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Abstract

Power and thermal dissipation constrain multicore perfor-

mance scaling. Modern processors are built such that they

could sustain damaging levels of power dissipation, creating

a need for systems that can implement processor power caps.

A particular challenge is developing systems that can maxi-

mize performance within a power cap, and approaches have

been proposed in both software and hardware. Software ap-

proaches are flexible, allowing multiple hardware resources

to be coordinated for maximum performance, but software is

slow, requiring a long time to converge to the power target.

In contrast, hardware power capping quickly converges to

the the power cap, but only manages voltage and frequency,

limiting its potential performance.

In this work we propose PUPiL, a hybrid soft-

ware/hardware power capping system. Unlike previous ap-

proaches, PUPiL combines hardware’s fast reaction time

with software’s flexibility. We implement PUPiL on real

Linux/x86 platform and compare it to Intel’s commercial

hardware power capping system for both single and multi-

application workloads. We find PUPiL provides the same

reaction time as Intel’s hardware with significantly higher

performance. On average, PUPiL outperforms hardware by

from 1.18–2.4× depending on workload and power target.

Thus, PUPiL provides a promising way to enforce power

caps with greater performance than current state-of-the-art

hardware-only approaches.

Categories and Subject Descriptors C.1.3 [Other Archi-

tectural Styles]: Adaptable architectures; I.2.8 [ Problem

Solving, Control Methods, and Search]: Heuristic methods;

D.4.8 [Performance]: Measurements
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1. Introduction

Modern processors are constrained by dark silicon – their

abundance of transistors enables them to draw more power

than they can safely sustain [11, 57]. For example, the

Exynos 5 processor (in the Samsung Galaxy S4 phone) has

a 5.5W peak power – nearly 2× its sustainable heat dissi-

pation, limiting peak speed to less than 1 second [49]. At

the other end of the spectrum, future exascale supercomput-

ers have a predicted operating budget of 20 MW [2], mak-

ing power management a central challenge of supercomputer

operating systems [54].

These physical constraints create a need for power control

systems which guarantee the processor operates within a

strict power cap. Research power capping systems have been

implemented in software [5, 6, 14, 31, 42–44, 62]. The need

for power capping has become so great, however, that Intel

processors now support power capping in hardware with

their Running Average Power Limit (RAPL) interface [7].

Whether implemented in hardware or software, there are

two essential properties for a power capping system. The

first is timeliness – the speed with which a new cap can

be enforced. The second is efficiency – the performance de-

livered under the cap. Without timeliness, critical operating

bounds can be violated, damaging the hardware. Without ef-

ficiency, application performance suffers unnecessarily. It is,

of course, trivial to implement a power cap while ignoring

performance – simply turn the machine off.

In general, hardware approaches provide superior time-

liness – hardware reacts much faster than software – while

software approaches have superior efficiency – they find the

highest performance set of resources to activate within the

power cap. Hardware’s timeliness is due to the relatively

simple circuits that control key power indicators like pro-

cessor voltage and frequency. Software’s efficiency derives

from its ability to consider the complex interactions between

multiple resources, allowing it to solve the constrained op-

timization problem of scheduling the highest performance

resource configuration which obeys the power cap.



This paper explores the tradeoffs between timeliness and

efficiency in power capping approaches. Specifically, we ad-

vocate a hybrid approach that includes both software and

hardware components, using each to address the challenge

to which it is best suited. We instantiate this hybrid approach

in PUPiL – for Performance Under Power Limits – a power

capping system based on a novel decision framework. To

ensure a power cap, PUPiL navigates nodes in a decision

framework. Each node represents a choice about how to use

a particular resource. For example, one node will select how

many cores to use in a multicore. After making a decision,

PUPiL measures power and performance and uses that feed-

back to drive the decision at the next node.

We implement PUPiL and test it on a Linux/x86 server

with 20 different multithreaded benchmarks under 5 dif-

ferent power caps. We compare PUPiL to both RAPL (In-

tel’s state-of-the-art hardware power capping system [7])

and two software-only approaches. We evaluate the time-

liness and efficiency of all approaches for both single and

multi-application workloads. Our results show:
• Efficiency: For single application workloads, a software-

only approach can achieve higher performance than

RAPL, but PUPiL achieves the highest performance.

Specifically, PUPiL outperforms RAPL by 1.32–1.18×
depending on the power cap. (Section 5.2.)

• Timeliness: RAPL’s speed enforcing the power caps

greatly exceeds software-only approaches by orders of

magnitude. PUPiL is equivalent to RAPL. (Section 5.3.)
• Multi-application Efficiency: We test two types of

multi-application workloads: 1) cooperative loads where

each application requests a subset of available resources

and 2) oblivious loads where each application requests

all resources. For cooperative loads, PUPiL outperforms

RAPL by 1.43–1.18× on average depending on the

power cap. In the oblivious case, PUPiL outperforms

RAPL by 2.56–2.43× depending on the power cap.
• Energy Efficiency: While PUPiL is designed to meet

power caps, we find that by increasing performance, it

also improves energy efficiency compared to RAPL, with

1.05-1.4× average improvements.

These results indicate that PUPiL’s hybrid approach pro-

vides the timeliness of hardware with significantly greater

efficiency. The performance gains are particularly high when

enforcing power caps in the oblivious multi-application sce-

nario. The large number of threads and resulting contention

in the oblivious multi-application scenario creates a situa-

tion where the applications destructively interfere with each

other. RAPL’s only mechanism for power enforcement is

processor voltage and frequency, which does nothing to limit

contention. PUPiL, in contrast, manipulates DVFS as well

as core allocation, socket usage, memory usage, and hyper-

threading. This diversity allows PUPiL to throttle back mul-

tiple resources and reduce overall contention, resulting in

large performance gains for the same power cap.
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Figure 1. Tradeoff between timeliness and efficiency from

hardware and software power capping, running x264.

