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Abstract— Joint optimization of transmit power and schedul-
ing in wireless data networks promises significant system-wide
capacity gains. However, this problem is known to be NP-hard
and thus difficult to tackle in practice. We analyze this problem
for the downlink of a multicell full reuse network with the
goal of maximizing the overall network capacity. We propose
a distributed power allocation and scheduling algorithm which
provides significant capacity gain for any finite number of users.
This distributed cell coordination scheme, in effect, achieves a
form of dynamic spectral reuse, whereby the amount of reuse
varies as a function of the underlying channel conditions and
only limited inter-cell signaling is required.

I. INTRODUCTION

System level performance of future wireless data networks
like WiMAX, 3G/4G etc. are adversely affected by an intoler-
able level of interference in case of full reuse (in any dimen-
sion e.g. time or frequency slots, codes etc.) of the spectral
resource. Fortunately, some form of coordination between the
different cells occupying the same spectral resource can offer
significant improvement. Optimal resource allocation requires
complete information about the network in order to decide
which users in which cells should transmit simultaneously with
a given power, while incurring the least loss of capacity due to
inter-cell interference. Some interesting results exist exploiting
inter-cell coordination with goals such as maximizing system
throughput [1]–[4], achieving a target carrier-to-interference
ratio [5] or maintaining user queue stabilities [6]. All of these
results however, rely on some form of centralized control to
obtain gains at various layers of the communication stack. In
a realistic network however, centralized multicell coordination
is hard to realize in practice, especially in fast-fading environ-
ments.

In this paper we address the problem of distributed inter-
cell coordination to maximize the system capacity. This means
that cells know channel state information (CSI) of their own
users but have no information on channel conditions of other
cell users. The key idea here is to switch off transmission in
cells which do not contribute enough capacity to outweigh
the interference degradation caused by them to the rest of the
network. We propose a distributed algorithm which allows a
subset of the total number of cells to transmit simultaneously
during a given scheduling period. Though other cells stay
silent, they may be active during the next scheduling period.
This approach can be considered as a distributed mechanism
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Fig. 1. Possible irregular reuse pattern at a given scheduling period due to
dynamic spectral reuse.

for dynamic spectral reuse. In contrast with traditional cellular
networks, the reuse pattern obtained with this method is
random, possibly highly irregular (Fig. 1) and varies from one
scheduling period to the next as a function of the channel state
information of the cell users. We show that the proposed power
allocation and scheduling algorithm thus offers two types of
gain:

• a dynamic spectral reuse gain thanks to the reduction of
interference.

• a multi-user diversity gain through scheduling within each
cell.

We first build the framework for a single-carrier system, which
is then extended to multi-carrier techniques like orthogonal fre-
quency division multiple access (OFDMA), which has recently
been adopted for WiMAX [7]. In this latter case, we obtain
a novel distributed mechanism for sub-carrier allocation for
multicell OFDMA networks, where frequency diversity gain
can also be exploited. Numerical results under realistic wire-
less network settings are shown to exhibit significant capacity
gains over traditional fixed spectral reuse schemes.

II. SYSTEM MODEL

Consider the downlink of a multicell system, employing
the same spectral resource in each cell giving rise to an
interference-limited system. Power control is used in an effort
to preserve power and to limit interference and fading effects.
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We assume a peak power constraint, Pmax, at each access point
(AP). Within each cell, we consider a multiple access scheme
in which an orthogonally divided resource (time, frequency or
codes) is used to separate transmissions to cell user terminals
(UT). Each cell user is allocated a unique resource slot, but due
to full reuse, the user “sees” interference from all neighboring
co-channel cells that transmit.

A. Signal Model

Consider N cells, and Un users randomly distributed over
each cell n. We denote the random channel gain between any
arbitrary AP i and user un in cell n by Gun,i ∈ R

+, and in
what follows, assume that the coherence time of the channel is
longer than the scheduling period. We also assume that perfect
CSI is present at the receiver and transmitter. The received
signal Yun

at the user is then given by

Yun
=
√

Gun,nXun
+

N∑
i �=n

√
Gun,iXui

+ Zun
,

where Xun
is the signal from the serving AP,∑N

i �=n

√
Gun,iXui

is the sum of interfering signals from
other cells and Zun

is additive white Gaussian noise.

III. JOINT POWER ALLOCATION AND SCHEDULING

To maximize the network throughput, power allocation
should be jointly optimized with scheduling. In order to
facilitate the problem formulation of the joint power allocation
and scheduling problem, we state the following definitions:

Definition 1: A scheduling vector U contains the set of
users simultaneously scheduled across all cells:

U = [u1 u2 · · · un · · · uN ]

where [U ]n = un. Noting that 1 ≤ un ≤ Un, the feasible
set of scheduling vectors is given by Υ = {U | 1 ≤ un ≤
Un ∀ n = 1, . . . , N}.

