
Maximizing Profit in Cloud Computing System via Resource Allocation

Hadi Goudarzi and Massoud Pedram
University of Southern California, Los Angeles, CA 90089

{hgoudarz,pedram}@usc.edu

Abstract—With increasing demand for high performance
computing and data storage, distributed computing systems
have attracted a lot of attention. Resource allocation is one of
the most important challenges in the distributed systems
specially when the clients have some Service Level
Agreements (SLAs) and the total profit in the system depends
on how the system can meet these SLAs. In this paper, an
SLA-based resource allocation problem for cloud computing
is considered and a distributed solution to this problem is
presented. The processing, data storage, and communication
resources are considered as three dimensions in which
optimizations are performed. Simulation results demonstrate
that the proposed heuristic algorithm is robust (produces high
quality solutions independent of the initial solution provided)
and produces solutions very close to the “optimum” (best
solution found by Monte Carlo simulation).1

I. INTRODUCTION
Demand for computing power has been increasing due to the

penetration of information technologies in our daily interactions
with the world both at personal and public levels, encompassing
business, commerce, education, manufacturing, and
communication services. At personal level, the wide scale
presence of online banking, e-commerce, SaaS (Software as a
Service), social networking and so on produce workloads of great
diversity and enormous scale. At the same time computing and
information processing requirements of various public
organizations and private corporations have also been increasing
rapidly. Examples include digital services and functions required
by the various industrial sectors, ranging from manufacturing to
housing, from transportation to banking. Such a dramatic increase
in the computing demand requires a scalable and dependable IT
infrastructure comprising of servers, storage, network bandwidth,
physical infrastructure, Electrical Grid, IT personnel and billions
of dollars in capital expenditure and operational cost to name a
few.

The IT infrastructure provided by the datacenter
owners/operators must meet various service level agreements
(SLAs) established with the clients. The SLAs include compute
power, storage space, network bandwidth, availability and
security, etc. Infrastructure providers often end up over
provisioning their resources in order to meet the clients’ SLAs.
Such over provisioning may increase the cost incurred on the
datacenters in terms of both the electrical energy cost and the
carbon emission. Therefore optimal provisioning of the resources
is imperative in order to reduce the cost incurred on the datacenter
operators as well as the environmental impact. The problem of
optimal resource provisioning is challenging due to the diversity
present in the client applications being hosted and the SLAs. For
example: some client applications may be compute-intensive
while others may be memory intensive, some applications may
run well together while others do not, etc.

The IT infrastructure provided by the large datacenter
owners/operators is often geographically distributed. This helps
with reducing the peak power demand of the datacenters on the
local power grid, allow for more fault tolerance and reliable

1 This work is sponsored in part by grant from National

Science Foundation (NSF).

operation of the IT infrastructure, and even, reduced cost of
ownership. A datacenter however comprises of thousands to tens
of thousands of server machines, working in tandem to provide
services to the clients, see for example [1] and [2]. In such a large
computing system, energy efficiency can be maximized through
system-wide resource allocation and server consolidation, this is
in spite of non energy-proportional characteristics of current
server machines [3].

Resource management in distributed systems is one of the
most important challenges. Due to more requests for resource in
these systems, input size of this problems are much larger than
ordinary resource allocation problems in centralized computing
systems. There is number of papers discussing the resource
allocation in grid computing systems e.g., [4][5]. Due to
difference between cloud computing system and grid computing
system, it is necessary to address the resource allocation problem
in cloud computing systems separately.

In our paper a cloud computing system is composed of some
clusters that have different number and possibly different types of
servers. The total profit in this system is the total price gained
from the clients subtracted by the cost of operating the active
servers in the system. Clients in this system are application
software that require processing, data storage and communication
resources in this “on-demand capacity provisioning” or “lease
model of the IT infrastructure” [6]. Clusters and servers are
modeled based on these three capabilities: computational, storage,
and networking bandwidth. Cost of operation of active servers is
related to the degree of their use of these resources [7].

We focus on the SLA based resource allocation in the cloud
computing system. Each client in this system is related to a class
of clients that have a pre-defined utility function based on their
response time requirements. To manage the resource allocation
problem between two decision times, clients are assigned to only
one cluster in each decision epoch. This helps compensate for
dynamic changes in the system that do not need another decision
at the cloud level and can be handled at a cluster or server level.
Although a central resource manager is responsible for the
resource management in these cloud computing systems, the local
agents are used to parallelize the solution and decrease the
decision time. This helps with the scalability of the proposed
solution.

