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Maximizing output and recognizing autocatalysis
in chemical reaction networks is NP-complete
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Abstract

Background: A classical problem in metabolic design is to maximize the production of a desired compound in a
given chemical reaction network by appropriately directing the mass flow through the network. Computationally,
this problem is addressed as a linear optimization problem over the flux cone. The prior construction of the flux
cone is computationally expensive and no polynomial-time algorithms are known.

Results: Here we show that the output maximization problem in chemical reaction networks is NP-complete. This
statement remains true even if all reactions are monomolecular or bi-molecular and if only a single molecular
species is used as influx. As a corollary we show, furthermore, that the detection of autocatalytic species, i.e., types
that can only be produced from the influx material when they are present in the initial reaction mixture, is an NP-
complete computational problem.

Conclusions: Hardness results on combinatorial problems and optimization problems are important to guide the
development of computational tools for the analysis of metabolic networks in particular and chemical reaction
networks in general. Our results indicate that efficient heuristics and approximate algorithms need to be employed
for the analysis of large chemical networks since even conceptually simple flow problems are provably intractable.

Background
Networks of chemical reactions lie at the heart of “sys-
tems approaches” in chemistry and biology. After all,
metabolic networks are merely collections of chemical
reactions entrenched by enzymes that favor some possi-
ble reactions over physiologically undesirable side reac-
tions. A detailed understanding of their aggregate
properties thus is a prerequisite to efficiently manipulat-
ing them in technical applications such as metabolic
engineering and at the same time form the basis for
deeper explorations into their evolution. Due to the size
of reaction networks of practical interest, efficient algo-
rithms are required for their investigation.
Chemical reaction networks cannot be modeled

appropriately as graphs despite the many attempts in
this direction [1]. Instead, they are canonically specified
by their stoichiometric matrix S, augmented by informa-
tion on catalysts. Equivalently, a collection of chemical

reactions on a given set of compounds forms a directed
(multi)-hypergraph [2]. As a consequence, most of com-
putational problems associated with chemical reaction
networks cannot be reformulated as well-studied graph
problems and hence require the development of a dedi-
cated theory and corresponding algorithmic approaches.
Mathematical structures similar to the directed hyper-
graphs arising in chemistry were also explored in a theo-
retical economics setting [3,4].
Two complementary approaches to analyzing chemical

reaction networks have been developed mostly in the
context of analyzing and manipulating metabolisms.
Flux Balance Analysis (FBA) is concerned with the dis-
tribution of steady-state reaction fluxes that optimize a
biological objective function such as biomass or ATP
production [5]. The objective of metabolic design is to
manipulate fluxes through metabolic networks so as to
maximize the production of a (commercially important)
substance [6]. More details on the structure of a (meta-
bolic) reaction network, on the other hand, is obtained
my means of elementary mode analysis [7]. Both
approaches are concerned with stationary mass flows
through the network, mathematically given as solution
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of S�v, subject to the condition that flux vi through every
reaction is non-negative. The elementary flux modes
(EFMs) are the extremal rays of this convex cone C and
can be interpreted as a formalization of the concept of a
“biochemical pathway” [8,9]. FBA adds a (typically lin-
ear) objective function to be optimized over C. A major
drawback of EFM-based approaches is the combinatorial
explosion of EFMs in large networks [10] and the fact
that the knowledge of EFMs does not directly elucidate
the metabolic capabilities of the given network. An
interesting recent approach thus combines FBA with the
computation of a subset of EFMs using a greedy-like
procedure [11].
Over the last years, there has been increasing interest

in the computational complexity of questions related to
EFMs. For example, an elementary flux mode can be
found and counted in polynomial time [12]. In contrast,
the question whether there is a “futile cycle”, i.e., an
EFM without input or output (equivalently, a sub-hyper-
graph in which in-degree and out-degree balance for all
vertices [2]), is NP-complete [13]. Similarly, finding
EMFs that contain two prescribed reactions is NP-hard
[14]. A collection of reactions is a reaction cut set for a
given reaction if, after removing the cut set, the network
contains no longer an EFM containing the target

