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Abstract—In distributed computing systems (DCSs) where server nodes can fail permanently with nonzero probability, the system
performance can be assessed by means of the service reliability, defined as the probability of serving all the tasks queued in the DCS
before all the nodes fail. This paper presents a rigorous probabilistic framework to analytically characterize the service reliability of a
DCS in the presence of communication uncertainties and stochastic topological changes due to node deletions. The framework
considers a system composed of heterogeneous nodes with stochastic service and failure times and a communication network
imposing random tangible delays. The framework also permits arbitrarily specified, distributed load-balancing actions to be taken by
the individual nodes in order to improve the service reliability. The presented analysis is based upon a novel use of the concept of
stochastic regeneration, which is exploited to derive a system of difference-differential equations characterizing the service reliability.
The theory is further utilized to optimize certain load-balancing policies for maximal service reliability; the optimization is carried out by
means of an algorithm that scales linearly with the number of nodes in the system. The analytical model is validated using both Monte
Carlo simulations and experimental data collected from a DCS testbed.

Index Terms—Renewal theory, queuing theory, reliability, distributed computing, load balancing.
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1 INTRODUCTION

Adistributed computing system (DCS) allows its users to
process large, time-consuming workloads in a coopera-

tive fashion. To achieve this goal, each workload has to be
divided into smaller and independent units, called tasks.
Next, these tasks have to be redistributed to appropriate
computational elements, where they are concurrently pro-
cessed. Tasks have to be intelligently allocated onto the nodes
in order to efficiently use the resources available in the
system. Such task allocation is referred to in the literature as
load balancing (LB). LB is of great importance in distributed
computing since, as commonly known, the performance of a
given DCS strongly depends upon the distribution of the
tasks in the system [1]. Furthermore, the LB problem belongs
to a more general class of problems in resource allocation.
Theseproblemsappearnot only indistributed computingbut
also in routing in wireless networks, telecommunications,
data replication in hard-drive arrays, and other problems in
computer science and operational research [2], [3], [4], [5], [6].

LB policies rely on the effective exchange of load state
information among the nodes. This information is used to

estimatewhether nodes are imbalanced or notwith respect to
other nodes in the DCS. Moreover, load state information is
utilized to calculate both the appropriate amount of tasks that
needs to be reallocated to other nodes and the appropriate set
of nodes receiving the load. When the communication
network imposes stochastic, tangible delays, the load state
information available to the nodesmay be severely dated and
therefore misleading. Moreover, such delays automatically
imply that the effect of task reallocation is not instantaneous.
Clearly, it is expected that the success of any scheduler to
balance the workload is degraded by communication
limitations [7], [8].

The dynamics of DCS becomes further complicated in
volatile or harsh environments in which nodes are prone to
fail permanently (as in scenarios where massive disruptions
result from weapons of mass destruction). In such cases,
messages have to be broadcasted among working nodes in
order to detect and isolate faulty nodes. Once again, due to
network stochastic communication delays, information
available to each node about the number of the functional
nodes in the DCS may not be current; as such, LB policies as
well as methods for reallocating tasks originally assigned to
faulty nodes must be analyzed employing a probabilistic
framework.

The role of LB in improving the performance of DCSs has
been studied vastly considering a number of performance
metrics; these include the average response time of an entire
workload [1], [8], the probability of successfully serving an
entire workload [9], [10], [11], [12], [13], [14], [15], the
probability of serving a workload within a given amount of
time [16], the average queue length of a node [17], [18], and
the total sum of communication and service times [4], [19].
In addition, the problem of LB has been studied under both
static and dynamic scenarios. In static LB, a centralized
entity allocates the tasks offline, that is, tasks are allocated
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prior to their execution in the DCS [10], [11], [17]. In
contrast, in dynamic LB, tasks are queued at the nodes and
LB is triggered online whenever there is an imbalance in the
DCS [7], [8], [19], [20].

LB has been effectively employed to reduce the effect of
node failures on the execution of a workload. The objective
is to maximize the service reliability, while the response
time of the workload is simultaneously minimized. To date,
existing analytical solutions to this problem have been
based upon multiobjective optimization approaches. Some
approaches have assumed deterministic communication
delays [21], [22], [23], [24] while introducing task and/or
hardware redundancy to compensate for the delays [25],
[26]. Other solutions either exploit a priori information on
the network configuration [27] or provide computationally
fast solutions by using heuristic algorithms such as genetic
algorithms [28] and simulated annealing [29], [30]. Most
relevant to this paper are the recent works by Dai et al. [10],
[11]. The authors solve the static LB problem by using a
centralized entity, which allocates tasks in the DCS in order
to maximize the service reliability. In these works, the
authors have considered random communication delays as
well as random server failure. Additionally, in an earlier
work, we have studied the effect of node failure and
recovery on the average response time of a workload served
by a two-node DCS [9].

In this paper, we consider the problem of LB for
maximizing the service reliability of a DCS. Unlike Dai
et al., we address the dynamic LB problem and propose an
online decentralized solution. We extend the model pre-
sented in [15] and characterize the service reliability of DCSs
composed of an arbitrary number of nodes. Further, in this
paper, we characterize the dynamics of the service reliability
as a function of the balancing instant. Note that due to
communication limitations, there is a tradeoff between
having accurate account of the node states prior to LB by
means of delaying the LB and immediacy of LB action (to
prevent wasting time). This new view of reliability offered
by our analytical approach enables us to optimally select
when the balancing action should be taken. Potential
applications of this work include resilient distributed
computing for battlefield management systems (as distrib-
uted computing is performed in harsh environments where
nodes can fail permanently), grid computing (where nodes
can leave the DCS at any time), andwireless sensor networks
in harsh environments.

This paper is organized as follows. In Section 2, we build
the regeneration-based stochastic theory for analyzing the
reliability of DCSs. In Section 3, we apply the theory to
devise LB strategies that maximize the reliability of a DCS.
In the same section, the analytical model for reliability is
validated and the performance of the LB strategies is tested,
both theoretically and experimentally. Our conclusions are
presented in Section 4.

2 THEORY

2.1 Problem Statement

Consider a DCS composed of n nodes communicating over
a fully connected network. Consider also that a workload
comprising M independent, indivisible tasks has to be
processed by the system. Suppose that the service time of a
task at each node is random and suppose also that server
nodes can fail permanently at any random time. Assume

that at t ¼ 0 all the nodes are functioning and tasks are
allocated on the nodes so that the jth node has in its queue
mj tasks, with

Pn
j¼1 mj ¼M. The problem addressed in this

paper is concerned with maximizing the service reliability
of the workload, i.e., maximizing the probability of serving
all the tasks before all nodes fail.

In order to maximize the service reliability, LB is
performed at time tb � 0 so that each functional node, the
jth node, say, transfers a positive amount, Ljk, of tasks to
the kth node, with j 6¼ k, which is functioning according to
the knowledge of the jth node. Naturally, these task
exchanges over the network take random transfer times.
Additionally, we have assumed that, at t ¼ 0, each node
broadcasts a QI packet that takes a random amount of time
to reach the destination nodes.

The dynamics of the DCS are governed by the random
times associated to the service of tasks, the failure of nodes,
and the transfer time of both information and tasks in the
network. These random times are important in our analysis
and are defined next.