The rest of this paper is organized as follows. Related works
are presented in the next section. In section III, the system model
and problem formulation are presented. The optimization problem
and the optimization solution presented for this problem are
presented in section IV and V, respectively. The simulation results
are presented in the section VI and the conclusions are on the last
section.

II. RELATED WORK
The distributed resource allocation problem is one of the most

challenging problems in the resource management problems. The
SLA based distributed resource allocation has attracted attention
of the research community in the last years.

Our paper considers the resource management problem in a
cloud computing system. Key features of our formulation and
subsequent proposed solution are that we:
• Consider heterogeneous clusters in number of servers and

type of servers deployed in each cluster

• Use a three dimensional model of the resources in the
clusters, i.e., computational, storage and networking
capabilities, and

• Perform distributed decision making to reduce the decision
time by parallelizing the solution

No previous work considers all these aspects together when
addressing the cloud level resource management problem. In the
following we provide a review of most relevant prior work.

Srikantaiah et al. [7] presented energy aware consolidation to
decrease the total energy consumption of the cloud computing
system. The authors presented an experimental method to model
the energy consumption of the servers based on the CPU and disk
utilization. Based on this method, a simple heuristic to consolidate
the processing works in the cloud computing system is presented.

In [9], the authors extend the work in [8] and present a
problem statement with clients that have discrete utility functions.
The authors proposed a heuristic to solve the problem of assigning
different client classes to different servers to maximize the total
profit. Ardagna et al. [10] extend their work to multi-tier profit
optimization for continuous utility functions and proposed an
iterative approach to reach the solution.

A mathematical formulation for the resource allocation
problem in clusters is presented in [11]. The authors describe a
method to find the best resource assignment in a cluster in the case
that the application has certain resource requirements. Chandra et
al. [12] introduce a dynamic resource allocation method in shared
clusters to minimize the overall penalty resulting from not
satisfying the SLA requirements in the response time. For this
optimization, online measurements of the most important
parameters in the system are used to predict the next system state
and to allocate resources on that basis. An economic approach to
manage shared resources and minimize the energy consumption in
hosting centers is described in [13]. The authors present a solution
that dynamically resize the active servers and respond to the
thermal or power supply events by down grading the service based
on the SLA.

The problem of multi class queues in clusters is addressed in
[14] and the authors used the proposed model to solve the profit
optimization problem in the clusters.

III. PROBLEM FORMULATION AND SYSTEM MODEL
In this paper, a cloud computing facility (datacenter) which is

composed of a number of clusters is considered. This cloud
computing environment has a central manager that has some
information about all clusters as well as the clients. Clusters are
characterized by the number and type of computing, data storage,
and communication resources that they control. All of these
resources are assumed to be allocated within each server. Each
cluster comprises of potentially heterogeneous servers chosen
from a set of known server classes. Each server class is modeled
by its processing capacity (, normalized by a defined unit
capacity), local data storage capacity () and communication
capacity () as well as its operation cost which is related to the
energy consumption for each server. The operation cost of a
server is modeled as a constant operation cost () plus a cost
() linearly related to the utilization of the server in the
processing domain. Figure 1 shows the structure of the target
cloud computing system with 5 clusters and a central management
node.

Each client is identified by a unique id, represented by index i.
The client class of the ith client is shown by . Each server in
the datacenter is similarly identified by a unique id, captured by
index j. Servers are grouped into a set of clusters, indexed by k.
Set of servers in each cluster is shown by .

In this system, all requests of each client are assigned to a
single cluster. A pseudo-Boolean integer () is used to
determine if the ith client is assigned to the kth cluster (1) or not
(0). The presented heuristic in this paper is applicable with a little
modification to the cases that this assumption is not made but this
restriction is helpful in doing dynamic resource allocation by
cluster-level resource managers (in case of a large and sudden
change in the service generation characteristics of a client and to
satisfy the requested SLA condition at all times.) In each cluster,
service requests of the assigned clients are dispersed to servers
(requests generated by a single client can be assigned to more than
one server). To capture this effect, parameter denotes the
portion of the ith client’s requests assigned to the jth server. Figure
2 shows the cluster dispatcher architecture.

Figure 2. An example of the architecture of the cluster dispatcher.