reaction [15,16]. The problem of finding minimum car-
dinality reaction cut sets is also NP-complete [12]. The
complexity of enumerating all EFMs is still unknown
[14]. In [17], the problem of finding a shortest metabolic
pathway connecting a set of source metabolites with a
desired product is shown to be NP-hard even if stoi-
chiometric coefficients are neglected.
An alternative approach to analyzing the structure of

chemical reaction networks is to decompose them into a
hierarchy of algebraically closed and self-maintaining
sub-networks, called chemical organizations [18-21]. As
shown in [19], it is also an NP-hard problem to deter-
mine whether a given reaction network contains a non-
trivial organization.
In this contribution we focus on a class of computa-

tional problems in chemical network analysis that
involve questions relating to both pathways and orga-
nizational aspects. The problem of maximizing pro-
duction of a desired collection of output species
(rather minimizing cardinality of reaction sets) is cen-
tral to metabolic engineering [22], see Figure 1 for an
example. In contrast to flow problems on simple
graphs [23], we show here that hypergraph versions
describing fluxes in chemical reaction networks are
computationally hard. As a computational problem,

Figure 1 Flow optimization in the pentose-phosphate reaction network. Only a small part of the chemical space is shown. We allow influx
of water and ribulose-5-phosphate to generate glucose-6-phosphate as output. Phosphate is produced as waste product. An optimal solution is
shown in black, using 6 ribulose-5-phosphate molecules to produce 5 glucose-6-phosphate molecules. The values of the flow f(·) is indicated for
each hyperedge (black square), e.g., f(a) = 1, f(b) = 1, f(c) = 2, f(d) = 2, f(e) = 2. At each node (except the unlabelled input and output nodes) the
influx and outflux is balanced. For example, at node x (glycerol-3-phosphate), we have f(d) + f(e) = 4 = f(a) + f(b) + f(c).
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this flow maximization problem is closely related to
the issue of finding autocatalytic intermediates in a
reaction network. The latter problem has received
considerable attention in recent years since such
“metabolic replicators” are universally found in pre-
sent-day metabolic networks and likely represent their
ancient ancestral cores [24]. We show here that detec-
tion of autocatalysts is NP-hard in its general version,
although a related problem in the setting of replica-
tor-like networks admits a polynomial-time solution
[25].

Result: NP-hardness
Definitions
In the following paragraphs we formally introduce che-
mical reaction networks. We emphasize that our setup
is the same as in the literature on flux analysis; we have
opted, however, for a somewhat different notation that
is closer to the conventions commonly used in graph
theory as this makes the subsequent discussion more
concise.
A chemical reaction network (CRN) is represented a

directed multi-hypergraph G(V, E) consisting of a vertex
set V, the compounds, and a set E of directed hyper-
edges encoding the reactions [2]. Each reaction e Î E is
a pair (e-, e+) of multi-sets e-, e+ ⊆ V of compounds,
denoting the educts and products of the reaction e. The
stoichiometric coefficients sx,e- and sx,e+ are represented
by the multiplicity of the compounds in the multisets.
For instance, the hyperedge encoding

C2H2 + 2H2O → (CH2OH)2

reads

({C2H2,H2O,H2O}, {(CH2OH)2})
Reversible reactions are encoded by a pair of forward

and backward reactions. The entries of the stoichio-
metric matrix are recovered as Sx,e = sx,e+ - sx,e-.
In addition to the ordinary reactions like the one

above, CRNs also contain pseudo-reactions E’ represent-
ing influx and outflux of compounds of the form ein(x) =
({xin}, {x}) and eout(x) = ({x}, {xout}) where xin and xout
refer to external reservoirs. These are additional vertices
V’ distinct from V. These pseudo-reactions feed the
CRN and remove “waste products” and extract a desired
output. In particular, the xin, yout Î V’ do not take part
in any other reaction.
A flow on the directed hypergraph G is a function f :

E ∪ E’® N0 such that, for each compound x Î V, the
condition

∑

e∈E∪E′
f (e)

(
sx,e− − sx,e+

)
= 0 (1)

is satisfied. This condition enforce that the total pro-
duction and the total consumption of x is balanced, i.e.,
the CRN is in a stationary state. The total consumption
of an input material x is therefore

f (ein(x)) =
∑

e∈E
f (e)(sx,e− − sx,e+) (2)

and the total outflux of a product is

f (eout(x)) =
∑

e∈E
f (e)(sx,e+ − sx,e−) (3)