2.1.1 Definitions and Assumptions

Let the random variable Wki be the service time of the ith
task at the kth node, and let XQ

jk be the transfer time of the
QI packet sent from the jth to the kth node, j 6¼k. The
failure time of the kth node is represented by the random
variable Yk, and the transfer time of the failure-notice (FN)
packet sent from the jth to the kth node is represented by
the random variable XF

jk (j 6¼k). Finally, let the random
variable Zik be the transfer time of the ith group of tasks
sent to the kth node. We require the following assumptions
on these random variables:

Assumption A1 (Exponential distribution of the random
times). The random variables Wki, X

Q
jk, Yk, and XF

jk follow
exponential distributions with rates �dk , �Q

jk, �fk , and �F
jk,

respectively. The random variable Zik is assumed to follow an
exponential distribution conditional on the number of tasks
transferred to the kth node.

Assumption A2 (Independence of the random times). All
the random variables listed in Assumption A1 are mutually
independent.

Assumptions on the exponential distribution of the
service and failure times are commonly adopted in the
literature [1], [10], [17], [29]. Regarding the transfer times,
our assumptions are justified according to our prior work
[8], [9], [15] and the empirical data obtained from the
experiments conducted over the distributed computing
architecture to be discussed in Section 3. In addition, we
have assumed that the mean transfer time of the ith group of
tasks being transferred to the kth node follows the first-order
approximation: E½Zi;k� ¼ ~��1i;k ¼ ajk lik þ bjk, where ajk and
bjk are positive constants (in seconds per task and seconds,
respectively) that depend upon the communication channel
connecting the jth and the kth nodes, and lik is the number of
tasks in the ith group. This first-order approximation
captures the linear dependence of the mean transfer time
on: 1) the number of tasks to be transferred; 2) the end-to-
end transmission time per task, through the parameter ajk
that is related to the bandwidth; and 3) the combined effects
of the absolute minimum end-to-end propagation time and
any delays resulting from queuing (due to congestion),
which can be represented by a single parameter, bjk.
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Our analysis focuses on characterizing and maximizing
the service reliability when the DCS is dedicated to a specific
user, i.e., we consider the reliability question one workload
at a time. To this end, we assume in our analysis that there
are no future arrivals of external tasks to the DCS after the
submission of a workload at t ¼ 0. To tackle the reliability
problem in the more general, shared setting, where work-
loads arrive continuously, the analysis presented here must
be modified to distinguish between the different workloads
in the system, and in addition, queuing disciplines (related
to workload prioritization) have to be considered. However,
the method presented here is an upper bound for such a
general setting with continuous workload arrivals and it
gives the maximum reliability that the DCS can guarantee to
an individual user. Finally, it must be remarked that the
theory presented here assumes the existence of a completely
reliable fault-tolerance mechanism. When such ideal me-
chanisms are not available, the failure of a node can produce
task losses. Consequently, in this new setting, the service
reliability has to be defined as the probability of serving all
the tasks initially allocated to the nodes.

2.2 Task Reallocation Policy

In order to maximize the service reliability of the DCS, each
functioning node executes a distributed, albeit synchronous,
LB policy at t ¼ tb. The execution of the workload can be
accomplished successfully only if task redundancy is
provided by the DCS. Task redundancy is provided here by
means of a trivial backup policy that is executed only in the
event of node failure. The backup policy is asynchronous and
it is triggered either at the actual failure instant of the nodes or
at the reception of tasks by thebackup systemof a failednode.

2.2.1 Distributed Load-Balancing Policy

First, since the dynamic LB policy executed by the nodes is
distributed, each node must determine independently the
total amount of tasks to reallocate to other nodes. At the
balancing instant, tb � 0, the jth functioning node computes
its excess load by comparing its local load to the estimated
average load in the system. LetQjðtbÞ be the number of tasks
queued at the jth node at time tb. Also, let Q̂‘;jðtbÞ be the
estimate of the number of tasks queued at the ‘th functioning
node as perceived by the jth node at time tb, with ‘ 6¼ j. Here,
weassume that Q̂‘;jðtbÞ¼m‘ if theQIpacket hasbeen received
by the jth node at the time tb and Q̂‘;jðtbÞ¼0 otherwise. The
excess load of the jth node at time tb is defined as

Lex
j ðtbÞ ¼4 QjðtbÞ � �jP

‘2Wj
�‘

M̂jðtbÞ; ð1Þ

where M̂jðtbÞ ¼ QjðtbÞ þ
Pn

‘¼1;‘ 6¼j Q̂‘;jðtbÞ is the estimate of
the workload in the system as perceived by the jth node at
time t ¼ tb,Wj is the collection of nodes that are functioning
as perceived by the jth node at time t ¼ tb. Note that in order
to accurately estimate the initial workload of the system,
nodes have to consider the queue length information
received from all the nodes, not only the information from
the functioning nodes. Finally, the �js are parameters that
can be defined in several ways in order to establish different
balancing criteria. For example, if the �js are associated with
the processing speed, namely,�j ¼ �dj , then the imbalance in
the DCS is determined by the relative computing powers of
the nodes. Alternatively, if the �js are associated to the

reliability of the nodes, namely, �j ¼ ��1fj
, then the reliability

of the nodes determines the amount of imbalance. Yet
another option is to define the �js so that we simultaneously
transfer fewer tasks to the less-reliable nodes and transfer
larger number of tasks to the faster processors. With this
criterion inmind,we can define�j ¼ �djð1� �fj=

P
k2Wj

�fkÞ.
Note that in the case of an extremely reliable node (�f � 0),
the parameter �j is approximately equal to the processing
rate of the node. On the contrary, for an unreliable node, the
parameter �j is only a reduced fraction of its processing rate.

Second, each node has to determine the amount of tasks
to reallocate to the remaining nodes in the system. Let us
define the collection V of overloaded nodes in the DCS as all
those nodes that, at the balancing instant, perceive them-
selves as overloaded with respect to their perceived fair
share of the total workload of the system. Mathematically,
we define V ¼4 fj :Lex

j ðtbÞ>0g. Similarly, for each overloaded
node j, we define the collection Uj of candidate task-receiver
nodes as all those nodes that, at time tb, are perceived by the
sender node as functioning and underloaded with respect to
their own perceived fair shares of the total workload;
namely, Uj ¼4 fk :Lex

k;jðtbÞ < 0; k2Wjg, where j 2 V and
Lex
k;jðtbÞ is the excess load at the kth functioning node as

perceived by the jth node and is defined as Lex
k;jðtbÞ ¼4

Q̂k;jðtbÞ � �kM̂jðtbÞ=
P

‘2Wj
�‘.

Third, the jth node partitions its excess load among all
the candidate task-receiver nodes. For the kth candidate
task-receiver node, the partition pjk is defined as pjk ¼4
Lex
k;jðtbÞ=

P
‘2Uj L

ex
‘;jðtbÞ whenever k 2 Uj. For convenience,

the partition pji ¼ 0 for all i 62 Uj. Note that in the special
case when the task transfer times are negligible, the
partitions pjk will maximize the service reliability under
all node-failure rates [8]. This is due to the fact that upon the
occurrence of a failure, the unserved tasks of the failed node
can instantly join the queues of other surviving nodes. In
general, however, the above partitions pjk may not be
effective and must be adjusted in order to compensate for
the effects of the random transfer times. The load to be
migrated from the jth to the kth must be adjusted according
to what is called the load-balancing gain [8], [9], [15], [20],
which is denoted as Kjk, yielding LjkðtbÞ ¼ bKjkpjkL

ex
j ðtbÞc.