To model the multi class queues in the system, Generalized
Processor Sharing (GPS) is used [15]. It has been shown that the
GPS can be implemented by weighted fair queuing if the service
times for packets are not too large. To be able to find the
analytical form of the response time, requests for each client are
assumed to follow a Poisson distribution with mean of
(predicted based on the behavior of the client.) It can be shown
[18] from the properties of the Poisson distribution that if these
requests are distributed by a system that has one input and some
outputs and the input is connected to each output with probability
of , the requests at each output have a Poisson distribution with
mean of .

Except the disk resource that is allocated based on the constant
need of the clients (), it is assumed that all other kinds of
resources in the servers and clusters are allocated using the GPS. , and denote Portion of the processing, communication
and data storage resources of the jth server which is allocated to
the ith client.

All multi class single server queues can be replaced by single
class single server queues using GPS. To model the response time
of the requests in the system, by using the known formula for the
average service time of the requests in M/M/1 queues, the average
response time of the clients’ requests in each resource can be
computed. To model the total response time in the system, we
assume that the service times for different resources are
independent and additive. Pipelining in the system shows that this
assumption is reasonable because if the concatenated service time
and one queue per client were used, the pipelining between

Figure 1. Structure of the cloud computing system in this problem.

processing and communication was ignored. By this assumption
about the queues, communication resource queue has the input
from the processing resource queue. So, the overall average
response time for a client can be presented as

∑ ∑ (1)

where and denote the Average processing and
communication execution time of the ith client’s requests on jth
server with a single unit of resource.

The terms of the summation capture the average service time
of the ith client in the jth server in processing and communication
queues. To simplify the equations in rest of the paper, we use and to denote these terms.

Although the agreed request arrival rates are used to determine
the profit, predicted average request arrival rates are used to
allocate resources to clients. This can help us to use resources
more efficiently in cases that we know that the actual request
arrival rates are smaller than agreed request arrival rates.

The goal of the resource management problem is to maximize
the total profit from serving clients. In this system, decision
making interval (called decision epoch from here on) can be
defined based on the behavior of the dynamic parameters in the
system. For example, the frequency that request arrival rate
changes for different clients affects the acceptable decision time.
This is because the solution found by the presented algorithm is
acceptable only as long as the parameters used to find the solution
are approximately valid. Although some small changes in the
parameters can be effectively tracked and responded to by proper
reaction of request dispatchers in the clusters, large changes
cannot be handled by the local managers. In the remainder of this
paper, the resource allocation problem for each decision epoch is
presented and a solution is presented but we do not discuss the
estimation, prediction and dynamic changes in the system because
these issues are outside the scope of the present paper.

IV. OPTIMIZATION PROBLEM
The total profit maximization problem is formulated below.

(2)

subject to: ∑ , , (3)∑ 1, ∑ 1, , (4)∑ 1, (5)∑ ∑ 1, (6), ⁄ , , (7)⁄ , , (8)0,1 , , ∑ , (9)0,1 , ∑ 1, (10)0,1 , , (11)0, 0, 0,0 1, , (12)
where denotes a pseudo-Boolean integer to determine if the jth
server is ON (1) or OFF (0) and is a small positive value.
Moreover, denotes the non-increasing utility function of
the class client with response time equal to and is the

agreed arrival rate of the ith client in its contract with the cloud
service provider.

In this problem, ‘s, ‘s, ‘s and ‘s are the variables
whereas the other parameters are constant or functions of these
variables. In the objective function, the first term is the
summation of the service prices which are the function of the
response time and the second term is the summation of the
operation cost of the active servers in the clusters. In the
constraints, (3) determines the active servers based on the
allocated resources. Constraint (4) and (5) are used to limit the
summation of the processing, communication and data storage
resource utilities in each server in the clusters. Constraint (6)
ensures that all requests generated by a client are served in one
server cluster. Constraint (7) shows the lower limit on the resource
shares in each server. Constraint (8) shows the disk requirement of
a client assigned to a server. Assignment of a client to a server is
determined with which is equal to zero if is zero and
otherwise is equal to one based on the constraint (9). Constraints
(10) to (12) specify the variable domains.

Problem (2) may be decomposed to the assignment of clients
to clusters and allocation of resources to the assigned clients in
each cluster. For the first problem, the initial client set () should
be partitioned into smaller sets (), where

, : (13)
For the second problem, resources in the clusters should be

allocated to the assigned set of clients to maximize the earned
profit. This problem can be presented as follows.