This paper makes the following contributions:
• Develops a decision framework to maximize perfor-

mance under a power cap.
• Evaluates this implementation on a real system in multi-

ple usage scenarios.
• Identifies workload properties where Intel’s RAPL power

capping system fails to deliver best performance.
• Makes all scripts, code, and data collection tools from

this evaluation available as open source, so others can test

or extend these results1.

The fundamental contribution of this paper is an empirical

demonstration of the need for software and hardware to work

together to maximize performance under power caps. The

combined software/hardware approach proposed in this pa-

per demonstrates it is possible to achieve significant perfor-

mance gains over Intel’s state-of-the-art, commercial hard-

ware approach – especially for multi-application workloads.

2. Motivational Example

This example highlights the different tradeoffs in hardware

and software power capping approaches and motivates the

need for a hybrid design. We run the x264 video encoder on

an Intel Linux/x86 system. We compare the timeliness and

efficiency of both Intel’s RAPL hardware and a software ap-

proach that can adjust many settings (presented in Section 3).

Our test system is a dual-socket server with two Intel

SandyBridge Xeon E5-2690 processors and 64GB of RAM.

These processors support RAPL, but also have a number

of configurable resources which affect power and perfor-

mance tradeoffs, listed in Table 1. Each processor supports

15 frequency settings plus TurboBoost. Each is 8 cores,

with hyperthreading, giving a total of 32 virtual cores across

both sockets. These processors have a thermal design power

(TDP) of 135 Watts, but experimentally we find it extremely

rare for any workload to sustain that power consumption.

To illustrate the difference between hardware and soft-

ware power capping, we set a 140 Watt power cap total for

both sockets. RAPL must achieve this power consumption

1 All source code, scripts, inputs, and patches are available at:

https://github.com/PUPiL2015/PUPIL.git.



Table 1. Server resources.
Processor Cores Sockets Speeds (GHz) TurboBoost HyperThreads Memory Controllers Socket TDP (W) Configurations

Xeon E5-2690 8 2 1.2–2.9 yes yes 2 135 1024

by driving each socket to 70 Watts (this is the optimal solu-

tion without thread migration, over which RAPL has no con-

trol). In contrast, the software approach configures a range of

parameters: 1) how many sockets to use, 2) how many cores

to use on each socket, 3) whether to use hyperthreads or

not, 4) how many memory controllers to use, and 5) the fre-

quency of each socket. For both the hardware and software

approaches we measure power and performance (in frames

encoded per second) as a function of time.

Fig. 1 illustrates the results, with power shown in the

top chart and performance shown on the bottom. Each chart

shows time on the x-axis. The hardware approach is repre-

sented by the solid line, and the dashed line represents the

software approach. Clearly, both approaches meet the power

cap – RAPL hits the cap quickly while the software approach

operates below the cap for approximately 20 seconds, briefly

exceeds it, and finally settles at 140 Watts.

The performance results, however, show that once the

software approach converges, it delivers 20% more perfor-

mance than RAPL. Specifically, after convergence, the soft-

ware approach averages approximately 41 frames per second

while RAPL averages approximately 33.5 frames per sec-

ond. Software outperforms hardware because it recognizes

that hyperthreads do not help this application on this sys-

tem. Using hyperthreads results in greater power consump-

tion and a small performance loss. The software approach

recognizes that it should not make use of hyperthreads and

instead it increases the speed of the cores it is using with-

out hyperthreads. Of course, it takes software a long time to

recognize and adjust.

These results demonstrate the need for a hybrid approach

that enforces power caps with hardware’s speed, but has

software’s flexibility to adapt resource usage to the particular

application (or applications) running on the system.

3. Power Capping Methodologies

This section introduces the different power capping ap-

proaches we explore in this paper. It first discusses our

software approach. It then describes RAPL, a state-of-the-

art hardware power capping system. Finally, it introduces

PUPiL, a hybrid of software and hardware approaches.

We assume that a computer system is configurable; i.e., it

has resources or other parameters whose usage can be tuned

to navigate performance/power tradeoffs. For each approach,

the goal is to configure these resources to meet a power cap

in a timely and efficient manner. Timeliness means the cap

is quickly enforced. Efficiency means the system delivers

maximum performance under the cap.

All three power capping approaches (software, hardware,

and PUPiL) operate based on feedback. These approaches

observe their environment, decide on a response, and act to

implement their decisions. This feedback loop is repeated

continually, allowing the power capping system to react to

application phase changes or other environmental fluctua-

tions. We use this observe-decide-act framework as a basis

for understanding the methodologies of the three different

power capping approaches addressed in this paper.

3.1 Software Power Capping

This section discusses how the software system implements

observation, decision, and action.

3.1.1 Observe

In the observation phase, the software collects power and

performance feedback.

Power feedback can come from any number of power

monitoring mechanisms. For example, external power me-

ters such as a WattsUp device can be used. Other alterna-

tives include on-board power monitoring devices, such as the

INA231 [27], or on-chip power monitoring, which is avail-

able commercially from Intel [7] and through research pro-

totypes [50].

Performance feedback can also come from a number

of sources. High-level performance feedback can come di-

rectly from appropriately instrumented applications [21]. It

could also come from any number of other sources, includ-

ing hardware counters that measure floating point computa-

tion rate or simply instructions per second [52, 55]. While

the methodologies in this paper will work with any met-

ric, the authors personally advocate the use of high-level

application-specific feedback, if available as such allows a

power capping system to ensure efficiency in terms of real

application progress.

One issue with feedback is that real systems are noisy.

To meet the efficiency challenge, a power capping system

should ensure that it is reacting to persistent phenomena and

not some transient effect that momentarily disturbs perfor-

mance. That is, the system should distinguish between a fun-

damental change in application workload and a temporary

timing fluctuation (e.g., due to a page fault). The power cap-

per should adjust in the first case, but ignore the second case.