(bxc is the greatest integer less than or equal to x.)
Note that at the balancing instant, the excess load at node j

as well as the partitions pjk are fixed quantities; the LB policy
is determined by the LB gains. Here, LB gains are regarded
as parameters that have to be optimally selected in order to
maximize the service reliability. Given that the quantity
pjkL

ex
j defines the maximum number of tasks to be ex-

changed from node j to k, we have assumed here that the LB
gains are rational numbers in the interval [0, 1]. Finally, we
arrange in matrix form the LB gains with the convention that
Kjj ¼ 0 for all j. We denote such matrix byK. From this, the
LB policy K refers to a task reallocation policy specified by
the LB gains Kij and executed at t ¼ tb.

2.2.2 Task Recovery in the Event of Node Failure

The reliability problem tackled here can be solved only if the
DCS provides task redundancy. Task redundancy is
provided by means of a backup system that is attached to
each node. This mechanism for task redundancy is a
distributed version of the centralized method described in
[12]. It must be noted that the backup system does not
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service any tasks. More specifically, in the event of node
failure, the backup system 1) broadcasts an FN packet to
alert the nodes about the change in the number of
functioning nodes; 2) reallocates all the unfinished tasks
among those nodes perceived to be functioning; and
3) handles the reception of tasks that were in transit to the
jth node before its failure, and next, reallocates the received
tasks among the functioning nodes. In particular, if the jth
node has failed, its backup equipment reallocatesLF

jk tasks to
the kth node, with k2Wj. In order to simplify the work of the
backup system, the number of tasks LF

jk is computed using
the formula LF

jk ¼ bQj�kð
P

‘2Wj
�‘Þ�1c.

The remainder of this section focuses on deriving
recurrence equations that characterize the service reliability.
We begin by introducing some necessary definitions of key
system variables.

2.3 State Model for the Service Reliability

2.3.1 System Queue, System Function, and

Network State

At any time, the configuration of a DCS can be described
using the following quantities: 1) the number of tasks
queued at each node; 2) the functional or dysfunctional
state of each node in the system; and 3) the amount of tasks
in transit over the communication network. In what follows,
we formally develop the necessary notation to describe the
time-varying DCS configuration.

Recall that QiðtÞ denotes the queue length of the ith node
in the DCS at time t. For i 6¼ j, we use the binary variable
qijðtÞ to indicate if the ith node is informed (“1”) or not (“0”)
about the queue length of the jth node. That is, the qijðtÞ
variable describes if the QI packet broadcasted by the jth
node has been received or not by the jth node. We can
arrange the QiðtÞ and qijðtÞ variables in an n-by-n matrix,
denoted by QðtÞ, whose ith diagonal element contains QiðtÞ
and its ijth off-diagonal element contains the qijðtÞ vari-
ables. We term the QðtÞ matrix as the system-queue state. For
example, in a two-node DCS, the matrix

Qðt0Þ ¼ m1 0
1 m2

� �

at time t ¼ t0 corresponds to the configuration for which the
first node has in its queuem1 tasks and is uninformed about
the queue length of node 2, while node 2 has m2 tasks in its
queue and is informed about the number of tasks queued at
node 1 at t ¼ 0.

Let fiðtÞ be a binary variable representing the working
(“1”) or failed (“0”) state of the ith node at time t. For i 6¼ j,
we define fijðtÞ ¼ 1 (correspondingly, fijðtÞ ¼ 0) to indicate
that the jth node is functioning (correspondingly, faulty) as
perceived by the ith node at time t. As in the case of the
system queue state, we arrange all these variables in an n-
by-n matrix and introduce the system function state, which is
denoted by the matrix FðtÞ. Note that as in the case of the
queue length information, the random transfer time of FN
packets introduces uncertainty on the functioning state that
a node perceives about the other nodes in the DCS.

In addition, due to stochastic transfer times in the
communication network, each group of tasks beingmigrated
over the network has a random transfer time. Let the
nonnegative integer gkðtÞ represent the number of different

groups of tasks that are in transit, from different nodes, to the
kth node at time t. Let also lik be the number of tasks in the ith
group being transferred to the kth node. For convenience of
notation, we can assign the vector ckðtÞ to the kth node such
that the first component of ckðtÞ is always set to gkðtÞ, while its
remaining components are set to lik. More precisely,
ckðtÞ ¼4 ðgkðtÞ l1k l2k . . . lgkðtÞkÞ. We now define the network
state as the concatenated vector CðtÞ ¼4 ðc1ðtÞ; . . . ; cnðtÞÞ. For
example, in a three-node DCS, the vector Cðt0Þ ¼ ð½2 10 1�;
½1 5�; ½0�Þ at t ¼ t0 corresponds to a network state for which
two different groups of tasks (10 tasks in the first group and 1
task in the second group) are being transferred to the first
node (c1ðt0Þ ¼ ½2 10 1�), one group of five tasks is being
transferred to the second node (c2ðt0Þ ¼ ½1 5�), and there are
no tasks in transit to the third node (c3ðt0Þ ¼ ½0�).
2.3.2 Service Reliability

At this point, we are ready to define formally the service
reliability of a DCS. Let TKðtb;Q0;F0;C0Þ denote the random
time taken by the DCS to serve its entire workload if the LB
denotedbyK is performedby all functioningnodes at time tb,
and the initial system configuration at t¼0 is as specified by
Q0¼Qð0Þ, F0 ¼ Fð0Þ and C0 ¼ Cð0Þ. More precisely, we
define TKðtb; Q0; F0; C0Þ ¼4 infft > 0 : diagðQðtÞÞ ¼ 0 and
CðtÞ¼0g, where diagðQÞ is a vector formed by all the
elements in the diagonal of the Q matrix. Note that by
construction, the workload completion time is infinite when
all the nodes have failed and at least one task remains
unserved.Note also thatPfTKðtb;Q0;F0;C0Þ ¼ 1g > 0 since
servers can fail permanently with nonzero probability. Our
objective is to calculate the service reliability that is defined as
the probability that all the tasks can be served before all
servers fail, that is RKðtb;Q0;F0;C0Þ ¼4 PfTKðtb;Q0;F0;
C0Þ <1g. Note that the service reliability is less than unity
since PfTKðtb;Q0;F0;C0Þ ¼ 1g > 0.

2.4 Regeneration Time

The main idea of our analysis is to introduce a regeneration
event, and analyze the queuing system emerging immedi-
ately after the occurrence of the regeneration event. The key
property of the regeneration event is that upon its occur-
rence, a fresh copy of the original stochastic process (from
which the random variable TKðtb;Q0;F0;C0Þ is defined) will
emerge, nonetheless having a new initial system configura-
tion that transpires from the regeneration event. To this end,
we introduce the regeneration time, � , which is the minimum
of the following five random variables: the time to the first
task service by any node, the time to the first occurrence of
failure at any node, the time to the first arrival of a QI packet
at any node, the time to the first arrival of an FNpacket at any
node, or the time to the first arrival of a group of tasks at
any node. More precisely, � ¼4 minðminkðWk1Þ;minj 6¼kðXQ

jkÞ;
minkðYkÞ;minj6¼kðXF

jkÞ;mink;iðZkiÞÞ.
Suppose that the initial system state is described by Q0,

F0, and C0. The occurrence of the regeneration event f� ¼
sg gives birth to a new DCS at t ¼ s whose random times
satisfy Assumptions A1 and A2 while having its own initial
system configuration. The new initial system configuration
can be either one of the following:

1. a new initial task distribution when the regeneration
event is a service to a task at a node;
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2. a new system queue state when the regeneration
event is the reception of a QI packet;

3. a new initial task distribution, a new system function
state, and a new network state when the regenera-
tion event is a node failure;

4. a new system queue state and a new system function
state when the regeneration event is the reception of
an FN packet; or

5. a new initial task distribution and a new network
state when the regeneration event is the reception of
a group of tasks by a node.