We say that a species x is produced in a network if f
(eout(x)) > 0.
Note that this definition of f naturally generalized the

definition of an (integer) flow on a directed graph with
source xin and target yout, see e.g., [23]. In [26], a generali-
zation of equ.(1), although restricted to hypergraphs with |
e+| = 1, is considered, where the flows add up to a vertex-
dependent demand term rather than to zero. In contrast
to the usual setting of flow problems, we have a non-trivial
restriction on the capacity only for the input edge(s), while
the values of f are unrestricted for all other hyperedges.

Formulation of the problems
MAX-CRN-Output
Given a chemical reaction network with n nodes, of
which any subset may have influx or outflux, find a flow
f that maximizes the outflow f(eout(y)) to a specified out-
put node yout.
MAX-CRN(d)-Output
Given a chemical reaction network with n nodes, reac-
tions (hyperedges) with in-degree and out-degree at
most d, where any subset of vertices may have influx or
outflux, find a flow f that maximizes the outflow f(eout(y))
to a specified output node yout.
MAX-CRN(d)-Output-1
Given a chemical reaction network with n nodes, reac-
tions (hyperedges) with in-degree and out-degree at most
d, and a single vertex with influx where any subset of ver-
tices may have outflux, find a flow f that maximizes the
outflow f(eout(y)) to a specified output node yout.
Autocata
Given a chemical reaction network with n nodes and
one or more input sources, determine whether there is a
source node x such that:

1. x cannot be produced from all other source mole-
cules, i.e., for all flows f, f(ein(x)) = 0 implies f(eout(x))
= 0; and
2. x can be produced in a quantity that is larger than
its inflow, i.e., there is a flow f such that f(eout(x)) > f
(ein(x)) >0.
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Outline
Formally, NP-completeness is defined for decision pro-
blems [27]. Optimization problems can be converted
into decision problems by asking whether they admit a
solution that is at least as good as some value. By abuse
of language, it therefore makes sense to speak of an
“NP-complete optimization problem” instead of using
the phrase “the decision problem corresponding to our
optimization problem is NP-complete”.
The basic idea of proving that problem X is NP-complete

is to find a so-called reduction r from another problem P
that is already known to be NP-complete. The reduction r
is an algorithm with polynomial runtime that converts any
given instance of P into an instance of X. An efficient (i.e.,
polynomial time) algorithm to solve (all instances of) X,
therefore would also provide an efficient solution for every
instance P ∈ P by simply reducing P to ρ(P) ∈ X then sol-
ving r(P). Hence we can conclude that X is a hard problem
when a known hard problem P can be reduced to it.
In this section we devise a procedure that reduces

every instance of the so-called 3-partition problem to a
CRN with a single output pseudo-reaction in such a
way that solving the output maximization problem for
the CRN also solves the 3-partition problem. Thus opti-
mizing output in CRNs is at least as hard as solving 3-
partition. The same basic construction is then modified
to show that the CRN can be built in such a way that
all reactions are monomolecular or bi-molecular. We
then employ the same construction to show that pro-
blem remains hard even if only a single source is pro-
vided. A simple modification finally establishes the
hardness result for finding autocatalytic compounds.

3-Partition
The 3-partition problem (3PART) consists of deciding
whether a given multiset of n = 3m integers si, i = 1, ...,
3m can be partitioned into triples that all have the same
sum. This problem is one of the most famous strongly
NP-complete problems, i.e., it stays NP-complete even
when the numbers in the input instance are given in
unary encoding [28], i.e., their values grows not faster
than a polynomial in the problem size n. This remains
true when the si are distinct [29]. If B denotes the
desired sum of each subset then 3PART remains
strongly NP-complete even if for every integer
B
/
4 < si < B

/
2 holds. The latter fact will be employed

in our reduction proof in order to be able to show that
an optimal mass flow through the network must have
certain properties.

