4) The proof of cases , and ,

are similar to 3).

Combining 1), 2), and 3) with 4), the proposed algorithm can

correctly compute all elements in the matrix , such that

the conditions (12) and (13) are both met. Theorem proved.

Theorem 4: The time complexity of FillMatrix Algorithm is

.

Proof: In FillMatrix Algorithm, each time we compare

with and determine the dummy elements in a row (or a

column), without backtracking. Plus the initialization of and

, all dummy elements in the matrix can be determined in

time. Theorem 4 is proved.
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Thus, the case of can be transformed to the case of

. We have the complete algorithm of decomposing the

workload matrix for general cases of .

DecomposeMatrix Algorithm

Input: a workload matrix .

Output: a sequence of schedule matrices .

Begin

if then

Run FillMatrix on to obtain ;

endif

Run DecomposeMatrix-nn to obtain schedule matrices

;

Output ;

End

Theorem 5: The total time complexity of the DecomposeMa-

trix algorithm is .

Proof: According to Theorem 2 and Theorem 4, this the-

orem is proved.

Given a workload matrix , using the proposed algo-

rithm, we can fill the matrix to make it a square matrix

and decompose into a sequence of schedule matrices as

follows:

(14)

Let denote the matrix which contains the first columns

in (i.e., the information for the valid targets by dropping

the dummy columns), . By removing the

dummy columns in , we have

(15)

The above discussions conclude that a workload matrix is

decomposable to a sequence of schedule matrices such that each

value of , , , can be actually met. In

Section IV-C, we will determine a sensor surveillance tree for

each schedule matrix that specifies the routes for active sensors

to pass sensed data to the BS, such that the maximal lifetime

can be finally achieved.

C. Determine Surveillance Tree

We have obtained a sequence of schedule matrices. Each

schedule matrix specifies the active sensors watching targets for

a period of time (called a session). To allow the active sensors

send their sensed data to the BS at each session, we need to

construct a sensor surveillance tree whose root is the BS and

all leaf nodes are the active sensors. The sensed data flow from

active sensors to the BS along the tree. Some active sensors can

perform both duties of watching targets and forwarding data

for other sensors at the same time.

From computing the LP formulation in Section IV-A, we have

obtained a data flow from any sensor node to sensor node

. To forward data to the BS, each sensor node, say , needs to

follow its outgoing flow in order to achieve the maximal life-

time . Suppose sensor has downstream nodes, denoted by

, to forward its data to the BS (i.e.,

have non-zero values). Since there is no ordering of data flow

, we simply let sensor forward its outgoing data

first to until flow is saturated, then switch to until the

value of is met, and finally forward the last flow to .

The outgoing data of sensor include its own sensed data and

the data it helps others to forward to the BS. By following the

data flow obtained from the LP formulation in forwarding data

to the BS, the optimal routes, in terms of energy cost, are used

and thus the maximal lifetime is achieved.

In the sensor surveillance system, after computing the

schedule matrices and the data flow, the BS will disseminate

this schedule and flow to sensor nodes at the system initial-

ization stage. After the system starts operation, each sensor

will watch targets, turn off to sleep, receive and forward data

according to its own schedule. There is no need to coordinate

with others to switch target watching at the end of each ses-

sion. In fact, a sensor does not see sessions. When a sensor

is required to watch the same target for several consecutive

sessions, its schedule would specify this sensor to watch the

target continuously until it is time to turn itself off or switch to

another target. Thus, each sensor works according to its own

schedule independently from the others.

The sensors work by their own schedule based on their local

clocks. The clocks on the sensors will drift away from each other

from time to time. To ensure a target will be watched by another

sensor continuously before the current one switched off, clocks

of the sensors need to be synchronized. There are some clock

synchronization protocols [27] for sensor networks, including

some localized methods [28], and they have bounded errors for

clock synchronization. When scheduling sensors to watch tar-

gets, the system can add a small buffer-period (in the order of

milliseconds depending on the clock error) in the front and at the

end of a working session to ensure that a target will be watched

continuously at sensor switching. Notice that compared with the

duration of a working session the buffer-period is several orders

of magnitude smaller.