(14)

subject to the constraints of the problem presented in (2) for each
cluster. This problem is a mixed integer non-linear program. As
can be seen in the problem formulation, the number of constraints
that should be considered to find the optimal solution is | | | | , in which | | is the number of clients in the
and | | is the number of servers in the kth cluster.

It can be shown that even if the number and types of the active
servers are determined in the problem and the discrete utility
functions are estimated with continuous decreasing utility function
based on response time, the objective function is neither convex
nor concave (the Hessian matrix is not positive or negative
definite) and so the problem cannot be solved with the convex
optimization methods.

V. OPTIMIZATION METHOD
The problem presented in the previous section is a hard

problem at both cloud and cluster levels. The simple problem
solvers cannot solve this problem except in the case of very small
input size by running exhaustive search or by using stochastic
optimization methods such as the Simulated Annealing or Genetic
Search. In this section, a heuristic solution is presented for this
problem.

The presented heuristic is focused on distributed decision
making instead of centralized management. This is because
complexity of the solution in case of centralized management is
high whereas distributed decision making can handle the problem
in parallel and reduce the time needed to reach a good solution by
a big factor with limited amount of communication. Figure 3
shows the pseudo code of the overall heuristic.

A good initial solution is generated in the first step of this
heuristic. To find an initial solution, clients are processed

sequentially and assigned to the best cluster on that time. This
greedy algorithm is repeated for a number of times to generate
different initial solutions and the best initial solution is selected.

To generate the final solution, a local search is used to
improve the quality of the initial solution. It is important to note
that this local search is not only used to change client assignment
to decrease the resource saturation in some of clusters but also to
combine the clients to decrease the number of active servers in the
clusters. For example, if a server in a cluster serves a client and
unassigned capacities in other servers is enough to serve that
client with the same price, this local search will transfer the client
to the other servers so as to decrease the cost of operation.

Figure 3. Pseudo code for the overall resource allocation heuristic.

In this section, first a method to find a good starting point for
the system is presented. Next, an iterative approach to improve the
quality of solution with assigned clients is presented.

A. Finding an Initial solution
To start assigning clients to the clusters, each cluster is

assumed to have an initial state. This initial state can be a result of
the resources allocated to the previously assigned and running
clients on the servers or other applications that are not related to
the cloud computing system and are running on the cluster. This
initial state can be specified in terms of the used (already
allocated) capacity of the processing, data storage and
communication resources in the clusters and different servers
within the clusters.

To generate an initial solution, a greedy approach to
sequentially select a cluster and add a client to the selected cluster
is used. For each client, the best possible cluster to execute the
application is found by finding the highest approximated profit for
the client on each cluster with respect to the current state of the
clusters. This process continues until all clients are assigned to the
clusters. An approximated version of the profit is used to capture
incompleteness of information in the system with respect to the
assigned clients to the servers and clusters.

Assignment of each client to a server is defined by finding the
amount of , and . To find these values, the utility
function is used by a linear form of .

In each step, a client (say, the ith client) is assigned to one of
the clusters. To find the best possible profit for the client in each
cluster (say the kth cluster), the following optimization problem is
solved.

(15)

1 , 1 , 1 0 1, ∑ 1, , , ⁄
in addition to constraint (9). Notice that , and denote the
previously allocated portion of the processing, communication and
data storage resources in the jth server, respectively.

This objective function is neither a convex nor a concave
function. To solve this problem, can be fixed in order to make
the problem a concave optimization problem with respect to
and (which can be solved optimally and in polynomial time by
the Lagrangian method and Karush-Kuhn-Tucker (KKT)
conditions [17]) as follows:

 (16)

Note that is calculated using the same formula by
changing the superscripts from to . The parentheses with two
limits mean that the value in the parentheses is limited between
these upper and lower bounds. To respect the disk constraint, only
servers that have enough remaining disk capacity for the client is
taken to the account to generate the initial solution.

To find the complete solution, is assumed to have discrete
values and for each server the solution for complete range of ’s
is found with the closed form formula. For all inactive servers in
each server class in the cluster (0 and 0), this problem
needs to be solved only once. Now, the final solution for (15) can
be found by dynamic programming (DP) method to combine the
solutions found for each server and generate the best assignment
solution (for different servers to satisfy constraint of ∑ 1). For this DP, at most one of the all possible in
each server is selected for the final solution. To manage the
complexity and parallelize the solution, this DP computation can
be done for each server class in the cluster and the results should
be combined after finding all the data. This procedure is called
Assign_Distribute (i,k) in the pseudo code.