Basic Construction
Given an instance of 3PART we construct the asso-
ciated CRN in a step-wise fashion. The first step is a

lattice-like labeled graph, Figure 2(A), that consists of
one input node for each si, m auxiliary nodes Zj, each of

which has an influx of 1
/
m

∑
i
si = s

/
m, an output sink

node, 3m × m switch nodes, 3m waste nodes at the
right and m waste nodes at the bottom. These switch
nodes have two inputs; l from the left and u from
above, and three outputs; r towards the right, d down-
wards, and o into the output channel. Each of the switch
nodes can be in one of two distinct states: either it is

off The node transmits all its left input to right and
all its input from above downwards, no flow is then
diverted towards the output, i.e., r = l, d = u, o = 0;
or
on The node consumes its entire input from the left
(and thus transmits nothing to the right), at the
same time uses up a corresponding amount of the
input from above, and diverts the rest towards the
output. Note that switch nodes are designed such
that the flow downwards needs to be reduced by the
same quantity as the flow to the right. As the flow
to the right is completely consumed, i.e., the corre-
sponding flow is reduced by l, it holds r = 0, d = u -
l, o = l.

All flux along the output channel is collected in the
output node, i.e., given a particular state of the switch
nodes, the flux into the output node is the sum of the
fluxes consumed from the left.
Lemma 1. An assignment of “on” and “off” to the 3m ×

m switch nodes is a solution of the original 3PART pro-
blem if and only if the total flow in the output node O
equals the maximally possible value s = ∑i si.
Proof. Consider the CRN in Figure 2 with 3m × m

switch nodes. Each column corresponds to one of the m
desired subsets of the underlying instance of 3PART,
each row corresponds to one of the 3m integer values si.
Note that any assignment of “on” and “off” to switch
nodes will split the overall horizontal as well as the
overall vertical inflow into two parts: a part directed to
waste material and an output part directed to node O.
Let wH (resp. wV) be the overall horizontally (resp. verti-
cally) produced waste. For any assignment of “on” and
“off” states to switch nodes s = f(eout(O)) + wH = f(eout(O))
+ wV is invariant. Obviously, if wH = wV = 0, then the
outflow f(eout(O)) to node O is maximal. Furthermore
note that at most one switch can be in “on” state in
each row.
Consider an assignment of “on” and “off” to the switch

nodes that corresponds to a solution of the original
3PART problem. Thus exactly 3m switch nodes are in
mode “on” (three per column and one per row). As one
switch node per row i is in mode “on”, the outflux si of
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node Qi flows to output node O and the waste produced
horizontally in row i is 0. As this is true for all rows, wH

= wV = 0 holds and the total flow in the output node O
is s which is maximal.
Assume that the flow in the output node is the maxi-

mal possible value s, and therefore wH = wV = 0 holds.
This implies that exactly one switch node per row needs
to be in mode “on”. As we can assume s

/
4m < si < s

/
2m

exactly 3 switch nodes per column need to be in state
“on”. The overall assignment is therefore a solution to
the original 3PART problem. □
Of course, the intermediate network in Figure 2(A) is

not (yet) an proper CRN. To achieve this goal, we have
to replace the switch nodes by hypergraphs that imple-
ment the high-level rule governing their behavior.

Implementing Switch-nodes
Suppose the molecules emitted from the 3m input
nodes are all of different types Qi, and distinguish the m
types of inputs from above as Zj. Then the switch node
(i, j) must implement a net reaction of the form

siQi + siZj → siO (4)

where O is the type of the output molecule. This net
reaction can be split into four subsequent reactions:

siQi → Wij

siZj → Vij

Vij +Wij → Xij

Xij → siO

(5)

We see that the switch node (i, j) can be in the “on"-
state only if it received at least si copies of the input
from the left and a matching number of input molecules
from above. A graphical description of this partial net-
work is shown in Figure 2(B). Since the input from the
left is limited to si copies of Qi, either none or a single
molecule of the intermediate Xij is produced, depending
on whether (i, j) is “on” or not. Clearly, for each i, only
a single one of the switches (i, j) can be “on”.
Note that equ.(5) already provides the necessary

device to complete the proof. If we insist that the CRN
may use at most bi-molecular reactions, we have to find
a way to implement the reactions siQi ® Wij, Xij ® siO,
and Xij ® siO by more restricted elementary reactions.
This will the topic of the following section. According
to equ.(5) each diamond node is replaced by 3(si +1)
vertices, so that the entire network has