V. EXPERIMENTS AND SIMULATIONS

A. A Numeric Example

We randomly place a BS, six sensors (uncolored in Fig. 2) and

three targets (gray in Fig. 2) in a 10 10 two-dimensional free-

space region. For simplicity, the surveillance range of sensors

is set to 0.4 10, and the maximal transmission range of all

sensors is set to 0.8 10 (our solution can work for systems

with non-uniform maximal transmission ranges or surveillance

ranges). Fig. 2 shows neighbors of sensors and the surveillance

relationship between sensors and targets. An edge between a

sensor and a target represents the target is within the surveillance

range of the sensor. An arc from sensor to represents

is within the maximal transmission range of (in this example,

maximal transmission ranges for all sensors are uniform, so arcs

are replaced by edges in Fig. 2). The initial energy reserves of

sensors are random numbers generated in the range of
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TABLE I
THE INITIAL ENERGY RESERVES OF SIX SENSORS

Fig. 2. An example with six sensors and three targets.

with the mean at 50, as shown in Table I. To simulate the energy

consumed on different tasks, we set , . These

values are in proportional to the actual power consumption for

transmitting and receiving data, respectively, as pointed out in

[29]. Experiments in [29] further showed that energy cost of

sensing data, such as monitoring temperature and humidity, is

comparable to the energy cost of receiving data. We set

and the sensing data rate . The signal decline factor á is

set to 2.

We follow the three steps in our method to find sensor surveil-

lance trees.

First, we use the linear programming, described in

Section IV-A, to compute the maximal lifetime , work-

load matrix and data flows (see Table II) that achieve :

TABLE II
THE DATA FLOWS AMONG SIX SENSORS AND THE BS

In the workload matrix, we can see target 1 is watched by

sensors 2 and 6 for 17.2300, 11.4672, respectively. The total

time for target 1 to be watched is 28.6972, which is the lifetime

of the surveillance system.

Second, we run the FillMatrix algorithm to append a dummy

matrix to the workload matrix to make it a square matrix ,

where the sum of each column and the sum of each row are all

equal to , as shown in the equation at the bottom of the page.

Third, we run the DecomposeMatrix-nn algorithm to decom-

pose into three schedule matrices , , and (i.e., the

decomposition terminates at round 3), such that

By removing the dummy columns of the schedule matrices,

we have
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Finally, the surveillance trees based on the above schedule

matrices and data flows are determined. The surveillance trees

for three sessions are shown in Fig. 3(a)–(c).

It is easy to see that the surveillance trees in Fig. 3(a)–(c) sat-

isfy both the surveillance requirement and data flow constraints.

The maximal lifetime is actually achieved.

B. Simulations

We conduct simulations to study the complexity of our

proposed solution and compare its performance with a greedy

method.

The simulations are conducted in a 100 100 two-dimen-

sional free-space region. BS, sensors and targets are randomly

distributed inside the region. Again, the surveillance range

and the maximal transmission range of all sensors are set to

0.4 100 and 0.8 100, respectively (except the simulations

for Fig. 5(a) and (b). The signal decline factor and the

initial energy reserves of sensors are the random numbers in

the range of , with the mean value of 50. The linear

programming formulated in Section IV-A is computed by using

MatLab 6.5. The results presented in the figures are the means

of 100 separate runs.

1) Linear Growth of Decomposition Steps: According to

Theorem 2, we know the number of steps for decomposing the

workload matrix, , is bounded by . In the simulations,

we found that is linear to the size of the system.

Fig. 4(a) and (b) shows the increase of versus the change of

(number of sensors) and (number of targets), respectively,

when one of the two variables is fixed. From the figures, we can

see a strong linear relationship between and (or ). This

result tells us that the actual number of steps for decomposing

the matrix is linear to the size of system in real runs.

2) Comparison With a Greedy Method: A greedy algorithm

is proposed to compare the performance with our optimal solu-

tion. The basic idea of the greedy method is as follows. Each

time, we find a sensor to watch each target. We use the max-

imum matching algorithm in the sensor-target bipartite graph to

find the pairs of sensor and target. Then, for each sensor sched-

uled to work in this session we find the minimal energy cost path

from it to the BS in the sensor network graph (the sensor inter-

connectivity graph). When any node that is either in watching a

target or in the path runs out of energy, it is removed from the

bipartite graph and the network graph, and another maximum

matching and routes are computed. This operation is repeated

until no maximum matching can be found to cover all targets

or there no longer exists a path from a sensor to BS cannot be

found. The system lifetime of the greedy method is the total ser-

vice time.

