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Abstract—With increasing demand for high performance 
computing and data storage, distributed computing systems 
have attracted a lot of attention. Resource allocation is one of 
the most important challenges in the distributed systems 
specially when the clients have some Service Level 
Agreements (SLAs) and the total profit in the system depends 
on how the system can meet these SLAs. In this paper, an 
SLA-based resource allocation problem for cloud computing 
is considered and a distributed solution to this problem is 
presented. The processing, data storage, and communication 
resources are considered as three dimensions in which 
optimizations are performed. Simulation results demonstrate 
that the proposed heuristic algorithm is robust (produces high 
quality solutions independent of the initial solution provided) 
and produces solutions very close to the “optimum” (best 
solution found by Monte Carlo simulation).1 

I. INTRODUCTION 
Demand for computing power has been increasing due to the 

penetration of information technologies in our daily interactions 
with the world both at personal and public levels, encompassing 
business, commerce, education, manufacturing, and 
communication services. At personal level, the wide scale 
presence of online banking, e-commerce, SaaS (Software as a 
Service), social networking and so on produce workloads of great 
diversity and enormous scale. At the same time computing and 
information processing requirements of various public 
organizations and private corporations have also been increasing 
rapidly. Examples include digital services and functions required 
by the various industrial sectors, ranging from manufacturing to 
housing, from transportation to banking. Such a dramatic increase 
in the computing demand requires a scalable and dependable IT 
infrastructure comprising of servers, storage, network bandwidth, 
physical infrastructure, Electrical Grid, IT personnel and billions 
of dollars in capital expenditure and operational cost  to name a 
few.  

The IT infrastructure provided by the datacenter 
owners/operators must meet various service level agreements 
(SLAs) established with the clients. The SLAs include compute 
power, storage space, network bandwidth, availability and 
security, etc. Infrastructure providers often end up over 
provisioning their resources in order to meet the clients’ SLAs. 
Such over provisioning may increase the cost incurred on the 
datacenters in terms of both the electrical energy cost and the 
carbon emission. Therefore optimal provisioning of the resources 
is imperative in order to reduce the cost incurred on the datacenter 
operators as well as the environmental impact. The problem of 
optimal resource provisioning is challenging due to the diversity 
present in the client applications being hosted and the SLAs. For 
example: some client applications may be compute-intensive 
while others may be memory intensive, some applications may 
run well together while others do not, etc.  

The IT infrastructure provided by the large datacenter 
owners/operators is often geographically distributed. This helps 
with reducing the peak power demand of the datacenters on the 
local power grid, allow for more fault tolerance and reliable 
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operation of the IT infrastructure, and even, reduced cost of 
ownership. A datacenter however comprises of thousands to tens 
of thousands of server machines, working in tandem to provide 
services to the clients, see for example [1] and [2]. In such a large 
computing system, energy efficiency can be maximized through 
system-wide resource allocation and server consolidation, this is 
in spite of non energy-proportional characteristics of current 
server machines [3].  

Resource management in distributed systems is one of the 
most important challenges. Due to more requests for resource in 
these systems, input size of this problems are much larger than 
ordinary resource allocation problems in centralized computing 
systems. There is number of papers discussing the resource 
allocation in grid computing systems e.g., [4][5]. Due to 
difference between cloud computing system and grid computing 
system, it is necessary to address the resource allocation problem 
in cloud computing systems separately. 

In our paper a cloud computing system is composed of some 
clusters that have different number and possibly different types of 
servers. The total profit in this system is the total price gained 
from the clients subtracted by the cost of operating the active 
servers in the system. Clients in this system are application 
software that require processing, data storage and communication 
resources in this “on-demand capacity provisioning” or “lease 
model of the IT infrastructure” [6]. Clusters and servers are 
modeled based on these three capabilities: computational, storage, 
and networking bandwidth. Cost of operation of active servers is 
related to the degree of their use of these resources [7].   