B. Improving the solution by changing resource allocation
After assignment of clients to clusters and allocation of

resources, the total utility may be increased using local search
methods. Total profit maximization problem without changing the
assigned set of clients to clusters is neither a convex nor a concave
problem and we decompose it to the following parts.

1) Maximizing utilities with constant
This improvement can be done by optimizing resource

allocation in each server once the set of its assigned clients and
 are fixed. This problem is formulated as follows.

 (17)

subject to: , ∑ 1, ⁄ , ∑ 1,
where denotes the set of assigned clients that has greater
than zero. This optimization maximizes the total utility without
changing the assignment parameters.

Algorithm Resource_Alloc ()
// Find an initial solution
For iter = 1 to num_init_solns {

For k = 1 to num_clusters {
curr_statek= state of the cluster at end of prev. epoch;}

Randomize client processing order;
For i = 1 to num_clients {
 For k = 1 to num_clusters {

 (,) = Assign_Distribute (i,k); }
kopt,i = ;
Assign client i to cluster kopt,i based on its values;
Update current state of cluster indexed by kopt,i ; }
Find total profit;}

Select the best initial solution;
// Improve the solution by optimizing , , , values
While (Steady){

For i = 1 to num_servers {
(,) =Adjust_ResourceShares(;}

For i = 1 to num_clients { =Adjust_DispersionRates (,);}
For i = 1 to num_clusters {

TurnON_servers(, ,);
TurnOFF_servers (, ,) ;}

Find total profit; }

By changing the problem to minimization form, the hessian
matrix of the objective function is positive definite, so the
optimization problem is convex and the solution can be
determined by the KKT conditions. Based on this method, if is
a fixed parameter, the ith client has in the following form:

/ (18)

Note that calculation uses the same formula by changing
the superscripts from to and removing the term. By
applying the constraints in problem (17), the amount of and
can be determined by a numerical optimization method such as
binary search. This procedure is denoted as
Adjust_ResourceShares(in the pseudo code.

2) Making servers active or inactive
Servers can be turned ON or OFF to increase the utility price

or decrease the operation cost and improves the total profit in the
system. If by making a server active, the total utility improvement
is more than the operation cost of the server, this action will
improve the total profit. For each client, increasing the utility is
based on a change in its response time.

For selecting servers to activate, the best possible
improvement after activation should be found and compared to the
operational cost of the server. In each cluster, if a server class
exists that has at least one inactive server, the problem to find the
best set of clients to be assigned to the new server to maximize the
total profit should be solved to decide whether activate a server or
not. Finding the best improvement in the total profit by making a
server active is a nonlinear mixed integer programming problem
and we used decomposition method and dynamic programming to
find a suboptimal solution with low complexity. Details of this
problem are omitted for brevity.

This optimization should be executed for each server class in
each cluster that has at least one inactive server in the final
solution. This procedure is called TurnON_servers(, ,)
in the pseudo code.

When portion of the ith client’s requests served by the new
active server is zero, solution of this optimization problem can be
used to adjust the assignment parameters to optimize the total
profit while the allocated resources to different portion of the
client’s requests () are fixed. This is the dual problem of the
problem presented in (17). This procedure is denoted as
Adjust_DispersionRates (,) in the pseudo code.

To find a server to make inactive, the servers are ranked based
on the total approximated utility function and server with lowest
approximated utility is the first candidate for being inactive. To
check that if making a server inactive can increase the total profit
of the system, all clients that are assigned to the selected server
are removed from the server and reassigned to the active servers.
This may help in finding better assignment of clients to servers. If
the total profit of the new system is more than the previous case,
the selected server is turned OFF otherwise the selected server is
removed from the candidate set of servers to turn OFF to process
other servers and explore more cases in next iterations.

This procedure is called TurnOFF_servers(, ,) in the
pseudo code.

VI. EXPERIMENTAL RESULTS
To evaluate the proposed solution, we implemented the

resource allocation method. There is no existing software
framework for this, so we ended up implementing all components
of the system, from clients to servers and clusters by ourselves.