6m + 2m + 1 +m
∑3m

i=1 3(si + 1) = 8m + 3sm + 3m2 + 1
nodes. Thus, all instances of 3PART for which s = s(m)
is polynomially bounded in m can be reduced to a

Figure 2 Construction of a CRN from a given instance of 3PART. (A) In the first step, an intermediate network consisting of input nodes,
switch nodes (green diamonds), and waste nodes (open circles), and a single output sink (hexagon) is constructed. The input is encoded as
capacity constraints on the l.h.s. input nodes (corresponding to the input numbers si of 3PART) and on the m top nodes (corresponding to
1
/
m of the sum of the inputs). A solution of 3PART corresponds to a flow through this network that transport ∑i si to the output sink. (B) In the

second step, each switch node is replaced by reaction network that which admits a non-zero flow only if si copies of Qi and Zj are available. The
reaction then produces si copies of the output molecule O. Note that the “drainage reactions” as not shown in panel (B). These channel the Qj

and Zj input material directly to the “waste material” sink whenever the reaction networks inside the switch node receives insufficient input to
produce both Wij and Vij.
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maximum output problem on an equivalent CRN. We
explicitly use the fact that 3PART is strongly NP-com-
plete: we need that m is polynomially bounded by the
network size n to ensure that s, and thus the reduction
to 3PART, remains polynomial. We know the maximal
outflux of the CRN and can therefore use a simple
guess-and-check argument to show that MAX-CRN-
Output is in NP. Our discussion thus establishes
Theorem 1. MAX-CRN-Output is strongly NP-com-

plete when the number of inputs into the CRN and num-
ber of educts in a chemical reaction is unrestricted.
We remark the our CRNs need to have at least two

output nodes, one for the desired product and one to
collect all waste products.

Restriction to Bi-molecular Reactions
In this section we show that the problem does not
become easier when the CRN has only a single input
and all reactions are bi-molecular. To this end we
further refine the reactions siQi ® Wij, Xij ® siO, and
Xij ® siO. We will make use of two specialized types of
edges that can be implemented by bi-molecular
reactions.
The first type of edge merges exactly k identical mole-

cules into 1 molecule (the corresponding edges will be
referred to as merge-edges). The second type of edge
expands one molecule to exactly k identical molecules
(expansion-edges). We first focus on a specific type of
merge- and expansion-edges: merge-edges of type (2u ®
1) can easily be implemented by u subsequent reactions
fi, i = 1, ..., u that iteratively create (double-sized) mole-
cules out of 2 identical molecules. Formally, let I = X1

and O = Xu+1 then fi is defined by

2Xi → Xi+1, (6)

and the corresponding flow is chosen to be fi({Xi, Xi

+1}) := 2u-i. Symmetrically, expansion-edges of type (1 ®
2u) can be implemented by u subsequent reactions that
split molecules repeatedly into two equal molecules.
These (2u ® 1)-merge-edges (resp. (1 ® 2u)-expansion-
edges) will in the following be used to implement the
generalized merge- and expansion-edges.
Let bm-1bm-2 ... b0 be the binary representation of k >0

with m = ⌊log k⌋ + 1, and let B = {i1, i2, ..., ir} be the
indices of all non-zero bits, i.e., i Î B with bi = 1. The
underlying idea for the merging of k molecules of type I
into 1 molecule of type O is to split the outflow k of I
into r individual flows, i.e., k =

∑r
j=1 2

ij−1. We remark
that this representation is unique. These flows of quan-
tity 2ij−1, j = 1, ..., r are then individually reduced to
flows of size 1. The resulting r flows of quantity 1 are
then all merged to a flow of one molecule of quantity 1.
The implementation of generalized merge-edges is