Definition 2: A transmit power vector P contains the
transmit power values used by each AP to communicate with
its respective user:

P = [Pu1 Pu2 · · · Pun
· · · PuN

]

where [P ]n = Pun
. Due to the peak power constraint 0 ≤

Pun
≤ Pmax, the feasible set of transmit power vectors is

given by Ω = {P | 0 ≤ Pun
≤ Pmax ∀ n = 1, . . . , N}.

The joint power allocation and scheduling problem consists
of finding the power allocation vector and scheduling vector
that will maximize the chosen utility function: network ca-
pacity. The signal to interference-plus-noise ratio (SINR) of a
user scheduled in cell n is given by

Γ([U ]n,P ) =
Gun,nPun

σ2 +
N∑

i�=n

Gun,iPui

,

where Pun
= E|Xun

|2, and we assume E|Zun
|2 = σ2 for

all n. Assuming an ideal link adaptation protocol, the per-
cell network capacity at any given scheduling period can be
expressed in bits/sec/Hz/cell, using the Shannon capacity, as

C(U ,P ) ∆=
1
N

N∑
n=1

log2

(
1 + Γ([U ]n,P )

)
. (1)

A. Optimal Power Allocation and Scheduling

Taking (1) as the objective function, the optimal power
allocation and scheduling problem can be formulated as

(U∗,P ∗) = arg max
U∈Υ
P∈Ω

C(U ,P ), (2)

However, the solution is hard to realize due to the non-
convexity of the problem.

IV. DISTRIBUTED POWER ALLOCATION AND SCHEDULING

A straightforward approach to problem (2) would be an
exhaustive search over the sets Υ and Ω to find C∗. But clearly,
this approach entails a significant computational cost as well as
feedback overhead. Moreover, due to the dependency of the
capacity equation on global network knowledge, centralized
processing would be required. We thus proceed to obtain a
computationally simple and distributed, although sub-optimal,
algorithm instead.

A. Distributed Iterative Approach in the Interference Limited
Regime

Let N be the set of indices of all presently active cells. A
cell should be deactivated if this action results in an increase in
network capacity. Denoting the cell which is to be potentially
turned off by m, the network capacity with and without cell m
turned off is given by the LHS and the RHS of (3) respectively,
and after simple manipulations (5). Assuming high SINR
regime in all “on” cells, and an interference-limited system,
we can simplify the condition (5) as

Gm,mPm∑
i �=m
i∈N

Gm,iPi

<

∏
n∈N
n�=m

∑
i�=n
i∈N

Gn,iPi

∏
n∈N
n�=m

∑
i�=n,m
i∈N

Gn,iPi

(6)

Evaluating (6) still requires global channel state knowledge as
well as searching over the sets Υ and Ω. We therefore exploit
the following results which will allow us to further simplify
the problem in the case of large network size (N ).

1) Interference Modeling: In order to obtain a distributed
algorithm dependent only on locally available information, we
use the interference-ideal model [8]. Fortunately, full reuse
networks lend themselves to simpler modeling of the total
interference experienced by the user, due mostly to the large
number of interference sources averaging themselves out at
the receiver. This allows us to simplify modeling of the
interference in large full-reuse networks by stating that the
total interference at a receiver is only weakly dependent on
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∑
n∈N

log2

(
1 +

Gn,nPn

σ2 +
∑
i�=n
i∈N

Gn,iPi

)
<

∑
n∈N
n�=m

log2

(
1 +

Gn,nPn

σ2 +
∑

i�=n,m
i∈N

Gn,iPi

)
(3)

⇓
log2

(
1 +

Gm,mPm

σ2 +
∑
i�=m
i∈N

Gm,iPi

)
+
∑

n∈N
n�=m

log2

(
1 +

Gn,nPn

σ2 +
∑
i�=n
i∈N

Gn,iPi

)
<

∑
n∈N
n�=m

log2

(
1 +

Gn,nPn

σ2 +
∑

i�=n,m
i∈N

Gn,iPi

)
(4)

⇓(
1 +

Gm,mPm

σ2 +
∑
i �=m
i∈N

Gm,iPi

) ∏
n∈N
n�=m

(
1 +

Gn,nPn

σ2 +
∑
i�=n
i∈N

Gn,iPi

)
<

∏
n∈N
n�=m

(
1 +

Gn,nPn

σ2 +
∑

i �=n,m
i∈N

Gn,iPi

)
(5)

its position in the cell when there are a large number of
interferers, i.e. a dense network. This can be formalized as

N∑
i �=n

Gun,iPi ≈ G

N∑
i�=n

Pi

where G is a constant which does not depend on the location of
un, but depends on pathloss and link budget parameters. One
of the key ideas in our approach is that G (average interference
gain) need NOT be estimated.