2.5 Characterization of the Service Reliability

Our main results are given in Theorems 1 and 2. Theorem 1
characterizes the service reliability of an n-node DCS in the
form of a difference-differential equation. Theorem 2
provides the initial condition required to solve Theorem 1.

We will introduce necessary notation that will facilitate

keeping track of the changes in the initial system configura-

tion. While the notation may seem cumbersome, it is

extremely effective in allowing us to write equations in

Theorems 1 and 2 compactly. Let ��ij denote an n-by-nmatrix

with all its entries equal to zero except that its ijth element is

equal to 1. LetA be amatrix.Wedenote byAij amatrix that is

identical to A but with its ijth component set to zero. Also,

recall that fii is the ith diagonal element of F0, L
F
ik is the

number of tasks reallocated from the ith to the kth node upon

failure of node i, lji is the number of tasks in the jth group in

transit to the ith node, and ck ¼4 ðgk l1k l2k . . . lgkkÞ is the

vector representing the number of tasks in transit to the kth

node at a certain time t. Vectors CYi

0 and C
Zji

0 represent the

change in the network statewhen the ith node fails andwhen

it receives the jth groupof tasks, respectively.More precisely,

vectorsCYi

0 andC
Zji

0 are defined asCYi

0 ¼4 ðcYi

1 ; . . . ; ci; . . . ; c
Yi
n Þ

with cYi

k ¼ ðgk þ uðLF
ikÞ l1k . . . lgkk L

F
ikÞ, uð�Þ the unit-step

function, and C
Zji

0 ¼ ðcZji

1 ; . . . ; c
Zji

i ; . . . ; c
Zji
n Þ with c

Zji

i ¼ ðgi �
1 l1i . . . lðj�1Þi lðjþ1Þi . . . lgkiÞ and c

Zji

k ¼ ðgk þ uðLF
ikÞ l1k . . .

lgk k L
F
ikÞ for k 6¼ i.

Theorem 1. Consider an n-node DCS with an arbitrarily
specified initial system configuration Q0¼Qð0Þ, F0¼Fð0Þ,
and C0¼Cð0Þ. The service reliability satisfies the difference-
differential equation:

d

dtb
RK

�
tb;Q0;F0;C0

� ¼Xn
i¼1

�diRK

�
tb;Q0 � ��ii;F0;C0

�

þ
Xn
i¼1

Xn
j¼1;j6¼i

�Q
ijRK

�
tb;Q0þ��ji;F0;C0

�

þ
Xn
i¼1

Xn
j¼1;j6¼i

�F
ijRK

�
tb;Q

ji
0 ;F

ji
0 ;C0

�

þ
Xn
i¼1

Xgi
j¼1

~�j;iRK

�
tb;Q0 þ fii lji��ii;F0;C

Zji

0

�

þ
Xn
i¼1

�fiRK

�
tb;Q

ii
0 ;F

ii
0 ;C

Yi

0

���RK

�
tb;Q0;F0;C0

�
;

ð2Þ

with �¼Pn
i¼1ð�diþ�fiþ

Pgi
j¼1 ~�j;iÞ þ

PPn
i;j¼1;j 6¼ið�Q

ijþ�F
ijÞ.

Proof. See Appendix. tu

It must be noted that the characterization for the service
reliability is differential in the balancing instant, recursive
in the number of tasks to be serviced by the DCS, and
depends also on the LB policy.

In order to solve the equation in Theorem 1, not only
values of Q0, F0, and C0 for mi � 1 are required, but also
other system configurations, such as when only one of the
servers is functioning, when more than one group of tasks is
in transit to a server, and when no tasks are in transit in the
network. Consequently, starting with Q0, F0, and C0 and
(2), we have to construct a system of equations that has to be
solved following a particular order. Equations forming such
a system are derived in a straightforward manner using (2)
and the new initial configurations shown at the right-hand
side of (2). Finally, recursions are solved using the initial
conditions: Rðtb;Q0;F0;C0Þ ¼ 1 when there are no tasks to
process in the DCS and Rðtb;Q0;F0;C0Þ ¼ 0 when all the
nodes have failed and at least one task remains unserviced.

Additionally, to solve the recurrence equation in
Theorem 1, we first need to calculate its initial condition
corresponding to tb ¼ 0, i.e., RKð0;Q0;F0;C0Þ. By exploiting
the regenerative theory developed here, we obtain the
algebraic recursion presented in Theorem 2.

Theorem 2. Consider an n-node DCS with initial system
configuration Q0, F0, C0 at tb ¼ 0. The service reliability
satisfies the algebraic recursion:

RK

�
0;Q0;F0;C0

� ¼Xn
i¼1

�di

�
RK

�
0;Q0 � ��ii;F0; ~C0

�

þ
Xn
i¼1

Xn
j¼1;j6¼i

�F
ij

�
RK

�
0;Q0;F

ji
0 ;C0

�

þ
Xn
i¼1

Xgi
j¼1

~�j;i

�
RK

�
0;Q0 þ fii lji��ii;F0;C

Zji

0

�

þ
Xn
i¼1

�fi

�
RK

�
0;Qii

0 ;F
ii
0 ;C

Yi

0

�
;

ð3Þ

with �¼Pn
i¼1ð�diþ�fiþ

Pgi
j¼1 ~�j;iÞþ

Pn
i¼1
Pn

j¼1;j 6¼i �
F
ij.

We omit the proof of Theorem 2 since it is similar to that
of Theorem 1. (We refer the reader to [14], [15] for a proof in
the special case of n¼2 nodes.)

2.6 Optimal LB Policies for Maximal Reliability

The model for the service reliability given in Theorems 1
and 2 can be used to search for the optimal balancing
instant, t�b , and the optimal LB policy, K�, that maximizes
the service reliability. Formally, we have

ðt�b ;K�Þ ¼4 argmax
ðtb;KÞ

RKðtb;Q0;F0;C0Þ ð4Þ

subject to tb � 0 and Kij 2 ½0; 1�.
We can attempt to solve the optimization problem using

the n-node characterization for the reliability given in
Theorems 1 and 2; however, computing the reliability using
such characterization is computationally expensive for
systems with a large number of nodes as the amount of
computation grows exponentially with the number of nodes.
Namely, since the total number of information states for the
DCS is 2nðn�1Þ, the complexity in solving Theorem 1 is
bounded by Oð2n2Þ. In addition, the complexity in solving
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Theorem 2 is bounded by Oðn!Þ, because we must consider
all the possible orders of arrival of tasks at the underloaded
nodes. As an alternative, for DCSs with an arbitrary number
of servers, we follow [14], [15] and provide a suboptimal
algorithm for LB policies that scales linearly with the number
of nodes. The key idea is to decompose an n-node system
into several two-node DCSs and exploit our exact character-
ization for two-node systems.

2.6.1 Algorithm for Devising Optimal LB Policies

Suppose that the jth node is overloaded and recall that Uj is
the collection of candidate receiver nodes as perceived by the
jth node. Let Ki

jk denote the LB gain, calculated at the ith
iteration of the algorithm, that is associated with the load
transfer from the jth to the kth node. Similarly, let tib denote
the LB instant calculated at the ith iteration of the algorithm.
Also, let us denote by U 0j the set containing all those recipient
nodes k, forwhichKi

jk and tib have been already calculated. In
addition, let Uj denote the set of recipient nodes ‘, for which
ti�1b and Ki�1

j‘ have been computed. The algorithm for
computing the LB policy is described in the following steps:

Initialization: To start the iterations, the algorithm
assumes that Uj ¼ Uj, U 0j is empty and K0

jk ¼ 1 for all
k 2 Uj. Namely, we have assumed that the jth overloaded
node can send full load partitions to the recipient nodes.