We focus on the SLA based resource allocation in the cloud 
computing system. Each client in this system is related to a class 
of clients that have a pre-defined utility function based on their 
response time requirements. To manage the resource allocation 
problem between two decision times, clients are assigned to only 
one cluster in each decision epoch. This helps compensate for 
dynamic changes in the system that do not need another decision 
at the cloud level and can be handled at a cluster or server level. 
Although a central resource manager is responsible for the 
resource management in these cloud computing systems, the local 
agents are used to parallelize the solution and decrease the 
decision time. This helps with the scalability of the proposed 
solution. 

The rest of this paper is organized as follows. Related works 
are presented in the next section. In section III, the system model 
and problem formulation are presented. The optimization problem 
and the optimization solution presented for this problem are 
presented in section IV and V, respectively. The simulation results 
are presented in the section VI and the conclusions are on the last 
section. 

II. RELATED WORK 
The distributed resource allocation problem is one of the most 

challenging problems in the resource management problems. The 
SLA based distributed resource allocation has attracted attention 
of the research community in the last years. 

Our paper considers the resource management problem in a 
cloud computing system. Key features of our formulation and 
subsequent proposed solution are that we: 
• Consider heterogeneous clusters in number of servers and 

type of servers deployed in each cluster 



• Use a three dimensional model of the resources in the 
clusters, i.e., computational, storage and networking 
capabilities, and  

• Perform distributed decision making to reduce the decision 
time by parallelizing the solution 

No previous work considers all these aspects together when 
addressing the cloud level resource management problem. In the 
following we provide a review of most relevant prior work. 

Srikantaiah et al. [7] presented energy aware consolidation to 
decrease the total energy consumption of the cloud computing 
system. The authors presented an experimental method to model 
the energy consumption of the servers based on the CPU and disk 
utilization. Based on this method, a simple heuristic to consolidate 
the processing works in the cloud computing system is presented. 

In [9], the authors extend the work in [8] and present a 
problem statement with clients that have discrete utility functions. 
The authors proposed a heuristic to solve the problem of assigning 
different client classes to different servers to maximize the total 
profit. Ardagna et al. [10] extend their work to multi-tier profit 
optimization for continuous utility functions and proposed an 
iterative approach to reach the solution. 

A mathematical formulation for the resource allocation 
problem in clusters is presented in [11]. The authors describe a 
method to find the best resource assignment in a cluster in the case 
that the application has certain resource requirements. Chandra et 
al. [12] introduce a dynamic resource allocation method in shared 
clusters to minimize the overall penalty resulting from not 
satisfying the SLA requirements in the response time. For this 
optimization, online measurements of the most important 
parameters in the system are used to predict the next system state 
and to allocate resources on that basis. An economic approach to 
manage shared resources and minimize the energy consumption in 
hosting centers is described in [13]. The authors present a solution 
that dynamically resize the active servers and respond to the 
thermal or power supply events by down grading the service based 
on the SLA. 

The problem of multi class queues in clusters is addressed in 
[14] and the authors used the proposed model to solve the profit 
optimization problem in the clusters.  

III. PROBLEM FORMULATION AND SYSTEM MODEL 
In this paper, a cloud computing facility (datacenter) which is 

composed of a number of clusters is considered. This cloud 
computing environment has a central manager that has some 
information about all clusters as well as the clients. Clusters are 
characterized by the number and type of computing, data storage, 
and communication resources that they control. All of these 
resources are assumed to be allocated within each server. Each 
cluster comprises of potentially heterogeneous servers chosen 
from a set of known server classes. Each server class is modeled 
by its processing capacity ( , normalized by a defined unit 
capacity), local data storage capacity ( ) and communication 
capacity ( ) as well as its operation cost which is related to the 
energy consumption for each server. The operation cost of a 
server is modeled as a constant operation cost ( ) plus a cost 
( ) linearly related to the utilization of the server in the 
processing domain. Figure 1 shows the structure of the target 
cloud computing system with 5 clusters and a central management 
node. 

Each client is identified by a unique id, represented by index i. 
The client class of the ith client is shown by . Each server in 
the datacenter is similarly identified by a unique id, captured by 
index j. Servers are grouped into a set of clusters, indexed by k. 
Set of servers in each cluster is shown by .  