We set and . Fig. 5(a) and (b) shows the

lifetime versus the change of surveillance range and the max-

imal transmission range of sensors, respectively. From the fig-

ures, we can see that when the surveillance range (the maximal

transmission range) becomes larger, the performance gap be-

comes more significant. This is because with a small surveil-

lance range (maximal transmission range), sensors have only

got a few targets (sensors) within its surveillance range (max-

imal transmission range). There is little room for optimization.

(a)

(b)

(c)

Fig. 3. (a) The surveillance tree of session 1. (b) The surveillance tree of session
2. (c) The surveillance tree of session 3.

As the surveillance range (the maximal transmission range) be-

comes larger, more sensors are able to cover multiple targets

(sensors), which gives our method more room to schedule the
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(a)

(b)

Fig. 4. (a) t versus N when M = 10. (b) t versus M when N = 100.

sensors properly to achieve the maximal lifetime. That is why

the performance gap between the two methods becomes more

significant as the increase of the surveillance range (the maximal

transmission range). Furthermore, we can see that the increase

of surveillance range is more effective to extending the system

lifetime than the increase of the maximal transmission range.

This is because the surveillance range is usually much smaller

than the communication range of sensors. It is always the bottle-

neck of the maximization of system lifetime, and some targets

could not be watched by enough sensors often results in quick

die of surveillance systems.

Fig.5(c)showsthelifetimeversusthenumberofsensorsplaced

in the same region. The number of sensors varies from 100 to 400

and the number of targets is fixed at 50. This simulation shows

how the lifetime is affected by the density of sensors. Fig. 5(c)

exhibits the similar trend as in Fig. 5(a) and (b). As more sensors

deployed in the same region, the density becomes higher. A target

can be watched by more sensors and there is a higher chance for

a target to be in the watching range of multiple sensors. At the

same time, a sensor can reach more neighbors and can choose

more energy-efficient routes to forward data. Thus, our optimal

algorithm takes more advantages by optimizing the schedule and

the performance gain becomes more significant than the greedy

method when the density of sensors becomes higher.

(a)

(b)

(c)

Fig. 5. (a) Lifetime versus surveillance range. (b) Lifetime versus the maximal
transmission range. (c) Lifetime versus N when M = 50.

From Figs. 4(a)–5(c), we can make the following conclu-

sions:

1) The actual number of steps for decomposing the workload

matrix is linear to the size of system in real runs.

2) Our optimal algorithm has significantly better performance

in the situation where sensors have larger surveillance and

communication range, or when sensors are densely de-

ployed.
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3) The increase of surveillance range is more effective to ex-

tending the system lifetime than the increase of the max-

imal transmission range of sensors.

VI. CONCLUSION

We have presented the maximal lifetime scheduling problem

in sensor surveillance systems. This is the first time in the liter-

ature that the problem of maximizing lifetime of sensor surveil-

lance systems was formulated and the optimal solution was ob-

tained. Simulations have been conducted to show the superior

performance of our method in comparison with a greedy sched-

uling method under various network scenarios.

There is some related work in the literature about scheduling

of sensors in surveillance systems. A notable work in [30] dis-

cusses the problem of selecting a minimum number of con-

nected sensors to cover a given set of interested points (tar-

gets). However, operating with the minimal number of sensors

does not simply imply the maximal lifetime of the system. It is

because that without global optimization, some nodes that can

cover many targets could be scheduled to work heavily and they

will quickly run out of energy. Another work is a sensing pro-

tocol proposed in [2]. It discusses a sensor coverage problem,

which is to schedule a set of sensors to work and sleep in turn,

such that a given area can be fully covered by working sensors

at any time and the lifetime of the system is maximized. The

method used to cover an area is to divide the area into grid, and

it is defined that the entire area is covered if all the grid points are

covered. A sensor can cover multiple grid points simultaneously

if all the grid points are within the sensing range of this sensor.

The schedule algorithm is centered with grid points. That is, for

each grid point, its watching time is split among the sensors that

are able to watch it. This is a localized scheduling method. But,

it is not an optimal method and there is no performance guar-

antee of this method. Moreover, none of the work in [2] and

[30] considered the communication cost of sending data from

sensors to base stations. According to our experience, a greedy

schedule algorithm [31] (similar to the scheduling method in

[2]) could perform very badly when taking communication cost

into account.
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