depicted in Figure 3(A). Expansion-edges that expand
the flow of one molecule of quantity 1 to a flow of one
molecule of quantity k can be implemented analogously.
First, a flow of quantity 1 of one molecule is changed
into r flows of quantity 1, then these r flows are
expanded to r flows of quantity 2ij−1, j = 1, ..., r, and
then these flows are iteratively summed up. The details
are depicted in Figure 3(B). Clearly, merge and expan-
sion edges can be employed for the refinement of reac-
tions siQi ® Wij, Xij ® siO, and Xij ® siO in equ.(5).
The number of additional edges and nodes to imple-
ment a (k ® 1) merge-edge is O(log2 k), as there are O
(log k) flows after the split into individual flows, and
each individual flow employs O(log k) edges for the (k
® 1) merge (with k being a power of 2). Symmetrically
a (1 ® k) expansion-edge uses O(log2 k) bi-molecular
edges and additional compounds. Based on this polyno-
mial extension and as all merge and expansion reactions
are bi-molecular, we have the following
Corollary 1. MAX-CRN(2)-Output is strongly NP-

complete.

Restriction to a single input
To show that MAX-CRN-Output is NP-complete even
if we have a single input only, we require an additional
edge type that is implemented by connecting a (k ® 1)-
merge-edge and a (1 ® k)-expansion edge in series.
Such an edge ensures that exactly k (or exactly a multi-
plicity of k) input molecules react to the same number
of output molecules. We will refer to these edges as (k)-
force-flow-edges. Note, that such edges do not change
the quantity of a flow. The number of additional edges
and nodes required to implement a (k)-force-flow edge
is O(log2 k).
So far we assumed input nodes Qi with corresponding

influx si, i = 1, ..., 3m, plus the m additional input nodes
Z1, ..., Zm with influx s = 1

/
m

∑
i si each. In the follow-

ing we will describe how to extend the construction of
the CRN based on an instance of the 3PART problem
(cmp. Figure 2) such that there is only a single input
node. Note that all si, m, and the influx to nodes Zi are
defined by the given 3PART instance.
Influx to nodes Qi

In the extended CRN the nodes Qi will be internal
nodes with influx si. In order to achieve this we will add
a single input node Q with influx s’, where s’ is the inte-
ger representation of the concatenation of the r-bit bin-
ary representation of all si, i.e.,

s′ =
3m∑

i=1

si × 2r(i−1), with r = max
{⌊
log si

⌋}
+ 1 (7)

Attached to node Q will be a subnetwork that splits
the flux s’ into the fluxes s1, ..., s3m by iteratively using
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the last r bits of the remaining flux as influx to a node
Qi, and then divide the remaining flux by 2r. The hyper-
graph structure to implement this with bi-molecular
reactions only is depicted in Figure 4. All dashed lines
with red rectangles indicate force-flow-edges (the num-
ber in the rectangle indicates the enforced flow), all red
edges with open arrowheads indicate merge- or expan-
sion-edges. To enforce that exactly (and not a multipli-
city) of si molecules flow towards node Qi, the flow
downwards needs to be maximized. This is done by
introducing an additional outflux node: the flux of quan-
tity s3m ≥ 1 towards O’ is multiplied by a factor c, such
that the additional overall non-waste outflux to O’ dom-
inates any other non-waste outflux. This can be ensured
by choosing the factor c as the maximal possible influx
to Q, i.e., c = 2r×3m - 1 (the binary representation of c
has r × 3m bit all set to 1). The number of additional
edges and nodes is polynomially bound and the overall
outflux of the extended network is then s3m × c + ∑i si.
As all outflux can be easily merged in a binary fashion
as applied in the definition of expansion-edges, the
resulting CRN has only a single input node and a single
non-waste output node.
Influx to nodes Zi
In order to have nodes Zi (cmp. Figure 2) as internal
nodes, we split the outflux from node Q of quantity s’ in
two fluxes of quantity s’ - 1 and 1 (by employing force-
flow-edges), that will be directly merged again and be
used as influx of quantity s’ to node Q’. However, this
simple splitting procedure gives a flux of quantity 1.
This simple flux is easily transformed into m fluxes of
quantity 1, which are then multiplied by s/m using
expansion-edges, and then used as the input towards
the internal nodes Zi.
Recall, that the number of nodes and edges needed for

a force-flow-edge of quantity k is O(log2 k). The number
of bits for the maximal flux on any force-flow-edge is O
(r × 3m). As 3PART is strongly NP-complete we can

assume that all si are polynomially bound in m, and
therefore r Î O(log m). Therefore the maximal flux on
any edge is O(2m log m). The number of additional nodes
and edges is therefore O(m2 log2m) per force-flow-edge.
As the construction needs O(m) additional force-flow-
edges, the overall number of additional nodes and edges
is O(m3 log2 m). Therefore the following corollary easily
follows:
Corollary 2. MAX-CRN(2)-Output-1 is NP-complete.