To address noise and ensure that the system acts on mean-

ingful feedback, the software approach employs a deviation

based filter to remove outliers. Specifically, the software ap-

proach measures performance over a window, filters any data

that falls more than 3-standard deviations from the mean,

and averages the rest. Assuming, X is the list of performance

measurements collected, µ is the average of unfiltered X , σ

is the standard deviation of unfiltered X , then Xfeedback is

the performance feedback used by the system to make deci-



Algorithm 1 Walking the decision framework.

Require: Set of ordered resources R

Require: Power cap P

Put system in minimal resource configuration

U ← R ⊲ the set of untested resources

while U 6= ∅ do ⊲ While untested resources

〈perfold, powold〉 ← GetFeedback()
r ← RemoveNext(U) ⊲ next resource in order

set r to highest setting

wait r.d time units ⊲ Account for resource delay

〈perfcur, powcur〉 ← GetFeedback()
if perfcur < perfold then

return r to lowest setting

else

if powcur > P then

s← BinarySearchResourceSettings(r)
set r to s

⊲ This may return the resource to its lowest setting.

sions:

µ =

∑

i Xi

N
(1)

σ =

√

∑

i (Xi − µ2)

N
(2)

Xfeedback =

∑

j∈A Xj

size(A)
(3)

A = {j | |Xj − µ| < 3σ} (4)

3.1.2 Decide

In the decide phase, the software selects a resource config-

uration. One way to select the best configuration would be

to simply walk through all configurations until we find the

highest performance configuration that respects the power

cap. This approach has the twin drawbacks that it fails to

meet the timeliness challenge and it may fail to respect

the power cap. In general, the number of possible resource

configurations will grow exponentially as we add more re-

sources. Thus exhaustive search is simply not feasible.

Any software approach must find a more intelligent way

to explore the configuration space. In this paper, we propose

a novel decision framework. To begin, the system orders the

available resources (the ordering process is described be-

low). It then starts in the lowest resource configuration. Pro-

ceeding through resources in order, the approach puts the

next resource into its highest setting. Feedback is measured

in this new configuration. The software compares the per-

formance feedback of the current configuration to that of

last configuration to decide whether 1) performance has im-

proved by using this new resource and 2) the resource usage

respects the power cap. Algorithm 1 specifies the decision

making process.

Algorithm 1 requires an ordered set of resources. The

order is determined by Order() (detailed in Algorithm 2).

The algorithm first sets the system to the smallest resource

configuration. It then puts the resources into a set of untested

resources. While this ordered set of untested resources is

non-empty, the algorithm measures power and performance

(using the helper function GetFeedback()). It then takes the

next resource in order and sets it to its highest configuration

setting (using the Set() helper function), waits a resource-

specific amount of time, and then measures the feedback

again. If this resource provided higher performance, then

the algorithm fine tunes the resource setting, otherwise it

returns to the lowest setting for this resource. The fine tuning

process involves performing a binary search on resource

settings to find the highest performance setting that is under

the power cap (the BinarySearchResourceSettings() helper

function).

We use binary search on a resource-by-resource basis to

avoid exhaustive search’s overhead. This is an engineering

tradeoff. Component-wise binary search is fast, but can get

stuck in local extrema and miss the global optimal solution.

In exchange, however, it scales well even as the number

of configurable resources grows. In practice, this approach

works well because resources tend to have a single peak.

For example, not all applications can use all cores, but there

tends to be a single best core count with no local extrema.

There are four helper functions for this approach. Three

are straightforward and their detailed descriptions are omit-

ted for space. We provide a brief overview here. The

GetFeedback() function simply measures and returns power

and performance data. The Set() function is used to con-

figure the resource. The BinarySearchResourceSettings()
function simply does a binary search on the available con-

figurations for a resource. Its goal is to find the highest per-

formance setting that respects the power cap. The ordering

function is the fourth helper and it is described below.

The ordering function is essential to Algorithm 1. The

software approach establishes the ordering based on the po-

tential impact of each resource. Higher impact resources

have precedence over lower impact resources. Algorithm 2

shows the algorithm used for establishing this order. The in-

tuition is to allocate power first to higher impact resources so

that we can tune the performance from coarse-grained knobs

to fine-grained knobs. We evaluate impact of a resource by

the performance improvement that it delivers when activated

individually. The one exception is DVFS, which is used at

the end to fine-tune power within the cap. To determine im-

pact, we calibrate the system using a well-understood, em-

barrassingly parallel application. Based on our results, the

ordering is insensitive to different applications; i.e., the de-

cision tree finds a near-optimal configuration using the same

calibrated ordering for all applications. The detailed process

for establishing the order is shown in Algorithm 2.

3.1.3 Act

In the act phase, the software implements the resource allo-

cation proposed by the decision phase. For example, if the

decision phase decides to test a resource, the act phase is re-

sponsible for actually assigning that resource to the active

applications. To implement the act phase, the software re-

quires two pieces of external information. The first is a tim-



Algorithm 2 Ordering Resources in Calibration.

Require: Set of resources R excluding DVFS

Require: a calibration benchmark without inter-thread communication

Put system in minimal resource configuration

U ← R ⊲ the set of disordered resources

while U 6= ∅ do ⊲ While disordered resources

r ← RemoveNext(U) ⊲ next resource in random order

set r to highest setting

wait r.d time units ⊲ Account for resource delay

perfr ← GetFeedback()
return r to lowest setting

add r to O

Sort r in O by perfr
Add DVFS to the last in O return O ⊲ The set of ordered resources

ing information about how long to expect from when the re-

source is allocated to when its effects can be observed. This

information is required so that the software does not take a

new observation before the resources have actually had an

effect. The second piece of information is a function that

implements the resource allocation. As most resources are

allocated in system-specific ways, this function is necessary

to maintain the generality of the approach and let it work on

multiple systems.