In this system, all requests of each client are assigned to a 
single cluster. A pseudo-Boolean integer ( ) is used to 
determine if the ith client is assigned to the kth cluster (1) or not 
(0). The presented heuristic in this paper is applicable with a little 
modification to the cases that this assumption is not made but this 
restriction is helpful in doing dynamic resource allocation by 
cluster-level resource managers (in case of a large and sudden 
change in the service generation characteristics of a client and to 
satisfy the requested SLA condition at all times.) In each cluster, 
service requests of the assigned clients are dispersed to servers 
(requests generated by a single client can be assigned to more than 
one server). To capture this effect, parameter  denotes the 
portion of the ith client’s requests assigned to the jth server. Figure 
2 shows the cluster dispatcher architecture.  

Figure 2. An example of the architecture of the cluster dispatcher.

To model the multi class queues in the system, Generalized 
Processor Sharing (GPS) is used [15]. It has been shown that the 
GPS can be implemented by weighted fair queuing if the service 
times for packets are not too large. To be able to find the 
analytical form of the response time, requests for each client are 
assumed to follow a Poisson distribution with mean of  
(predicted based on the behavior of the client.) It can be shown 
[18] from the properties of the Poisson distribution that if these 
requests are distributed by a system that has one input and some 
outputs and the input is connected to each output with probability 
of , the requests at each output have a Poisson distribution with 
mean of . 

Except the disk resource that is allocated based on the constant 
need of the clients ( ), it is assumed that all other kinds of 
resources in the servers and clusters are allocated using the GPS. ,   and  denote Portion of the processing, communication 
and data storage resources of the jth server which is allocated to 
the ith client.  

All multi class single server queues can be replaced by single 
class single server queues using GPS. To model the response time 
of the requests in the system, by using the known formula for the 
average service time of the requests in M/M/1 queues, the average 
response time of the clients’ requests in each resource can be 
computed. To model the total response time in the system, we 
assume that the service times for different resources are 
independent and additive. Pipelining in the system shows that this 
assumption is reasonable because if the concatenated service time 
and one queue per client were used, the pipelining between 

Figure 1. Structure of the cloud computing system in this problem.



processing and communication was ignored. By this assumption 
about the queues, communication resource queue has the input 
from the processing resource queue. So, the overall average 
response time for a client can be presented as 

∑ ∑ (1) 

where  and  denote the Average processing and 
communication execution time of the ith client’s requests on jth 
server with a single unit of resource. 

The terms of the summation capture the average service time 
of the ith client in the jth server in processing and communication 
queues. To simplify the equations in rest of the paper, we use  and  to denote these terms. 

Although the agreed request arrival rates are used to determine 
the profit, predicted average request arrival rates are used to 
allocate resources to clients. This can help us to use resources 
more efficiently in cases that we know that the actual request 
arrival rates are smaller than agreed request arrival rates. 

The goal of the resource management problem is to maximize 
the total profit from serving clients. In this system, decision 
making interval (called decision epoch from here on) can be 
defined based on the behavior of the dynamic parameters in the 
system. For example, the frequency that request arrival rate 
changes for different clients affects the acceptable decision time. 
This is because the solution found by the presented algorithm is 
acceptable only as long as the parameters used to find the solution 
are approximately valid. Although some small changes in the 
parameters can be effectively tracked and responded to by proper 
reaction of request dispatchers in the clusters, large changes 
cannot be handled by the local managers. In the remainder of this 
paper, the resource allocation problem for each decision epoch is 
presented and a solution is presented but we do not discuss the 
estimation, prediction and dynamic changes in the system because 
these issues are outside the scope of the present paper.  

IV. OPTIMIZATION PROBLEM 
The total profit maximization problem is formulated below. 

  
           

(2) 

subject to: ∑ ,     ,  (3)∑ 1,       ∑ 1,        ,  (4)∑ 1,         (5)∑ ∑ 1,      (6),    ⁄ ,     ,  (7)⁄ ,           ,  (8)0,1 ,   ,    ∑     ,  (9)0,1 ,   ∑ 1,              (10)0,1 ,                ,  (11)0, 0, 0,0 1,    ,  (12)
where  denotes a pseudo-Boolean integer to determine if the jth 
server is ON (1) or OFF (0) and  is a small positive value. 
Moreover,  denotes the non-increasing utility function of 
the class client  with response time equal to  and  is the 

agreed arrival rate of the ith client in its contract with the cloud 
service provider. 