This implementation is done for resource allocation of the system
that is modeled in section III.

The number of clusters in the cloud computing, the number of
different server classes, and the number of different utility classes
are set to 5, 10 and 5, respectively. We used normalized amounts
for most of the components in the system instead of real values.
For each utility class, and (mean of the execution time) for
the clients are generated with (uniformly distributed) random
variables between 0.4 and 1. The value of for each client is set
with a random variable between 0.5 and 4.5. The utility class of
each client is set with a random assignment form the existing
utility classes. , and for each server class are set with
random variables between 2 and 6 and values of is set with
random variable between 1 and 3. The amount of for each
server class is set with another random variable between 2 and 6.
The amount of for each client is set with a random variable
between 0.2 and 2.

For the implemented heuristic, number of iterations for the
initial solution was set to 3. The best initial solution from these
three initial solutions was used to find the final solution after the
local search. To compare the results of the proposed heuristic with
a known resource allocation method, a modified version of the
Proportional Share (PS) scheduling [8] was used. The original PS
distributes the client’s requests between all active servers; this
strategy increases the response time of the clients. Also the class
of clients is not considered in the original version of this
scheduling scheme. We thus modified the original PS to decrease
the number of the servers that each client is assigned to and
consider the utility class of the clients. In this modified scheme,
values of for the active servers are added and the problem of
finding the resource shares in the PS is solved by the assumption
of having only one server with the processing capacity equal to
the sum of all server processing capacities. Furthermore, the
average of the processing service rate of the clients on the active
servers is used as the processing service rate on that server. Also
to consider the class of clients, this average service rate is
multiplied with the slope of the utility function.

After this calculation, the amounts of the processing capacity
for different clients are allocated based on a method inspired from
the First Fit heuristic for the bin packing [16]. Again the heuristic
is changed to fit our problem characteristics as follows. If the best
server (with respect to the service rate) cannot meet the minimum
required processing capacity for the client, the remaining capacity
is allocated to the client and the next free server provides the rest
of the required computational capacity. To process the clients,
they are sorted based on their slope of utility with respect to the
response time to serve the clients that are more sensitive to a
change in the response time earlier in the heuristic. Also to find
the best possible set of active servers, an iterative approach is
used. A similar approach is used for the communication resource
allocation. The quality of the solution generated from this
modified algorithm is much better than the original PS.

 To show the quality of the presented solution in client
assignment and resource allocation in clusters, we generated
different client assignments randomly and allocate the resources in
the clusters based on the proposed solution. For each randomly
generated solution, local search is used to increase the quality of
the final solution. For this local search, after generating the final
solution, the clients are picked one at a time and is removed from
the assigned cluster and then the best cluster to serve the client is
found based on the available condition of the clusters. This repeats
until no further reassignment is possible.

Figure 4 shows the average results of the resource allocation
in cluster for different number of the clients for (i) the proposed
solution (i.e., the Resource_Alloc algorithm), (ii) the modified PS

plus finding the best set of active servers, and (iii) the best
randomly generated and subsequently optimized solution (using
the local neighborhood search). In this figure all the profit is
normalized by the best found profit. For the latter “nearly
optimal” solution, for given number of clients, at least 20 (5 for
200 clients) different scenarios are considered and for each one at
least 10,000 random solutions are generated and optimized in
order to find the best possible solution from this Monte Carlo like
simulation.

As can be seen, the performance of the modified PS is not
comparable to the proposed solution in part because all three
dimensions of the resources are not considered. Also the best
point for energy consumption is not calculated in this solution and
this affects the quality of the solution. As can be seen from this
figure, the differences between the average quality of the proposed
solution and the optimal cases are not more than 9%. This shows
that the proposed solution has acceptable solution quality in all
attempted scenarios.

Figure 5 shows the normalized total profit of the worst random
solution, profit of this solution after optimization by the local
search, as well as the worst case profit of the proposed solution
with respect to the found solution with Mont Carlo simulation in
different scenarios for system parameters. As can be seen, quality
of solution improves dramatically after the optimization in the
initial solution.

The presented algorithm has different parts containing
generating initial solution and improving the found initial
solution. The computational complexity of the algorithm in case
of finding the initial solution is | | , in which and |j|
denote the granularity of which is used in the dynamic
programming technique and the number of total servers in the
system. By assumption of homogeneous number of servers in the
clusters, distributed nature of the algorithm reduces this cost by a
factor of by adding the communication complexity. Also the
computational complexity of the parts that improves the initial
solution using the numerical optimization techniques and dynamic
programming can be improved by a factor of using the
distributed computation.