Given this information, the action phase simply consists

of setting the resource configuration to that specified by the

decision phase and then putting the decision framework to

sleep for the time it will take to see the resource effects. To

increase efficiency, the software keeps track of the previous

resource allocation and only changes those resource settings

which changed since the last decision.

3.2 Hardware Power Capping

We briefly outline the approach taken by Intel’s RAPL sys-

tem [7], in terms of observation, decision, and action. RAPL

receives a power cap and a time interval through a machine

specific register (MSR). RAPL observes various low-level

hardware events and estimates power consumption from

those event counts. RAPL determines an energy budget that

would meet the desired power cap during the specified time

interval. For example, if the time interval is 0.5 seconds and

the power cap is 100 Watts, the energy budget is 50 Joules.

RAPL sub-divides the user-specified time interval into

a set of smaller intervals. For each of these fine-grained

intervals, RAPL calculates the remaining energy budget for

the remaining time in the user-specified interval and decides

the best possible processor speed and voltage. Given this

decision, RAPL sets DVFS to the decided state and waits

for the next fine-grained interval. More detail on RAPL

operation is available in the literature [7].

It is instructive at this point to compare the hardware and

software approaches. Software is clearly flexible, the ap-

proach in Algorithm 1 will work with any set of available

resources – the only requirement is that we must be able

to establish an order on these resources. The drawback of

software is that configuring the system requires executing

Algorithm 1, which can be costly (as shown in Fig. 1). In

Figure 2. PUPiL’s approach to hybrid hardware/software

power capping.

contrast, RAPL observes only power feedback (not perfor-

mance), makes decisions by solving a linear equation, and

acts by only tuning voltage and frequency only. All three

steps can be done within milliseconds and this ensures the

timeliness of hardware approach. However, because RAPL

lacks performance feedback and considers only DVFS, this

hardware approach cannot deliver the highest performance

for many applications.

3.3 PUPiL’s Hybrid Power Capping

Our goal is to obtain the efficiency of the software approach

and the timeliness of hardware approach. Thus, we propose

PUPiL, a hybrid power capping system that incorporates

software and hardware to achieve the benefits of both.

3.3.1 Timeliness

We need the system to respect the power cap as soon as the

cap is set. To achieve this timeliness, hardware power cap-

ping approach has to be in charge of capping the power in-

stead of the much slower control loop of software approach.

Thus, we set the power cap in hardware first, before explor-



ing other resources. Meanwhile, to avoid interference with

the hardware approach, we remove processor speed and volt-

age from the set of resources controlled by software. Leaving

hardware in charge of voltage and speed ensures timeliness

and reduces the configuration space software much search.

Fig. 2 illustrates PUPiL’s hybrid decision framework. The

major difference between the software-only approach and

Fig. 2’s is that the hybrid approach explicitly sets RAPL

before exploring the configuration space determined by the

non-DVFS resources. To achieve this in practice, we modify

Algorithm 1 so that it first sets the RAPL power cap.

3.3.2 Efficiency

We need to find the optimal configuration for the running

application. This requires two modifications to the decision

algorithm shown in Algorithm 1.

First, the power cap is now met by hardware so PUPiL

need only manage performance. Thus, the hybrid approach

excludes all the power condition checks in Algorithm 1 –

PUPiL assumes RAPL ensures the power cap.

Second, power distribution among different chips in a

multi-socket environment has to be reconsidered. Hardware

power capping caps power on a per-socket manner. How-

ever, when we consider thread migration as a tunable pa-

rameter, the optimal configuration for an application or

workload is often asymmetric, so it is necessary to dis-

tribute power accordingly instead of using a default even

distribution. PUPiL, therefore, uses a core-number based

power distribution across different chips. More specifically,

PUPiL distributes the dynamic power (power cap minus

static power) proportional to the core number being used

by each chip. PUPiL achieves this by setting correspond-

ing hardware power cap to each chip. Thus, whenever there

is core number configuration adjustment, power distribution

adjusts with it.

4. Experimental Setup

This section describes benchmarks, system, metrics, and

points of comparison we use to evaluate PUPiL.

4.1 Benchmarks

We use 20 benchmark applications from three dif-

ferent suites including PARSEC (x264, swaptions,

vips, fluidanimate, blackscholes, bodytrack) [3],

Minebench (ScalParC, kmeans, HOP, PLSA, svmfe,

btree, kmeans fuzzy) [40], and Rodinia (cfd, nn, lud,

particlefilter)[4]. We also use a partial differential

equation solver (jacobi) and the swish++ search web-

server [24] and dijkstra [28]. These benchmarks test

a range of important modern applications, both compute-

intensive and memory-intensive. All applications run with

up to 32 threads (the maximum supported in hardware on

our test machine). In addition, all workloads are long run-

ning, taking at least 10 seconds to complete. This duration

Table 2. System configurations.
Configuration Settings Max Speedup Max Powerup

cores per socket 8 7.9 2.1

sockets 2 2.0 1.7

hyperthreading 2 1.9 1.2

mem controllers 2 1.8 1.1

clock speeds 16 3.2 3.4

gives us plenty of time to take measurements of system per-

formance and power.

4.2 Platform

We use a dual-socket Intel/Linux system with a Super-

MICRO X9DRL-iF motherboard and two Xeon E5-2690

processors (see Table 1). This motherboard supports set-

ting RAPL’s power capping feature. The system runs Linux

3.2.0. We use the msr module, to access the model specific

registers that implement RAPL. We use the cpufrequtils

package to set the processor’s clock speed. These proces-

sors have eight cores, fifteen DVFS settings (from 1.2 – 2.9

GHz), hyper-threading, and TurboBoost. In addition, each

chip has its own memory controller, and we use the numactl

library to manage memory controller use. In total, the sys-

tem supports 1024 user-accessible configurations, each with

its own power/performance tradeoffs2. The thermal design

power for these processors is 135 Watts.