In this problem,  ‘s,  ‘s,  ‘s and  ‘s are the variables 
whereas the other parameters are constant or functions of these 
variables.  In the objective function, the first term is the 
summation of the service prices which are the function of the 
response time and the second term is the summation of the 
operation cost of the active servers in the clusters. In the 
constraints, (3) determines the active servers based on the 
allocated resources. Constraint (4) and (5) are used to limit the 
summation of the processing, communication and data storage 
resource utilities in each server in the clusters. Constraint (6) 
ensures that all requests generated by a client are served in one 
server cluster. Constraint (7) shows the lower limit on the resource 
shares in each server. Constraint (8) shows the disk requirement of 
a client assigned to a server. Assignment of a client to a server is 
determined with  which is equal to zero if  is zero and 
otherwise is equal to one based on the constraint (9). Constraints 
(10) to (12) specify the variable domains. 

Problem (2) may be decomposed to the assignment of clients 
to clusters and allocation of resources to the assigned clients in 
each cluster. For the first problem, the initial client set ( ) should 
be partitioned into smaller sets ( ), where 

,    :  (13) 
For the second problem, resources in the clusters should be 

allocated to the assigned set of clients to maximize the earned 
profit. This problem can be presented as follows. 

 

 

(14) 

subject to the constraints of the problem presented in (2) for each 
cluster. This problem is a mixed integer non-linear program. As 
can be seen in the problem formulation, the number of constraints 
that should be considered to find the optimal solution is | | | | , in which | | is the number of clients in the  
and | | is the number of servers in the kth cluster.  

It can be shown that even if the number and types of the active 
servers are determined in the problem and the discrete utility 
functions are estimated with continuous decreasing utility function 
based on response time, the objective function is neither convex 
nor concave (the Hessian matrix is not positive or negative 
definite) and so the problem cannot be solved with the convex 
optimization methods. 

V. OPTIMIZATION METHOD 
The problem presented in the previous section is a hard 

problem at both cloud and cluster levels. The simple problem 
solvers cannot solve this problem except in the case of very small 
input size by running exhaustive search or by using stochastic 
optimization methods such as the Simulated Annealing or Genetic 
Search. In this section, a heuristic solution is presented for this 
problem. 

The presented heuristic is focused on distributed decision 
making instead of centralized management. This is because 
complexity of the solution in case of centralized management is 
high whereas distributed decision making can handle the problem 
in parallel and reduce the time needed to reach a good solution by 
a big factor with limited amount of communication. Figure 3 
shows the pseudo code of the overall heuristic. 

A good initial solution is generated in the first step of this 
heuristic. To find an initial solution, clients are processed 



sequentially and assigned to the best cluster on that time. This 
greedy algorithm is repeated for a number of times to generate 
different initial solutions and the best initial solution is selected. 

To generate the final solution, a local search is used to 
improve the quality of the initial solution. It is important to note 
that this local search is not only used to change client assignment 
to decrease the resource saturation in some of clusters but also to 
combine the clients to decrease the number of active servers in the 
clusters. For example, if a server in a cluster serves a client and 
unassigned capacities in other servers is enough to serve that 
client with the same price, this local search will transfer the client 
to the other servers so as to decrease the cost of operation.  

 

Figure 3. Pseudo code for the overall resource allocation heuristic.

In this section, first a method to find a good starting point for 
the system is presented. Next, an iterative approach to improve the 
quality of solution with assigned clients is presented. 

A. Finding an Initial solution 
To start assigning clients to the clusters, each cluster is 

assumed to have an initial state. This initial state can be a result of 
the resources allocated to the previously assigned and running 
clients on the servers or other applications that are not related to 
the cloud computing system and are running on the cluster. This 
initial state can be specified in terms of the used (already 
allocated) capacity of the processing, data storage and 
communication resources in the clusters and different servers 
within the clusters.  