2) Binary Power Allocation: An interesting result pertain-
ing to problem (2) for the two-cell case is presented in [9]. It
is shown that the optimal power allocation, for any scheduling
vector, lies in the binary feasible set

ΩB = {P | Pun
= 0 or Pun

= Pmax]}.
Moreover, numerical results suggest that with a greater number
of cells this binary allocation, although not strictly globally
capacity-optimal in the Shannon sense, is close to the optimal
power allocation [1], [9]. This motivates restricting the search
for levels to ΩB also for an arbitrary number of cells.

Armed with these results and simplifications we now pro-
ceed to obtain a distributed algorithm. Using the interference-
ideal model on the RHS of (6), for cell m to be deactivated
(all other cells being static) we require

Gm,mPm∑
i �=m
i∈N

Gm,iPi

<

∏
n∈N
n�=m

G
∑
i�=n
i∈N

Pi

∏
n∈N
n�=m

G
∑

i�=n�=m
i∈N

Pi

.

As all “on” cells transmit with Pmax and denoting |N | = Ñ ,
cell m will be active if

Gm,m∑
i �=m
i∈N

Gm,i

>

(
Ñ − 1
Ñ − 2

)(Ñ−1)

. (7a)

This requires knowledge of the number of active cells, which
can be easily determined by measuring the number of received

pilot signals. Additionally, we see that as the size of the
network increases,

lim
N→∞

(
Ñ − 1
Ñ − 2

)(Ñ−1)

= e.

Thus, for a large network size, a cell m will be active if the
user signal-to-interference ratio of the scheduled user is more
than e,

SIR([U ]m) =
Gm,m∑

i�=m
i∈N

Gm,i

> e. (7b)

Notice that evaluating (7b) requires knowledge of only the cell
user SIR, which can be easily measured and communicated
back to the AP. We thus obtain a surprisingly simple, yet pow-
erful condition allowing an AP to determine in a distributed
manner, whether it should be active or inactive. Moreover, for
each cell to fulfill the condition (7b) and thus contribute to the
system capacity, the user with the best SINR for a given power
allocation should be scheduled. Depending on the size of the
network either (7a) or (7b) could be used. In what follows,
we use (7b) as the activity condition in order to demonstrate
its robustness for realistic network sizes.

Distributed Algorithm: An iterative approach is adopted
to obtain a fully distributed algorithm for power allocation
and user scheduling. Starting with a full power allocation
vector, each cell simultaneously measures the SIR of the best
user and based on (7b) remains active or inactive during the
next iteration. Similarly, at every iteration, inequality (7b)
is evaluated for the user with the best SIR based on the
power allocation resulting from the previous iteration, and the
power allocation is updated. The algorithm is run until the
cell capacity stabilizes or for a given number of iterations.
The pseudo-code for this approach is given in Algorithm 1.

B. Extension to Multicell OFDMA Networks

With the same goal of system capacity maximization, the
proposed algorithm can be easily extended to multicell multi-
carrier systems. Consider a full reuse multicell OFDMA

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the WCNC 2007 proceedings. 
 



Algorithm 1 A Distributed Iterative Power Allocation and
Scheduling Algorithm

1: [P (1)]n = Pmax ∀ n
2: for t = 1 : ITmax do
3: [U (t)]n = arg max

un

Γ(un,P (t))

4: if Γ([U (t)]n,P (t)) > e then
5: [P (t+1)]n = Pmax

6: else
7: [P (t+1)]n = 0
8: end if
9: end for

network in which the available frequency band is divided into
a number of intra-cell orthogonal sub-carriers. The advantage
of OFDMA lies in frequency-selective channels where a user
experiencing fading on one sub-carrier, can be scheduled on
another where it sees a better channel. For OFDMA, the
proposed algorithm is simply run independently over all sub-
carriers in parallel. In this case, the algorithm will jointly
schedule the user and power for each sub-carrier in the
same way as described in the single-carrier case. If a cell
cannot schedule a user which contributes enough capacity
to the system to outweigh the interference produced, it will
remain silent on that specific sub-carrier. As we focus on
system capacity maximization, no user to sub-carrier allocation
fairness constraint is imposed, and at a given scheduling
instant a user may be allocated a number of sub-carriers or
none at all. The result of this algorithm on OFDMA systems
is illustrated in fig. 2, where we show a possible sub-carrier
reuse pattern.

C. Fairness Issues

As we focus in this work on capacity maximization
schemes, it is expected that fairness issues will arise with
regard to some cells that might experience long periods of
silence due to prolonged detrimental fading conditions or a
poor user distribution. However, we draw the reader’s attention
to the fact that solutions akin to the single-cell scheduling sce-
nario, giving various levels of fairness-capacity trade-off, can
be used also in the multicell context, e.g. use of proportional-
fair type measures [10]. Hence, we may alternatively use
a capacity measure for each cell that is normalized by the
throughput of the cell. Moreover, when multiple orthogonal
units are employed, a cell that is inactive for one code,
frequency, or time slot may be active on another. Investigations
of the fairness-capacity trade-off are however, left for future
work.