Given those specifications, the following resources are

configurable: the clock speed of each socket, core use per

socket, hyperthreading, the number of sockets in use, and the

number of memory controllers in use. Manipulating thread

affinities allows us to change the cores per socket, the active

sockets and the use of hyperthreading.

As described in Section 3, implementing the software de-

cision system requires ordering the set of resources under

consideration. Table 2 lists these resources in the order es-

tablished by Algorithm 2. For each resource in the table, it

lists the speedup and power up (increase in power, analogous

to speedup) measured during the ordering process.

4.3 Evaluation Metrics

Our goal is to evaluate the timeliness and efficiency of vari-

ous power capping approaches. To compare approaches, we

must quantify these properties. We evaluate timeliness by

measuring settling time. We evaluate efficiency by measur-

ing the performance achieved by a workload under a power

cap.

4.3.1 Timeliness

Settling time is a standard metric for a control system [18].

Given a power cap, it may take some amount of time for the

controller to stabilize the system at that power. We call the

period after which the system stabilizes the steady state and

we denote the time at which the system enters steady state as

2 16 cores, 2 hyperthreads, 2 memory controllers, and 16 speed settings (15

DVFS settings plus TurboBoost)



tss. If the controller begins work at time t0, then the settling

time is simply:

settle = tss − t0 (5)

4.3.2 Efficiency

Efficiency is the performance delivered under a power cap.

We evaluate efficiency using weighted speedup. This is a

standard metric for multi-application workloads that weights

the performance each application achieves in a multi-

application scenario by the performance it would achieve in

isolation. This metric has been demonstrated to be both con-

sistent and fair [13].

4.4 Points of Comparison

To evaluate PUPiL, we compare it to several other tech-

niques:
• RAPL: The primary approach with which we compare.
• Soft-DVFS: This is a software approach that sets the

DVFS settings using the cpufrequtils package. Our

implementation is modeled on a prior approach propos-

ing a software-based DVFS control system [31].
• Soft-Modeling: This is a software approach that models

the power for different configurations in an offline man-

ner. That is, it uses multiple regression to estimate the

power and performance of an application as a function

of assigned resources (in this case, clockspeed, memory

controllers, sockets, cores per socket and hyperthreads).

This approach is an extreme case of a predictive model

that needs no feedback information at runtime.
• Soft-Decision: This is the software-only decision frame-

work described in Section 3.1.
• Optimal: This is determined by running each application

in every possible system configuration and measuring its

performance. The optimal configuration achieves the best

speed for a given power cap.

5. Experimental Evaluation

This section evaluates PUPiL’s timeliness and efficiency.

To enable others to perform similar evaluations, we have

made the software and scripts used to perform this evaluation

available online. We begin by evaluating single application

workloads and then address multi-application workloads.

5.1 Single Application

To evaluate power control methods for single application

workloads, we launch each application under a power cap

and measure both its performance and settling time. We

evaluate 5 different processor power caps: 60, 100, 140,

180, and 220 Watts. When setting the caps for both RAPL

and Soft-DVFS, we split the power budget between both

sockets evenly as this is the optimal allocation when no other

resource is considered. Soft-Decision and PUPiL are free to

divide the power cap among the sockets as they see fit when

they migrate threads.

Table 3. Comparison of Harmonic Mean Performance.
Power Cap RAPL Soft-DVFS Soft-Modeling Soft-Decision PUPiL

60W .54 - - .70 .71

100W .68 .66 .66 .80 .85

140W .74 .71 .65 .87 .89

180W .78 .74 .76 .88 .92

220W .79 .75 .85 .91 .94

There are no Soft-DVFS or Soft-Modeling data for the

60W cap. For Soft-DVFS, even the lowest p-state exceeds

the 60W power cap when using all cores and hyperthreads.

For Soft-Modeling, the errors for this cap are extremely

large; approximately 70% of the data points for this tech-

nique exceed the power cap. This demonstrates a disadvan-

tage of a system that uses no online feedback to correct its

models. It has no ability to recover when the models have

high error. PUPiL, in contrast, uses a very simple model but

the feedback constantly corrects.

5.2 Performance

Fig. 3 shows the performance delivered under each cap for

each application. This figure contains one chart for each

power cap. The x-axis shows the benchmark, the y-axis

shows performance normalized to optimal (1 is the best

possible performance). The charts show one bar for each

of RAPL, Soft-DVFS, Soft-Modeling, Soft-Decision, and

PUPiL.

While results vary per application and power cap, the gen-

eral trends show that Soft-Decision provides higher perfor-

mance than RAPL with Soft-DVFS and Soft-Modeling com-

parable to RAPL. Furthermore, the hybrid approach gener-

ally provides the highest performance. The harmonic mean

performance for each power cap and power controller is

summarized in Table 3. This table shows PUPiL consistently

outperforms RAPL and Soft-DVFS across all power caps by

at least 18% (at the 180W cap) and at most 32% (at the 60W

cap).

Soft-Modeling takes the advantage historical power data

and configures the machine based on the predicted power. It,

however, has no guarantee of respecting power cap because

it has no feedback mechanism. For some applications and

power caps (e.g., HOP, swish++ at 100W), it outperforms all

other approaches by exceeding the power cap. The average

performance of Soft-Modeling is still not good compared

to Soft-Decision and PUPiL, despite the fact that it some-

times exceeds the caps. Furthermore, Soft-Decision is very

close to PUPiL. These results confirm that multi-resource

approaches out perform systems that only manipulate DVFS,

whether in software or hardware.