Repeat: At the ith iteration of the algorithm we select a
recipient node, say the kth node, from the collection Uj. The
LB gain Ki

jk is obtained by considering a two-node system
composed of nodes j and k. Thus, upon the execution of LB
at tb, the kth and the jth nodes have loads Q̂k;jðtbÞ and

QjðtbÞ �
X

‘2ðUjnfkgÞ

�
Ki�1

j‘ pj‘L
ex
j ðtbÞ

��X
‘2U 0j

�
Ki

j‘pj‘L
ex
j ðtbÞ

�
� �Ki

jkpjkL
ex
j ðtbÞ

�
;

respectively, while bKi
jkpjkL

ex
j ðtbÞc tasks are assumed to be in

transit from the jth to the kth node. After computing the
optimal values tib and Ki

jk, we update the sets Uj and U 0j as
follows: Uj Uj n fkg and U 0j U 0j [ fkg. These calculations
are repeated until LB instants and LB gains of all the nodes in
Uj are obtained, i.e., after Uj becomes empty. After this, we
set Uj to be equal to Uj and U 0j be empty.

Termination condition: The ith iteration of the algo-
rithm is repeated until either all the LB gains converge to a
certain value or an user-defined maximum number of
iterations, N , is executed. The announced LB gains are those
obtained after either one of these two termination condi-
tions are met. The announced tb is the largest balancing
instant computed for each pair of nodes at the last iteration
of the algorithm.

Algorithm complexity and scalability: Suppose that the jth
node is overloadedandhas to reallocate tasks to � nodes,with
� 2 ½0; n� 1�. Since the LB policy executed by the nodes is
distributed, each node has to solve Theorems 1 and 2
individually. For n¼2 nodes, the complexity in solving
equations in Theorems 1 and 2 is a function of the number of
tasks queued at the jth node, i.e.,OðfðmjÞÞ. Since the jth node
decomposed the DCS in � pairs of DCS, the overloaded node
has to solve at most � times the optimization problem (4) for
n¼2. Further, by construction of the algorithm, the jth node
has to solvenomore thanN times suchoptimizationproblem.
From this, we observe that the complexity of the algorithm is

OðNðn� 1ÞfðmjÞÞ. In addition, if an exhaustive search in the
LBgains is conducted to solve the optimizationproblem, then
fðmjÞ is bounded by mj, because no more than Lex

j ¼
bmj � �jð

P
‘2Wj

�‘Þ�1M̂jc LB gains have to be evaluated.
We conclude that the proposed algorithm scales linearly

in both the number of nodes in the DCS and the number of
tasks queued at the overloaded node. It must be commented
that for n¼2, we have observed in our simulations and in
our prior works [14], [15] that the service reliability exhibits
a concave shape as a function of the LB gains. This heuristic
can be exploited to search for the optimal LB gains using a
bisection algorithm. As the complexity of bisection search
algorithms is logarithmic, the complexity in solving the
regenerative equations can be bounded by logðmjÞ.

3 RESULTS

3.1 Distributed Computing Architecture

We have implemented a small-scale DCS testbed to
experimentally validate the theoretical achievements shown
in this paper. The hardware architecture consists of the
computing nodes, the backup nodes, and the communication
network. The set of computing nodes comprises hetero-
geneous processors, such as Pentium II- and Pentium IV-
based computers. Some of the computing nodes are
dedicated machines, while others are serving as lightly
loaded Web, mail, and database servers. Given that the
occurrence of a failure at any node is simulated by software,
the set of backup nodes is the same set as the set of working
nodes. Upon the occurrence of a failure, a computing node is
switched from the so-called working state to the failed state.
If a node is in the failed state, then it cannot process tasks. The
communication network employed in our architecture is the
Internet, where the final links connecting the computing
nodes are either wired or wireless. On one hand, some
communication links connect nodes separated geographi-
cally by a large distance; hence, they naturally exhibit a
notorious communication delay. On the other hand, for those
nodes in the DCS connected by high-speed links, we have
introduced some artificial latency by employing traffic
shaper applications. Such kind of applications allow us to
reduce the actual transfer speed of the network interfaces to
slow speeds such as 1,024 to 512 Kbps.

The software architecture of the DCS is divided in three
layers: application, task allocation, and communication.
Layers are implemented in software using POSIX threads.
The application layer executes the application selected to
illustrate the distributed processing: matrix multiplication.
We have defined the service of a task as the multiplication of
one rowbya staticmatrix,which is duplicated in all nodes. To
achieve variability in the processing speed of the nodes, the
randomness is introduced in the size of each row by
independently choosing its arithmetic precision with an
exponential distribution. In addition, the application layer
updates the QI of each node and determines the failure
instants of eachnode.Aspart of the latter task, the application
layer also switches the state of a node fromworking to failed.
The same layer maintains, at each node, two vectors of n� 1
components that track the state of the other nodes in theDCS.
The first vector stores the number of tasks queued at the other
nodes using a long integer representation. The second vector
is binary and indicateswhichnodes remain functioning in the
system. The task allocation layer executes the LB policy
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defined for each type of experiment conducted. This layer
schedules and triggers the LB instants when task exchange is
performed. It also: 1) determines if a node is overloadedwith
respect to the other nodes in the system; 2) selects which
nodes are candidate receiving nodes; and 3) computes the
amount of task to transmit to the receiver nodesby solving the
recursion (3). In addition, when a node is in the backup state,
this layer executes the reallocation of tasks to all the surviving
nodes as described in Section 2. Finally, the communication
layer of each node handles the transfer of tasks as well as the
transfer of QI and FN packets among the nodes. Each node
uses the UDP transport protocol to transfer either a QI or an
FN packet to the other nodes. The TCP transport protocol is
used to transfer tasks between the nodes.

3.2 Maximizing the Reliability of a Two-Node DCS

We have conducted experiments using a dedicated (node 1)
and a nondedicated computer (node 2). The nodes are
separated by a large geographic distance and communicate
through the Internet. The free parameters of the system,
namely, the initial workload and the average failure times,
were defined to be: m1 ¼ 100 tasks and m2 ¼ 50 tasks, and
��1f1
¼ 300 s and ��1f2

¼ 200 s. The remaining system
parameters were estimated conducting experiments on the
two-node DCS: 1) The estimated service rates of each node
are �d1 ¼ 0:8285 tasks per second (tps) and �d2 ¼ 1:2453 tps;
2) The mean arrival times of QI packets and FN packets are
ð�Q

12Þ�1 ¼ ð�F
12Þ�1 ¼ 1:6134 s and ð�Q

21Þ�1 ¼ ð�F
21Þ�1 ¼ 1:6659

s; and 3) The parameters for the first-order approximation of
the average transfer time of tasks are a12 ¼ 0:243 s per task,
b12 ¼ 1:613 s, and a21 ¼ 0:336 s per task and b21 ¼ 1:666 s.
Fig. 1a shows results of the experiments conducted on our
two-node distributed computing testbed for the case of the
communication channel linking node 2 to node 1. In the
figure, dots represent measurements of the transfer time of a
group of tasks between the nodes, while the straight-line
represents the first-order approximation for the average
transfer time of tasks. We observe that, for the amount of
tasks to be exchanged in the experiments conducted in this
paper, a first-order approximation for the average transfer
time is valid for the communication channel.