Autocatalysis
The NP-completeness of detecting an autocatalytic spe-
cies can be shown by expanding the CRN used for
showing the NP-completeness of MAX-CRN(2)-Out-
put-1. Let O be the output node, where an outflux of
s3m × c + ∑i si can be detected iff the underlying
instance of 3PART is solved. We add a merge-edge
from O towards an additional node A’ to create an out-
flux of exactly 1 from A’. The CRN is furthermore
extended by the following two additional reactions,
where compound A is an input and an output node of
the CRN.

A′ + A → 2B

B → A

The outflux of A’ is 1, if and only if

1. Compound A cannot be produced from all other
source molecules, i.e., for all flows f(ein(A)) = 0
implies f(eout(A)) = 0, and
2. two A can be produced if there is an inflow of one
A, i.e., there is a flow f such that f(eout(A)) > f (ein(A))
>0.

The construction of our reduction highlights the diffi-
cult part in determining autocatalysts. This is not so
much finding the autocatalytic cycle itself but to ensure
that the building blocks are provided from the “food

i12    1
i22    1

... ... ...I O

i2    1r

1   2i1

1   2i2

1   2ir

I ... O......

(A) (B)
Figure 3 Implementation of merge- and expansion edges. Consider the binary representation bm-1bm-2 ... b0 of k > 0 with m = ⌊log k⌋ + 1.
Let B = {i1, i2, ..., ir} be the indices of all non-zero bits, i.e., i Î B with bi = 1. (A) Implementation of a (k ® 1) merge-edge. (B) Implementation of
a (1 ® k) expansion-edge. The red edges indicate (2i ® 1) merges and (1 ® 2i) expansions, respectively.
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source” through an in principle arbitrarily complicated
sub-network.

Concluding Remarks
We have shown that the flow maximization problem
and the detection of autocatalytic species in chemical
reaction networks are NP-complete computational pro-
blems. As a consequence, we cannot expect to find
exact algorithms for these problems that can be used

efficiently on large chemical reaction networks (unless P
= NP, which is unlikely at best [30]). Our results match
well with the observation that many classical computa-
tional problems are hard on hypergraphs even though
their analogs for simple graphs admit efficient exact
solutions. Illustrative examples are matching problems
[31], or the sparsest null space problem for integer
matrices [32], which can be seen as the natural generali-
zation of the minimum cycle basis problem. As graph

1Q

2Q

3m−1Q

3mQ

1Q

2Q

3m−1Q

3mQ

...

......

...

O

O’

Q

Q’
s1

s2

s1

s2

s3m−1

∑3m
i=2 si2

r(i−1)

2
r
→1

s3ms3m

s3m−1

1→c

2
r
→1

2
r
→1

s
′

s3m × 2
r

∑3m
i=3 si2

r(i−2)

Figure 4 Hypergraph with bi-molecular reactions only. Splitting the single influx s’ to node Q’ such that the influxes to the internal nodes Qi

are si: the influx to node Q is chosen to have the quantity s′ =
∑3m

i=1 si × 2r(i−1) with r = max{⌊log si⌋} + 1, i.e., s’ is determined by the
concatenation of binary representation of the values si; force-flow edges are depicted as dashed lines labeled with the enforced quantity, merge-
(resp. expansion-) edges are depicted as red lines with open arrowheads labeled the quantification of merging (resp. expansion); the constant c
for the expansion towards node O is chosen such that the outflux in node O dominates the outflux of the original lattice CRN.
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models of chemical networks tend to be oversimplifica-
tions that are often of limited use [1], the hardness of
the computational task associated with the analysis of
large reaction networks cannot be avoided. As exact
algorithms appear out of reach, it will be necessary to
systematically explore efficient approximation algorithms
and heuristics for the combinatorial problems naturally
arising from Systems Chemistry.
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