Clearly RAPL performs well on some applications (e.g.,

btree and svmfe) and poorly on others (e.g., dijkstra and

kmeans). Fig. 5 shows the computation (in instructions per

second) and memory bandwidth (in GB/s) for each bench-

mark. Blue dots represent applications for which RAPL does

well (is within 10% of optimal for the 140 W cap) and red

dots show applications for which RAPL achieves poor effi-
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Figure 3. Performance of several power control techniques normalized to optimal.
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Figure 4. Settling times for several power control techniques.

ciency (greater than 10% from optimal). Clearly simple no-

tions like memory-bound or compute bound are not good

predictors of RAPL efficiency. For example, RAPL performs

poorly on STREAM (which has the highest memory band-

width), yet does well with jacobi (which has the second

highest memory bandwidth). RAPL generally performs well

for applications that have ample parallelism and scale well to

use all 32 virtual cores. RAPL generally performs poorly on

applications with scaling issues or limited parallelism. For

such applications, it is better to restrict the resources they

are using and increase the speed of this small subset.

0 20 40 60 80
0

32

64

96

Memory Bandwidth (GB/s)

G
IP

S

RAPL near optimal

RAPL > 10% from optimal

Figure 5. Benchmark char-

acteristics.

For example, kmeans

scales well with more

cores on a socket. When

kmeans is allocated cores

on both sockets, however,

inter-socket communica-

tion becomes a bottle-

neck, so kmeans con-

tinues to issue instruc-

tions and burn power but

without increasing speed.

RAPL and Soft-DVFS

must reduce clock speed

to meet the power cap. In contrast, both Soft-Decision and

PUPiL recognize that the second socket decreased perfor-

mance, and they restrict kmeans to a single socket but in-

crease its speed, resulting in higher performance.

5.3 Settling Time

For each application and power cap we measure settling

time. Soft-Modeling is omitted as there is no settling time

for this offline approach. Fig. 4 shows the settling times

for all approaches and applications under the 140 Watt cap.

Results for other caps are similar (only 1-2% different) and

are omitted for space. Each application is shown on the x-

axis and settling time (measured in milliseconds) is shown

on the y-axis (in a logarithmic scale).

The data in Fig. 4 demonstrates the tremendous advan-

tages in timeliness that RAPL has over Soft-Decision. On

average, across all benchmarks, RAPL’s settling time is 356

ms. In contrast, Software-Decision averages 95,000 ms, a

difference of approximately 260 × and soft-DVFS averages

7,300ms, a difference of approximately 13 ×. These results

demonstrate the claims of timeliness made in the introduc-

tion to the paper. RAPL has significant timeliness advan-

tages over software approaches. PUPiL, however, is able to

maintain RAPL’s timeliness advantages, averaging 365 ms.

The small increase in overhead is due to the fact that the

power cap is now set through PUPiL’s software interface

rather than directly setting the register in hardware.



Table 4. Multi-application Workloads.
Name Benchmarks

mix1 jacobi, swaptions, bfs, particlefilter

mix2 cfd, bfs, fluidanimate, jacobi

mix3 blackscholes, cfd, jacobi, fluidanimate

mix4 particlefilter, blackscholes, swaptions, btree

mix5 x264, dijkstra, vips, HOP

mix6 STREAM, fuzzy-kmeans, HOP, dijkstra

mix7 STREAM, kmeans, vips, HOP

mix8 kmeans, dijkstra, x264, STREAM

mix9 jacobi, swaptions, fussy-kmeans, vips

mix10 cfd, bfs, x264, HOP

mix11 jacobi, blackscholes, dijkstra, fuzzy-kmeans

mix12 btree, particlefilter, kmeans, STREAM

These results demonstrate the main claims in the intro-

duction. Specifically, RAPL’s hardware approach addresses

the timeliness challenge. The software approach achieves

efficiency gains compared to hardware. The mean perfor-

mance advantage is at least 18%, while for specific appli-

cations (e.g., kmeans, dijkstra) the gains can be over 2×.

Finally, PUPiL’s hybrid approach meets both the timeliness

and efficiency challenges, combining hardware’s low set-

tling time with software’s high performance.

5.4 Multi-Application Workloads

We evaluate RAPL and PUPiL on multi-application work-

loads. We begin by dividing our benchmarks into two sets:

ones for which RAPL delivers near-optimal performance

(blue dots from Fig. 5), and ones for which RAPL is more

than 10% from optimal (red dots in Fig. 5). We create multi-

application workloads by randomly selecting applications

from the two sets. Specifically we create 12 separate mixes,

each consisting of four applications. For the first four mixes

(1–4), all applications are drawn from the set for which

RAPL is near optimal. The mixes 5–8 are all taken from

applications for which RAPL performs poorly. The applica-

tions in mixes 9–12 include two applications from each set.

Table 4 summarizes the workloads: each is given a name –

mixN – and we list the applications used in that workload.

We evaluate the multi-application workload by launching all

applications at the same time. We use the weighted speedup

for efficiency metrics as described in Section 4.3.2.

We evaluate two separate multi-application scenarios: co-

operative and oblivious. In the cooperative scenario, we as-

sume all applications know that they are running with other

applications; each is launched with only 8 threads, so that

the total number of active threads is equal to the number of

virtual cores. In the oblivious scenario, we assume that each

application is launched without regard to the other applica-

tions in the system and each requests 32 threads, for a to-

tal of 128 alive in the system. We compare the performance

achieved by RAPL and PUPiL in these two scenarios.

5.4.1 Cooperative Performance

The performance for the cooperative multi-application sce-

nario is shown in the left column of Fig. 6. There is a chart

Table 5. Ratio of PUPiL to RAPL Performance.
Power Cap Cooperative Oblivious

60W 1.43 2.53

100W 1.21 2.56

140W 1.18 2.44

180W 1.18 2.46

220W 1.21 2.43

for each power cap. The y-axes show the ratio of PUPiL to

RAPL weighted speedup (higher means PUPiL outperforms

RAPL) for each application mix (shown on the x-axes).