Let us first look at the solution of the initial condition

Q0¼
�
m1 0
0 m2

�
; F0¼

�
1 1
1 1

�
;

and C0 ¼ ð½0�; ½0�Þ at tb ¼ 0. Note that immediately after the
execution of the LB policy, the number of tasks remaining
queued at the ith node is ri ¼ mi � Lij, for i ¼ 1; 2 and i 6¼ j.
Consequently, the initial system configuration is modified
as follows:

~Q0¼
�
r1 0
0 r2

�
; ~F0 ¼ F0 and ~C0 ¼ ð½1 L21�; ½1 L12�Þ

and the LB policy executed is

K¼
�

0 K12

K21 0

�
:

In order to explore all the possible amounts of tasks to
exchange among the nodes, we use the formula
Ljk ¼ bKjk mjc. Note that in a two-node DCS, nodes do not

have to partition their excess load because there is only one
recipient node.

Now we solve the recursion in Theorem 2 to calculate

RKð0; ~Q0; ~F0; ~C0Þ. In Fig. 1b, the service reliability for K21 ¼
0:25 and K21 ¼ 0:9 are plotted as a function of K12. On one
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Fig. 1. (a) Dots are realizations of the task transfer time in a two-node
DCS. The solid line represents the first-order approximation for the
average transfer time. (b) Service reliability as a function of the LB gain
of the node, 1 when LB is executed at t¼0. In the upper plot K21¼0:25
while in the lower plot K21¼0:9. (c) Service reliability as a function of the
balancing instant for four representative LB gains.



hand, small values for K12 imply that node 1 remains
unbalanced with respect to node 2 and serves most of its
workload. As a consequence, the second node is under-
utilized because, on average, node 2 serves its entire work-
load before it fails. Therefore, the time required to serve the
workload becomes “large” and the service reliability is
“small.” On the other hand, whenK12 approaches 1, the first
node transfers most of its initial load to the second node.
Hence, almost all the tasks are queued and served at the less
reliable node until it fails. Upon failure, the remaining tasks
are transferred back to node 1, if it is functioning; thereby, the
service reliability is reduced by an excessive queuing of tasks
in the communication network. In addition to the theoretical
predictions, Fig. 1b shows Monte Carlo (MC) simulations as
well as experimental results obtained for the LB policyK. In
our simulations, the service reliability is calculated by
averaging outcomes (failures or successes) from independent
realizations of the policy. The values of reliability plotted in
Fig. 1b correspond to centers of 95 percent confidence
intervals, for which the estimated service reliability will not
differ from the true value by more than 0.0025. Simulation
results strongly agree with our theoretical predictions, and
remarkably, experiments conducted on the two-node DCS
show a fairly good agreement with theoretical curves. In the
experiments, the service reliability is calculated by averaging
the results of 500 independent trials for each policy shown in
the Fig. 1b.

In order to assess the accuracy of our model, we compare
the reliability predicted by our exponential approximation
with MC simulations where the distributions of the random
times are nonexponential. Using the experimental data
collected in our testbed, we have fitted Pareto distributions
to the transfer and service times. For comparison, the mean
values of the Pareto distributions are equal to the mean
values of their corresponding exponential approximations.
Via MC simulations, we estimated, with a 95 percent
confidence, the service reliability of the DCS when the
random times follow Pareto laws. The estimated reliability
is plotted in Fig. 1b. It can be noted from the figure that the
exponential model for reliability is very accurate and yields
a relative approximation error below 4 percent. Further
simulations have shown that, as the ratio between the
average transfer time and the average service time of the
nodes increases, the exponential approximation looses its
accuracy in predicting the reliability. Specifically, approx-
imation errors of 120 percent were found when the ratio
between the times was five.

Next, we look at the solution of the equations given in
Theorem 1. Fig. 1c shows theoretical predictions, MC
simulation, and experimental results for the service relia-
bility as a function of the balancing instant, for some
representative selections of LB gains. After solving the
differential equation in Theorem 1, we obtain a maximal
service reliability of 0.874 that is achieved at t�b¼0 by the
following four LB policies:

K�1 ¼
�
0 0:37

0 0

�
;K�2 ¼

�
0 0:38

0 0

�
;K�3 ¼

�
0 0:39

0 0

�
; and

K�4 ¼
�

0 0:39

0:02 0

�
:

Fig. 1c shows the service reliability as a function of tb for the
optimal policy K�1. Note that an improper selection of the

LB gains can produce a notorious reduction on the service
reliability, as is depicted for the case of choosing

K ¼
�

0 0:01
0:95 0

�
:

Note also that, an improper selection of the gains can be
compensated by delaying the LB action.

Let us discuss now the effect of the optimal LB policy on
the utilization of the computing resources. The optimal
policies dictate that 39 percent of the load initially allocated
at the first server have to be transferred to the second
server, while the latter server must keep all its initial load.
Note that, on average, server 2 processes its initial load in
40 s, and note also that, transferring 39 tasks from server 1
to server 2 takes 11 s. Consequently, the optimal task
reallocation is perceived by the second server as an
instantaneous exchange of load. In addition, note that
processing 89 tasks at server 2 takes 71 s, on average, while
serving the remaining 61 tasks at server 1 takes 73 s, on
average. Therefore, the optimal policy keeps both servers
busy for approximately the same amount of time, thereby
efficiently using the computing resources of the DCS.

3.3 Maximizing the Reliability of a Multinode DCS

In this section, we maximize the service reliability of a
multinode DCS utilizing the algorithm presented in
Section 2.6.1. We devise several decentralized LB policies
considering different balancing criteria.

The scenario considered in the following examples

comprises a five-node DCS, for which a workload of M ¼
150 tasks is provided. We have assumed that the average

failure times of the nodes are ��1f1
¼ 400 s, ��1f2

¼ 10 s,

��1f3
¼ 100 s, ��1f4

¼ 200 s, and ��1f5
¼ 300 s. The service

rates, estimated using some training sets of tasks on our

DCS testbed, are �d1 ¼ 0:16823 tps, �d2 ¼ 0:49784 tps, �d3 ¼
0:25869 tps, �d4 ¼ 0:25361 tps, and �d5 ¼ 0:18356 tps. In

this scenario, the nodes dedicated only to compute our

tasks are the first, the fourth, and the fifth node, while the

remaining two are nondedicated nodes. The channel-

dependent parameters, also estimated from data collected

using our testbed, are listed in Table 1. For brevity, we

provide only the minimum and the maximum values for

the estimated mean arrival times of both QI and FN

packets, namely, minðminj;kð�Q
jkÞ�1;minj;kð�F

jkÞ�1Þ ¼ 0:343 s

and maxðmaxj;kð�Q
jkÞ�1;maxj;kð�F

jkÞ�1Þ ¼ 1:927 s, for j; k 2
f1; . . . ; 5g.

We devise and discuss three LB policies that have the
same balancing criterion. The balancing criterion utilized
by the policies is based upon the reliability of the nodes. So,
we have set the �j’s parameters in (1) to be �j ¼ ��1fj

for
j ¼ 1; . . . ; 5. The three LB policies investigated are: 1) The
Null LB policy, where all the LB gains employed by the
policy are equal to zero; 2) The Full LB policy, where all the
LB gains are equal to 1; and 3) The Maximal-Service LB
policy, where the LB gains employed by the policy are
computed using the algorithm presented in Section 2.6.1.
Note that the Null LB policy determines the service
reliability inherently provided by the DCS, i.e., it defines
the service reliability when LB is not performed by the
nodes in the system. Therefore, the Null LB policy
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establishes the minimal service reliability that can be
demanded by any effective LB policy acting on the DCS.