To generate an initial solution, a greedy approach to 
sequentially select a cluster and add a client to the selected cluster 
is used. For each client, the best possible cluster to execute the 
application is found by finding the highest approximated profit for 
the client on each cluster with respect to the current state of the 
clusters. This process continues until all clients are assigned to the 
clusters. An approximated version of the profit is used to capture 
incompleteness of information in the system with respect to the 
assigned clients to the servers and clusters. 

Assignment of each client to a server is defined by finding the 
amount of ,  and . To find these values, the utility 
function is used by a linear form of .  

In each step, a client (say, the ith client) is assigned to one of 
the clusters. To find the best possible profit for the client in each 
cluster (say the kth cluster), the following optimization problem is 
solved. 

 

 
(15) 

1 ,  1 ,  1        0 1, ∑ 1,   , , ⁄     
in addition to constraint (9). Notice that ,  and denote the 
previously allocated portion of the processing, communication and 
data storage resources in the jth server, respectively.  

This objective function is neither a convex nor a concave 
function. To solve this problem,  can be fixed in order to make 
the problem a concave optimization problem with respect to  
and  (which can be solved optimally and in polynomial time by 
the Lagrangian method and Karush-Kuhn-Tucker (KKT) 
conditions [17]) as follows: 

         (16)

Note that  is calculated using the same formula by 
changing the superscripts from  to . The parentheses with two 
limits mean that the value in the parentheses is limited between 
these upper and lower bounds. To respect the disk constraint, only 
servers that have enough remaining disk capacity for the client is 
taken to the account to generate the initial solution. 

To find the complete solution,  is assumed to have discrete 
values and for each server the solution for complete range of ’s 
is found with the closed form formula. For all inactive servers in 
each server class in the cluster ( 0 and 0), this problem 
needs to be solved only once. Now, the final solution for (15) can 
be found by dynamic programming (DP) method to combine the 
solutions found for each server and generate the best assignment 
solution (  for different servers to satisfy constraint of ∑ 1). For this DP, at most one of the all possible  in 
each server is selected for the final solution. To manage the 
complexity and parallelize the solution, this DP computation can 
be done for each server class in the cluster and the results should 
be combined after finding all the data. This procedure is called 
Assign_Distribute (i,k) in the pseudo code. 

B. Improving the solution by changing resource allocation 
After assignment of clients to clusters and allocation of 

resources, the total utility may be increased using local search 
methods. Total profit maximization problem without changing the 
assigned set of clients to clusters is neither a convex nor a concave 
problem and we decompose it to the following parts. 

1) Maximizing utilities with constant  
This improvement can be done by optimizing resource 

allocation in each server once the set of its assigned clients and 
 are fixed. This problem is formulated as follows. 

 (17) 

subject to: , ∑ 1,  ⁄ , ∑ 1,   
where  denotes the set of assigned clients that has  greater 
than zero. This optimization maximizes the total utility without 
changing the assignment parameters. 

Algorithm Resource_Alloc () 
// Find an initial solution  
For iter = 1 to num_init_solns { 

For k = 1 to num_clusters { 
curr_statek= state of the cluster at end of prev. epoch;} 

Randomize client processing order;  
For i = 1 to num_clients { 
 For k = 1 to num_clusters { 

   (  ,  ) = Assign_Distribute (i,k); }  
kopt,i =  ; 
Assign client i to cluster kopt,i based on its   values; 
Update current state of cluster indexed by kopt,i ; } 
Find total profit;} 

Select the best initial solution; 
// Improve the solution by optimizing , , ,  values 
While (Steady){ 

For i = 1 to num_servers { 
(  , ) =Adjust_ResourceShares( ;}  

For i = 1 to num_clients {  =Adjust_DispersionRates (  , );}  
For i = 1 to num_clusters { 

TurnON_servers( , , );  
TurnOFF_servers ( , , ) ;}  

Find total profit;  } 



By changing the problem to minimization form, the hessian 
matrix of the objective function is positive definite, so the 
optimization problem is convex and the solution can be 
determined by the KKT conditions. Based on this method, if  is 
a fixed parameter, the ith client has  in the following form: 

/  (18) 

Note that  calculation uses the same formula by changing 
the superscripts from  to  and removing the  term. By 
applying the constraints in problem (17), the amount of  and  
can be determined by a numerical optimization method such as 
binary search. This procedure is denoted as 
Adjust_ResourceShares(  in the pseudo code. 