The performance comparison for the cooperative sce-

nario reveals similar trends to the single-application scenar-

ios. There are several mixes for which PUPiL and RAPL

achieve similar performance and others where PUPiL far

outperforms RAPL. Table 5 shows the ratios of PUPiL to

RAPL performance across all mixes for each power cap. In

the cooperative scenario, PUPiL outperforms RAPL by at

least 18% across all power budgets.

Single-application performance is not necessarily a good

indicator of multi-application performance. For each power

cap there are examples where PUPiL far outperforms RAPL.

For example, across all power caps PUPiL achieves much

higher performance for mix2. This happens despite the fact

that all applications in mix2 are drawn from the set for which

RAPL provides good individual performance. This result

shows that multi-application workloads can have compli-

cated behavior and it justifies the need for an adaptive ap-

proach, like PUPiL, that can accommodate the unexpected.

5.4.2 Oblivious Performance

Fig. 6’s left column shows the performance for the oblivi-

ous multiapp scenario. Recall that in the oblivious scenario,

each application requests 32 threads. The performance re-

sults show that PUPiL provides significantly better perfor-

mance than RAPL in the oblivious multi-application case.

The summary results across all performance caps are shown

in Table 5, which indicates that PUPiL achieves at least 2.4×
better aggregate performance than RAPL. Furthermore, this

advantage can jump up to as much as 6× for some applica-

tion mixes.

These results demonstrate that in a system that reflects

the oblivious multi-application workload – where every ap-

plication is trying to claim as many resources as possible

– RAPL by itself is simply not sufficient to provide high

performance under the power cap. Instead, the flexibility

of a system like PUPiL is needed to carefully manage re-

source usage and deliver high performance. The reason for

PUPiL’s higher performance is that these oblivious work-

loads typically bottleneck on some non-computational re-

source. This bottleneck is usually either intersocket commu-

nication bandwidth or memory bandwidth. This bottleneck-

ing in the multi-application scenario is similar to what we

have seen in the single application case, but now the conse-

quences are more dire. We explore the reasons for this more

in the next section.
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Figure 6. Ratio of PUPiL to RAPL performance in cooperative (left) and oblivious (right) multiapp scenarios.

Table 6. PUPiL and RAPL Multiapp Performance.
Workload Spin Cycles (%) Memory Bandwidth (GB/s)

RAPL PUPiL RAPL PUPiL

mix7 15 0.23 14.6 23.8

mix8 54 .48 17.5 30.3

mix12 33 .40 14.3 27.0

5.4.3 Detailed Multiapp Data

This section presents some low-level metrics collected to ex-

plain the performance difference between PUPiL and RAPL

in the oblivious multiapp case. To look for major differences

between RAPL and PUPiL we use Intel’s VTune tool to col-

lect low-level metrics for the application mixes under both

RAPL and PUPiL control.

VTune collects a tremendous amount of data on applica-

tions, but when looking at the metrics, two things stood out:

spin cycles and memory bandwidth. This data is shown in Ta-

ble 6 for the three mixes where PUPiL outperforms RAPL by

the greatest amount. For each mix, the table shows the per-

centage of time spent executing spin cycles, cycles for which

the processor is retiring instructions, but no forward progress

is being made (e.g., test-and-set instructions which fail the

test). The table also shows the achieved memory bandwidth

in MB/s for these three mixes.

Table 6 shows that under RAPL control these mixes

spend significantly larger portions of their time spinning and

achieve a significantly smaller memory bandwidth. We be-

lieve the problem is that one of the applications in these

mixes uses polling synchronization during a fairly long se-

rial portion of operation. The other applications appear to be

largely memory limited and are either embarrassingly paral-

lel (no or limited synchronization) or use condition variables

to synchronize. Therefore, these other applications need

memory bandwidth and yield the CPU when they cannot

make progress. The one application that does polling syn-

chronization, however, ruins the behavior of the entire sys-

tem, as when it gets the CPU it holds it for its entire schedul-

ing quantum while making minimal forward progress. This

behavior limits the ability of the other applications to make

progress as well. When the mix is scheduled on fewer cores,

however, its overall performance increases dramatically. In

this case, the polling benchmark (1) has much less con-

tention, (2) finishes its work faster, and (3) yields the cores

to other applications more often, boosting the overall perfor-

mance.

5.5 Energy Efficiency

We compare RAPL’s and PUPiL’s energy efficiency. We re-

port performance divided by power, which shows how much

work can be done per joule. Single application workloads re-

sults are shown in Fig. 7. As before, we normalize efficiency

of all approaches to the optimal. Soft-decision and PUPiL

produce 1.15-1.3× energy efficiency compared to RAPL or

Soft-DVFS. Fig. 8 shows the multi-application workload re-

sults. PUPiL has a 5–40% improvement of energy efficiency

compared to RAPL across different power caps. These re-

sults show PUPiL produces good energy efficiency even

though saving energy is not PUPiL’s primary purpose.

5.6 Sensitivity and Overhead Analysis

Throughout this section we investigate several factors which

affect the results. Our results examine sensitivity to various

power caps. Performance under very low power caps is diffi-

cult for any power management system. In addition, PUPiL

provides consistent performance improvements in both sin-

gle and multiapp scenarios. Further, the use of diverse work-

loads demonstrates that some applications achieve high per-

formance with RAPL alone, while others need the greater

flexibility of PUPiL’s hybrid approach.

In a feedback based system, overhead can take two forms:

1) the number of measurements that need to be taken before

the system converges and 2) the impact on the converged

system. Our results account for both forms of overhead. All
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Figure 7. Energy efficiency of several power control techniques normalized to optimal.
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Figure 8. Ratio of PUPiL to RAPL energy efficiency in cooperative (left) and oblivious (right) multiapp scenarios.

reported results include the power and performance impact

of the power capping systems themselves. The first type

of overhead is measured directly in terms of settling times

shown in Fig. 4. Both software approaches have very high,

likely unusably high, overhead by this metric. The second

type of overhead is accounted for by the comparison to

optimal in Fig. 3. This figure shows that the performance

impact of the PUPiL runtime system is acceptable in that

PUPiL produces the closest to optimal performance.