The theoretical predictions obtained for the three
LB polices under study, and for different initial task
allocations, are listed in Table 2. The service reliability is
obtained for each case by means of MC simulations, where
the number of tasks to reallocate among the nodes is
computed using the algorithm provided in Section 2.6.1.
The values in Table 2 correspond to centers of 95 percent
confidence intervals, for which the estimated service
reliability will not differ from the true value by more than
0.001. In addition, the column labeled as “Exp.” presents
results obtained after averaging 500 realizations of experi-
ments conducted on our DCS testbed.

The first five rows of Table 2 list results for cases when
the system is totally imbalanced. The sixth row presents the
case of an initial uniform distribution of tasks. The seventh,
eighth, and ninth rows correspond to cases where tasks are
initially allocated according to the reliability of the nodes,
the processing rate of the nodes, and a combination of the
latter two parameters, respectively. Finally, the last row
represents a case of an arbitrary task distribution.

We can see from Table 2 that the Maximal-Service LB
policy outperforms the other two policies in all the cases
considered. In the first five cases listed in Table 2, the optimal
tb is equal to zero, while in the remaining cases, the optimal tb
is between 2.0 and 2.4 s. Note that such values correspond to
caseswhere all the nodes are, on average, informed about the
queue-length of the other nodes in the system. We can also
note that the Maximal-Service LB policy effectively increases
the inherent service reliability provided by the DCS. Such
increment can be attributed mainly to two issues: 1) the
Maximal-Service LB policy trades off network queuing times
and node idle times by computing appropriate LB gains and
2) the Maximal-Service LB policy effectively exploits the
extra balancing action provided by the backup system of a
faulty node. To support these statements, we discuss a
representative case from Example 2.

Consider the case where all the tasks are queued at the
fourth node (fourth row in Table 2). If no LB action is
performed, then, on average, at t¼200 s, the fourth node
fails, while, on average, the following events have occurred
in the DCS: 1) the second and third nodes have failed; 2) the
fourth node has been informed about the failures of the
second and third nodes; and 3) the fourth node has served
50 tasks. Upon the failure of the fourth node, its backup
system reallocates the remaining 100 tasks to the first and
fifth nodes. So, we clearly note that the first and fifth nodes

have remained idle for long periods of time, and worst than
that, we notice that the second and third nodes were never
used to serve any task. On the contrary, if the Full LB policy
is employed, then at tb¼0, the fourth node decides to
transfer 59, 1, 14, and 44 tasks to the first, second, third, and
fifth node, respectively, while 32 tasks remain queued at the
fourth node. As such, we can deduce from the discussion
that the Full LB policy is advantageous over the Null LB
policy, as evidenced by the reliability shown in Table 2.

Notably, the Maximal-Service LB policy takes an even
betterdecision at the balancing instant byexploitingone extra
mechanism. After executing the proposed algorithm, the
policy obtains the following LB gains: K�41 ¼ 0:610,
K�42 ¼ K�43 ¼ 1, and K�45 ¼ 0:886; this implies that the fourth
node has to transfer 35, 1, 14, and 38 tasks to the first, second,
third, and fifth node, respectively.Unlike the Full LBpolicy, a
total of 62 tasks remain queued at the fourth node. Note that
by sending fewer tasks to the first and fifth nodes, the
Maximal-Service LB policy reduces the idle time of these
nodes as compared to the Full LB policy. In addition, we can
note that, on average: 1) the fourthnode is able toprocess only
50 tasks before it fails and 2) by the average failure time of the
fourth node, the first and fifth nodes are still busy serving the
tasks reallocated at the balancing instant. Therefore, the task
reallocation performed upon the failure of the fourth node
does not introduce any idle time in the receiving nodes.

It can be observed from Table 2 that caution must be
exercised in selecting the amount of tasks to reallocate at the
balancing time; otherwise, we can devise policies that
perform worse than taking no LB action! Consider, for
instance, the casewhere all the tasks are queued at the second
node. When the Full LB policy is employed, the policy
determines that 59, 14, 29, and 44 tasks have to be transferred
to the first, third, fourth, and fifth nodes. The four tasks that
remain queued at the second node are, on average, served by
the node. In addition, the average transfer plus service time
of the tasks assigned to the third and fourth nodes is about 60
and 124 s, respectively. We now note that the inappropriate
task reallocation performed by the Full LB policy forces
the fourth node to remain idle for 76 s before it fails. If we
perform a similar kind of analysis for the case of the Null LB
policy, we can conclude that, due to the failures of the second
and third nodes and the task exchanges performed by their
backup systems, the fourth node is kept busy until it fails at
t ¼ 200 s, and its average idle time is only 20 s. Therefore, it
can be concluded that the Full LB policy performsworse than
the Null LB policy.
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TABLE 1
Parameters ajk and bjk of the First-Order Approximation of the
Average Task-Transfer Delay for the Case of a Five-Node DCS

TABLE 2
Service Reliability under Different LB Policies

The balancing criterion utilized is based on the reliability of the nodes.



In light of the previous discussions, we can now
comprehend the counterintuitive behavior shown in Table 2.
It can be noted that, for cases where all the load is queued at a
single node and no LB action is taken, the service reliability is
better when tasks are initially allocated at the less reliable
nodes. This situation is justified because, by initially allocat-
ing theworkloadat less reliablenodes,wecanexploit both the
computing power of the unreliable servers and the task
reallocation action executed by the backup system of the
faulty nodes.

We study now the effect of the selection of various

balancing criteria on the service reliability. We have

considered three LB policies, each one of them having a

different balancing criterion but sharing the same algorithm

to compute the LB gains. The Maximal-Service LB policy

balances theDCS according to the reliability of the nodes. The

Processing Speed LB policy balances the DCS based upon the

processing rate of the nodes, i.e., �j ¼ �dj in (1). Finally, the

Complete LB policy uses a balancing criterion that combines

both processing and failure rates, specifically, the Complete

LB policy defines �j ¼ �djð1� �fjð
Pn

k¼1 �fkÞ�1Þ. Addition-

ally, we have conducted MC-based exhaustive search, over

the LB gains, in order to estimate the optimal service

reliability for each case considered. The results of our

evaluations are listed in Table 3.
Note that the fastest servers in the example are also the less

reliable ones. Consequently, the balancing criterion em-
ployed by the Processing-Speed LB policy appears to be
inappropriate in order to maximize the service reliability.
However, it canbe seen fromTable 3 that, inmost of the cases,
the three policies achieve approximately the same perfor-
mance, which shows the strength of our approach. For
example, in the case when all the tasks are initially queued at
the fourth node, the Processing Speed LB policy dictates that
54 tasks have to be transferred to the second node. However,
the LB gain computed by our algorithm reduces such amount
to only 11 tasks. From Table 3, we observe that the Complete
LB policy outperforms in almost all the cases the other two
policies. This is because such apolicy trades off reliability and
computing speed inboth the imbalancedetectionprocess and
the excess workload partitioning. Finally, it can be seen from
Table 3 that the service reliability achieved by the policies is
within 70 percent of the optimal service reliability for each
case. In fact, the optimum is achieved in some cases.