V. NUMERICAL RESULTS & DISCUSSION

Monte-Carlo simulations to measure performance of the
distributed algorithm are carried out for a single-carrier system
only, as the gains will evidently hold for OFDMA systems
as well. We consider an operating frequency of 1.8 GHz
and two system layouts: a hexagonal cellular system with

Sub-carriers

Cells

Active Sub-carrier Inactive Sub-carrier

Fig. 2. Snapshot of a full reuse multicell OFDMA network. Possible sub-
carrier reuse pattern at a given scheduling period due to dynamic sub-carrier
allocation.

cells of radius 200 meters and a square grid with each cell
side measuring 500 meters. In our simulations we assume for
simplicity that the number of users in each cell is the same,
although this is not a restriction of the algorithm. Gains for all
inter-cell and intra-cell AP-UT links are based on the COST-
231 [11] path loss model including lognormal shadowing with
standard deviation of 10 dB, as well as fast fading which is
assumed i.i.d. with distribution CN (0, 1). The peak power
constraint is given by Pmax = 1 watt and the maximum
number of iterations by ITmax = 5.

We compare the distributed approach with full reuse, as
well as with traditional fixed reuse patterns under a max-SINR
scheduling policy i.e. the user with the best SINR is scheduled
.

A. Comparison with Exhaustive Search

We first compare the distributed algorithm with an exhaus-
tive search approach in a 7 cell hexagonal system. The ex-
haustive search algorithm considers all possible combinations
of binary power allocation vectors P ∈ ΩB and schedules the
user with the maximum SINR based on the chosen P . This
will thus serve as an optimal solution for problem (2) if P is
restricted to ΩB instead of Ω, and will demonstrate just how
much gain may theoretically be exploited through joint binary
power allocation and scheduling. We consider for this case
only a 7 cell hexagonal network, as Monte-Carlo simulations
of the exhaustive search approach prove cumbersome even
for a small network (e.g. if N = 7 and U = 8, then the
number of combinations are (2N − 1)(UN ) = 1.27 × 109).
For one user there is no multi-user diversity gain, and the
distributed algorithm is able to exploit approximately 50%
of the available dynamic spectral reuse gain as compared to
Full Reuse (Fig. 3). As the number of users increases, all the
algorithms tend towards to keeping all cells on. Figure 4 shows
however that with exhaustive search, fewer cells are active for
a given number of users than with the proposed distributed
algorithm.
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Fig. 3. Network capacity vs. number of users for hexagonal cellular system
with 7 cells. Distributed approach lies between the optimal exhaustive search
approach and the MAX-SINR-ON algorithm. Convergence to Full Reuse
occurs as the number of users increases.
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Fig. 4. Ratio of active cells vs. number of users for hexagonal cellular system
with 7 cells.

B. Comparison with Static Schemes

In this section we compare our novel distributed algorithm
against traditional fixed reuse pattern schemes employing
maximum SINR scheduling. Comparison is done with a 19
hexagonal cell system with reuse cluster sizes 3 and 4. As the
number of users increase, network capacity for all schemes
improves due to the multi-user diversity gain (Fig. 5). Full
reuse outperforms traditional frequency reuse schemes as
greater spectral reuse maximizes the average system capacity.
The distributed algorithm outperforms all other schemes due
to dynamic spectral reuse which adapts the reuse pattern
to the channel conditions as opposed to the static schemes.
The results for just one user are of particular interest. In
this case there is no multi-user diversity gain, and therefore
this demonstrates the performance of dynamic binary power
allocation alone with a round-robin type scheduling policy.
The gain of the distributed approach over full reuse is almost
50% (Fig. 5), which demonstrates the merit of inter-cell
coordination through dynamic spectral reuse.
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Fig. 5. Network capacity vs. number of users for hexagonal cellular system
with 19 cells. Distributed approach provides gain for small number of users
and converges to Full Reuse. Dynamic resource allocation outperforms fixed
spectral reuse schemes.

VI. CONCLUSION

We presented in this work a novel distributed algorithm for
power allocation and scheduling for capacity maximization in
full reuse multicell networks. The key idea is to combine intra-
cell multi-user diversity gain with dynamic spectral reuse gain
through inter-cell coordination to maximize the overall system
capacity. Relying on local cell information, cells which do
not offer enough capacity to outweigh interference caused to
the network are deactivated. The approach can be applied to
OFDMA networks as well, where an added frequency diversity
gain can be exploited by scheduling users over sub-carriers.
Comparisons with traditional fixed reuse schemes in a realistic
network demonstrated significant capacity gains.
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