2) Making servers active or inactive 
Servers can be turned ON or OFF to increase the utility price 

or decrease the operation cost and improves the total profit in the 
system. If by making a server active, the total utility improvement 
is more than the operation cost of the server, this action will 
improve the total profit. For each client, increasing the utility is 
based on a change in its response time. 

For selecting servers to activate, the best possible 
improvement after activation should be found and compared to the 
operational cost of the server. In each cluster, if a server class 
exists that has at least one inactive server, the problem to find the 
best set of clients to be assigned to the new server to maximize the 
total profit should be solved to decide whether activate a server or 
not. Finding the best improvement in the total profit by making a 
server active is a nonlinear mixed integer programming problem 
and we used decomposition method and dynamic programming to 
find a suboptimal solution with low complexity. Details of this 
problem are omitted for brevity. 

This optimization should be executed for each server class in 
each cluster that has at least one inactive server in the final 
solution. This procedure is called TurnON_servers( , , ) 
in the pseudo code. 

When portion of the ith client’s requests served by the new 
active server is zero, solution of this optimization problem can be 
used to adjust the assignment parameters to optimize the total 
profit while the allocated resources to different portion of the 
client’s requests ( ) are fixed. This is the dual problem of the 
problem presented in (17). This procedure is denoted as 
Adjust_DispersionRates (  , ) in the pseudo code. 

To find a server to make inactive, the servers are ranked based 
on the total approximated utility function and server with lowest 
approximated utility is the first candidate for being inactive. To 
check that if making a server inactive can increase the total profit 
of the system, all clients that are assigned to the selected server 
are removed from the server and reassigned to the active servers. 
This may help in finding better assignment of clients to servers. If 
the total profit of the new system is more than the previous case, 
the selected server is turned OFF otherwise the selected server is 
removed from the candidate set of servers to turn OFF to process 
other servers and explore more cases in next iterations.  

This procedure is called TurnOFF_servers( , , ) in the 
pseudo code. 

VI. EXPERIMENTAL RESULTS 
To evaluate the proposed solution, we implemented the 

resource allocation method. There is no existing software 
framework for this, so we ended up implementing all components 
of the system, from clients to servers and clusters by ourselves. 

This implementation is done for resource allocation of the system 
that is modeled in section III. 

The number of clusters in the cloud computing, the number of 
different server classes, and the number of different utility classes 
are set to 5, 10 and 5, respectively. We used normalized amounts 
for most of the components in the system instead of real values. 
For each utility class,  and  (mean of the  execution time) for 
the clients are generated with (uniformly distributed) random 
variables between 0.4 and 1. The value of  for each client is set 
with a random variable between 0.5 and 4.5. The utility class of 
each client is set with a random assignment form the existing 
utility classes. ,  and  for each server class are set with 
random variables between 2 and 6 and values of  is set with 
random variable between 1 and 3. The amount of  for each 
server class is set with another random variable between 2 and 6. 
The amount of  for each client is set with a random variable 
between 0.2 and 2.  

For the implemented heuristic, number of iterations for the 
initial solution was set to 3. The best initial solution from these 
three initial solutions was used to find the final solution after the 
local search. To compare the results of the proposed heuristic with 
a known resource allocation method, a modified version of the 
Proportional Share (PS) scheduling [8] was used. The original PS 
distributes the client’s requests between all active servers; this 
strategy increases the response time of the clients. Also the class 
of clients is not considered in the original version of this 
scheduling scheme. We thus modified the original PS to decrease 
the number of the servers that each client is assigned to and 
consider the utility class of the clients. In this modified scheme, 
values of  for the active servers are added and the problem of 
finding the resource shares in the PS is solved by the assumption 
of having only one server with the processing capacity equal to 
the sum of all server processing capacities. Furthermore, the 
average of the processing service rate of the clients on the active 
servers is used as the processing service rate on that server. Also 
to consider the class of clients, this average service rate is 
multiplied with the slope of the utility function.  