6. Related Work

As power and energy become first order concerns of com-

puting systems, a number of approaches have been proposed

for managing these critical issues. Some approaches focus

on minimizing energy, which can reduce costs in data centers

and servers [25, 35, 47, 58, 63] or increase battery life in mo-

bile and embedded platforms [15, 20, 26, 30, 39, 46, 56, 64].

These techniques provide performance guarantees (e.g., for

meeting quality-of-service or real-time requirements) and

minimize power consumption or energy, but they do not pro-

vide power guarantees and cannot implement power caps.

To help facilitate energy management, several OS

projects have added operating system support for monitoring

and allocated energy. The Quanto project facilitates track-

ing energy usage in networked embedded devices [16]. The

Cinder OS allows energy usage to be tracked and allocated

across multiple applications in a system [45]. The Koala

project also allows energy to be tracked and allocated while

supporting several different policies for optimizing energy

and performance [51]. Similarly, power containers support

fine-grain tailoring of heterogeneous resources to varying

workloads [48]. LEO is a hierarchical Bayesian learning



framework that produces extremely accurate estimates of an

application’s performance and power consumption [38]. The

Coop-I/O project allows applications to coordinate with the

operating system to schedule I/O operations in the most en-

ergy efficient manner possible [61]. The GRACE OS meets

performance requirements for media while minimizing en-

ergy [56, 64]. None of these projects, however, explicitly

support maximizing performance under a power constraint,

which is the subject of this paper. JouleGuard provides en-

ergy guarantees (but not power) by coordinating application

behavior with system resource usage [20].

While energy reduction can decrease costs and increase

battery life, it is a separate concern from meeting power

limits. Operating within power limits has become essen-

tial as multicore scalability is increasingly limited by power

and thermal management [11, 57]. The physical realities of

power dissipation in modern processors have led to hardware

designs characterized by dark silicon. That is, modern pro-

cessors cannot physically power all transistors at their maxi-

mum speed without damage. Thus, some of those transistors

are kept dark (meaning they are not powered at all) or dim

(meaning they are powered at less than full speed) [53].

These physical realities create a need to limit processor

power dissipation. This concern is important enough that In-

tel’s SandyBridge and later processors support power man-

agement in hardware [7]. A number software systems have

also been proposed to perform power control or capping.

Cluster level solutions which guarantee power consump-

tion include those proposed by Wang et al. [59] and

Raghavendra et al. [42]. These approaches require some

node-level power capper and node-level systems have been

developed to manage different individual components in-

cluding DVFS for a processor (the Soft-DVFS approach in

our evaluation) [31], per-core DVFS in a multicore [29], pro-

cessor idle-time [17, 65], and DRAM [10].

Several researchers have noted that coordinating multi-

ple components provides greater performance under a power

cap than management of a single component in isolation [1,

19, 22, 34, 35, 41]. Thus, approaches have been proposed

which provide power guarantees while increasing perfor-

mance through coordinated management of multiple com-

ponents, including processor and DRAM [5, 8, 9, 14, 32,

46], processors speed and core allocation [6, 44], combining

DVFS and scheduling [43, 62], memory and disk speed [33]

and combining DVFS and process placement [36]. The Vir-

tualPower project coordinates power management, virtual

machine placement, and server consolidation to meet power

constraints in a virtualized data center [41]. Despite differ-

ences in mechanisms, these techniques all solve a common

problem: select the highest performance set of resources

that respect a given power limit. All of these projects found

higher performance is available through the coordination of

multiple resources. With these results, it is not surprising that

a hardware solution alone would not achieve high efficiency

for some applications.

We take the position that power management should not

solely be the domain of hardware, but must be supported by

both hardware and software coordinated through the operat-

ing system.. The different resources required by different ap-

plication workloads are simply too complicated for hardware

to handle alone [12]. Hardware should be used to quickly

enforce power limits, as hardware can simply act faster than

software. Software techniques, however, should be used to

determine the set of resources to activate that achieve the

best performance under the power limit, considering the cur-

rent workload. This paper has presented a general, decision-

based approach for performing this coordination.

PUPiL complements other approaches which schedule

applications to minimize energy [23, 37, 60, 66]. PUPiL

determines what set of resources to activate, but it does not

explicitly assign those resources to applications. Instead, it

lets the underlying operating system scheduler perform that

work. In this paper, that scheduler was simply the default

Linux scheduler. It is likely that further performance gains

could be achieved by coupling PUPiL with advanced energy-

aware schedulers.

7. Conclusion

This paper investigates hardware and software power cap-

ping techniques. We find that hardware techniques provide

significantly faster response time – quickly enforcing power

limits – while software can provide much greater flexibil-

ity – by tailoring resource usage to the current application

workload. We have used these observations to formulate and

evaluate a hybrid hardware/software power capping system

called PUPiL. We evaluate PUPiL and compared it to a pure

software approach and to Intel’s state-of-the-art hardware

approach. Across a number of power targets and workloads,

we find that PUPiL achieves nearly the same response time

as the hardware approach and the flexibility of the software

approach. In both single and cooperative multi-application

workloads, PUPiL provides at least 18% greater mean per-

formance than RAPL. In oblivious multi-application work-

loads, PUPiL provides at least 2.4× the mean performance.

We conclude that delivering performance under a power cap

cannot be left to hardware alone, but requires the cooperation

of both hardware and software. We have developed one such

cooperative approach and released the code and test cases so

that others can use it, compare against it, or extend it.
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