VII. CONCLUSION
In this paper, the problem of multi dimensional SLA-based

resource allocation in the cloud computing system is considered.
SLA is defined based on a utility function which decreases when
the average response time of the requests is increased. The
response time based on the different allocation of resources for
different servers and the clusters is modeled and used in the profit
optimization problem. The problem is formulized based on
Generalized Processor Sharing and an elaborate multi-stage
heuristic algorithm is used to solve the problem. The system is
modeled to demonstrate the quality of the final solution based on a

modified version of the proportional share allocation and the
optimal result based on the enumeration. In future works, the
model will be expanded to deployment of complex multi-tier
applications in a cloud computing infrastructure.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia. (2010, A view
of cloud computing. Commun ACM 53(4), pp. 50-58.

[2] R. Buyya. Market-oriented cloud computing: Vision, hype, and reality of
delivering computing as the 5th utility. 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, CCGRID 2009.

[3] L. A. Barroso and U. Hölzle, The Case for Energy-Proportional
Computing, IEEE Computer, vol. 40 (2007).

[4] K. Krauter, R. Buyya, and M. Maheswaran, A taxonomy and survey of
grid resource management systems for distributed computing. Softw.
Pract. Exper. 32, 2 (Feb. 2002),

[5] R. Buyya and M. Murshed. (2002, 11). GridSim: A toolkit for the
modeling and simulation of distributed resource management and
scheduling for grid computing. Concurrency and Computation Practice &
Experience 14(13-15), pp. 1175-220.

[6] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster, Capacity
Leasing in Cloud Systems using the OpenNebula Engine, Workshop on
Cloud Computing and its Applications, 2008.

[7] S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consolidation for
cloud computing. In Workshop on Power Aware Computing and
Systems (HotPower ’08). San Diego, USA, December 2008.

[8] Z. Liu, M. S. Squillante and J. L. Wolf. On maximizing service-level-
agreement profits. Presented at 3rd ACM Conference on Electronic
Commerce.

[9] L. Zhang and D. Ardagna. SLA based profit optimization in autonomic
computing systems. Presented at ICSOC '04: Proceedings of the Second
Int. Conf. on Service Oriented Computing, November 2004.

[10] D. Ardagna, M. Trubian and L. Zhang. (2007, SLA based resource
allocation policies in autonomic environments. Journal of Parallel and
Distributed Computing 67(3), pp. 259-270.

[11] C. Santos, X. Zhu, and H. Crowder. A mathematical optimization
approach for resource allocation in large scale clusters. Technical Report
HPL-2002-64, HP Labs, March 2002.

[12] A. Chandra, W. Gongt and P. Shenoy. Dynamic resource allocation for
shared clusters using online measurements. International Conference on
Measurement and Modeling of Computer Systems SIGMETRICS 2003.

[13] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat and R. P.
Doyle. Managing energy and server resources in hosting centers.
Presented at 18th ACM Symposium on Operating Systems Principles
(SOSP'01), October 21, 2001.

[14] M. N. Bennani and D. A. Menasce. Resource allocation for autonomic
clusters using analytic performance models. Presented at Second
International Conference on Autonomic Computing.

[15] Z. Zhang, D. Towsley and J. Kurose. Statistical analysis of generalized
processor sharing scheduling discipline. Presented at ACM SIGCOMM
'94 Conf. on Communications Architectures, Protocols and Applications.

[16] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer
Implementations. Wiley, 1990.

[17] J.Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag,
1999.

[18] A. Papoulis. Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, 3rd edition, 1991.

Figure 4. Comparison between performances of proposed solution,
modified PS, and “best solution found” with Monte Carlo simulation.

Figure 5. Comparison between random initial solution and final result.

0

0.2

0.4

0.6

0.8

1

1.2

20 40 60 100 200

N
or

m
al

iz
ed

 T
ot

al
 P

ro
fit

Number of Clients

Proposed Solution Best solution found Modified PS

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

20 40 60 100 200

N
or

m
al

iz
ed

 T
ot

al
 P

ro
fit

Number of Clients

Worst Initial Solution before optimization Worst Inintial Solution after optimization
Worst Solution after local search Best Found Results