After this calculation, the amounts of the processing capacity 
for different clients are allocated based on a method inspired from 
the First Fit heuristic for the bin packing [16]. Again the heuristic 
is changed to fit our problem characteristics as follows. If the best 
server (with respect to the service rate) cannot meet the minimum 
required processing capacity for the client, the remaining capacity 
is allocated to the client and the next free server provides the rest 
of the required computational capacity. To process the clients, 
they are sorted based on their slope of utility with respect to the 
response time to serve the clients that are more sensitive to a 
change in the response time earlier in the heuristic. Also to find 
the best possible set of active servers, an iterative approach is 
used. A similar approach is used for the communication resource 
allocation. The quality of the solution generated from this 
modified algorithm is much better than the original PS. 

 To show the quality of the presented solution in client 
assignment and resource allocation in clusters, we generated 
different client assignments randomly and allocate the resources in 
the clusters based on the proposed solution. For each randomly 
generated solution, local search is used to increase the quality of 
the final solution. For this local search, after generating the final 
solution, the clients are picked one at a time and is removed from 
the assigned cluster and then the best cluster to serve the client is 
found based on the available condition of the clusters. This repeats 
until no further reassignment is possible. 

Figure 4 shows the average results of the resource allocation 
in cluster for different number of the clients for (i) the proposed 
solution (i.e., the Resource_Alloc algorithm), (ii) the modified PS 



plus finding the best set of active servers,  and (iii) the best 
randomly generated and subsequently optimized solution (using 
the local neighborhood search). In this figure all the profit is 
normalized by the best found profit. For the latter “nearly 
optimal” solution, for given number of clients, at least 20 (5 for 
200 clients) different scenarios are considered and for each one at 
least 10,000 random solutions are generated and optimized in 
order to find the best possible solution from this Monte Carlo like 
simulation. 

As can be seen, the performance of the modified PS is not 
comparable to the proposed solution in part because all three 
dimensions of the resources are not considered. Also the best 
point for energy consumption is not calculated in this solution and 
this affects the quality of the solution. As can be seen from this 
figure, the differences between the average quality of the proposed 
solution and the optimal cases are not more than 9%. This shows 
that the proposed solution has acceptable solution quality in all 
attempted scenarios. 

Figure 5 shows the normalized total profit of the worst random 
solution, profit of this solution after optimization by the local 
search, as well as the worst case profit of the proposed solution 
with respect to the found solution with Mont Carlo simulation in 
different scenarios for system parameters. As can be seen, quality 
of solution improves dramatically after the optimization in the 
initial solution.  

The presented algorithm has different parts containing 
generating initial solution and improving the found initial 
solution. The computational complexity of the algorithm in case 
of finding the initial solution is | | , in which  and |j| 
denote the granularity of  which is used in the dynamic 
programming technique and the number of total servers in the 
system. By assumption of homogeneous number of servers in the 
clusters, distributed nature of the algorithm reduces this cost by a 
factor of by adding the communication complexity. Also the 
computational complexity of the parts that improves the initial 
solution using the numerical optimization techniques and dynamic 
programming can be improved by a factor of  using the 
distributed computation. 

VII. CONCLUSION 
In this paper, the problem of multi dimensional SLA-based 

resource allocation in the cloud computing system is considered. 
SLA is defined based on a utility function which decreases when 
the average response time of the requests is increased. The 
response time based on the different allocation of resources for 
different servers and the clusters is modeled and used in the profit 
optimization problem. The problem is formulized based on 
Generalized Processor Sharing and an elaborate multi-stage 
heuristic algorithm is used to solve the problem. The system is 
modeled to demonstrate the quality of the final solution based on a 

modified version of the proportional share allocation and the 
optimal result based on the enumeration. In future works, the 
model will be expanded to deployment of complex multi-tier 
applications in a cloud computing infrastructure. 
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Figure 4. Comparison between performances of proposed solution,
modified PS, and “best solution found” with Monte Carlo simulation. 

 
Figure 5. Comparison between random initial solution and final result.
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