4 CONCLUSIONS

We have undertaken a novel approach to analyze the
stochastic dynamics and the service reliability of DCSs in
the presence of communication and node uncertainty. We
have rigorously modeled the service reliability of a DCS, i.e.,
the probability of successfully serving a collection of tasks
queued at the nodes before all of them fail permanently. Our
model takes into account the heterogeneity in the computing
resources, the stochastic communication and transfer delays
in the network, the uncertainty associated with the number
of functional nodes in the DCS, and an arbitrary LB policy
executed by the nodes. We have introduced in our analysis
three fundamental stochastic quantities, namely the system
queue and the system function matrices as well as the
network state vector. These quantities track the underlying
point processes associated with the dynamics of the DCS. At
any given time, these matrices store information about task
distribution among the nodes, the functional or dysfunc-
tional state of the nodes, and the number of tasks queued in
the communication network. A novel regeneration argu-
ment has been established yielding an analytic characteriza-
tion for the service reliability. Our mathematical framework
can be easily modified to calculate other performance
metrics, such as computing speedup, statistics of queue
length of servers, and average sojourn time of workloads.

By using this analytical model for reliability, we have
devised optimal dynamic LB strategies for maximizing the
service reliability of a DCS. We have presented a simple, yet
efficient and scalable algorithm for devising these optimal
dynamic LB strategies. The policies devised using our
algorithm dictate when to execute the LB action and how to
reallocate the tasks among the nodes. We have evaluated the
performance of the optimal LB policies and noticed that the
service reliability can be improved up to 65 percent as
compared to the reliability provided by a DCS, and up to
22 percent as compared to policies that consider nodes’
reliability but disregard the communication costs over the
network. Moreover, our algorithm to compute the LB
strategies achieves a service reliability within 70 percent of
the optimal service reliability, and in cases achieves the
optimal value.

Our theory enables us to understand the effectiveness of
task reallocation in a delay-infested DCS while offering an
algorithm for generating task reallocation policies that
maximize the service reliability. The interplay between the
task transfer time and the idle time of the nodes has been
discussed, and we have noted that the service reliability can
be improved if the idle times of the nodes are reduced as
much as possible. In addition, we have discussed the
advantages of delaying the balancing action until the nodes
have collected information about both the queue length and
the functioning state of the nodes.

In general, we have found that the experiments confirm
our theoretical predictions as well as our MC simulations.
Through experimentation, we have also observed that the
computational overhead introduced by our algorithm,
which is mainly due to the calculations associated to the
regenerative equations, is negligible as compared to the
time to serve the tasks.

Future work will consider relaxing the exponential
assumption on the random task transfer and task execution
times. To this end, we will undertake an age-dependent
regeneration-based approach whereby auxiliary “age-vari-
ables” are introduced in the analysis. Another extension we
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TABLE 3
Service Reliability Achieved by Three LB Policies,

Which Have Different Balancing Criteria

For comparison purposes, we list the optimal value obtained for each
case.



are currently considering is to allow each node have an
arbitrary number of functionality states instead of a binary
(on-off) functionality state as presented here. This can be
implemented, for example, by assigning a range of possible
processing speeds for each node, where upon the occur-
rence of a “failure event,” only one of these possible states
is selected.

APPENDIX

The gist of the proof of Theorem 1 can be found in [14] for
the special case of two nodes. Here, we present a general-
ized version of such proof considering a DCS with n nodes.

For clarity, we first introduce some useful definitions and
then present Lemmas 1-6, which will be used in the proof of
Theorem 1. Recall that the regeneration time is defined as

� ¼4 minðminkðWk1Þ;minj6¼kðXQ
jkÞ;minkðYkÞ;minj6¼kðXF

jkÞ;
mink;iðZkiÞÞ:

Note that in light of Assumptions A1, A2, and Convention
C1, it is straightforward to see that � is an exponentially
distributed random variable. For the DCS emerging at the
regeneration time � , let the random times (all measured
from �) W

0
ki; Y

0
k;X

Q0
jk ;X

F 0
jk , and Z

0
ik, respectively, be the

service time for the ith task at the kth node, the failure
time of the kth node, the arrival time of the QI packet sent
from the jth node to the kth node, the arrival time of the FN
packet sent from the jth node to the kth node, and the
arrival time of the ith group of tasks sent to the kth node. In
addition, on f� � tbg, we define T 0Kðtb;Q00;F00;C00Þ as the
time taken by the new DCS emerging at � to serve all the
tasks in the system if the LB policy K is executed by all
functioning nodes at time tb provided that the system
condition at t ¼ � is specified by Q00, F

0
0, and C00. To prove

that the DCS is regenerated upon the occurrence of f� ¼ sg,
it suffices to show that the conditional distributions of
W

0
ki; X

Q0
jk ; Y

0
k;X

F 0
jk , and Z

0
ki given that the event f� ¼ sg has

occurred, satisfy assumptions A1 and A2.

Lemma 1. For s � tb; PfTKðtb;Q0;F0;C0Þ <1
��� ¼ s; � ¼

Wi1g¼PfTKðtb � s;Q0 � ��ii;F0;C0Þ <1g.
Proof. Note that the regeneration event f� ¼ s; � ¼Wi1g is

precisely service to the first task at the ith node before
any other activity takes place in the DCS. Upon the
occurrence of the event f� ¼ s; � ¼Wi1g, the system
function state and the network state remain the same,
i.e., F00 ¼ F0 and C00 ¼ C0, while mi � 1 tasks are now
queued at the ith node and mj remain queued at the jth
node, j 6¼ i. In matrix notation, i.e., Q00 ¼ Q0 � ��ii.
Therefore, by construction,

PfTKðtb;Q0;F0;C0Þ <1j� ¼ s; � ¼Wi1g
¼ Pf� þ T 0Kðtb;Q0 � ��ii;F0;C0Þ <1j� ¼ s; � ¼Wi1g:

The proof is complete once we establish that

PfT 0Kðtb;Q0 � ��ii;F0;C0Þ <1j� ¼ s; � ¼Wi1g
¼ PfTKðtb � s;Q0 � ��ii;F0;C0Þ <1g:

Next, by construction, W
0
k1 ¼Wk1 � � , XQ0

jk ¼ Xjk � � ,
Y
0
j ¼ Yj � � , XF 0

jk ¼ XF
jk � � , and Z

0
‘k ¼ Z‘k � � for k 6¼ i

and j 6¼ k. Moreover, it is shown below that the
conditional distribution of W

0
k1 is

PfW 0
k1� tj�¼s; �¼Wi1g¼

�
1� expð��dktÞ

�
uðtÞ; ð5Þ

where uð�Þ is the unit step function. Similarly, we get

P
	
XQ0

jk � tj� ¼ s; � ¼Wi1


 ¼ �1� exp
�� �Q

jkt
��
uðtÞ;

P
	
Y
0
k� tj�¼s; � ¼Wi1


 ¼ �1� exp
�� �fk t

��
uðtÞ;

P
	
XF 0

jk � tj� ¼ s; � ¼Wi1


¼�1� exp
�� �F

jkt
��
uðtÞ; and

P
	
Z
0
jk � tj� ¼ s; � ¼Wi1


 ¼ �1� exp
�� ~�j;kt

��
uðtÞ:

Therefore, conditional upon the occurrence of
f� ¼ s; � ¼Wi1g, all random times of the newly emer-
ging DCS satisfy Assumption A1.

The conditional independence of W
0
j1, with j 6¼ i, and

Y
0
k is proved below in this Appendix. Similarly, it can

also be shown that conditional upon the occurrence of
f�¼s; �¼Wi1g, the random times W

0
kj, X

Q0
jk , X

F 0
jk , and Z

0
jk

are mutually independent. Therefore, upon the occur-
rence of f� ¼ s; � ¼Wi1g, all random times of the
emerging DCS satisfy Assumption A2.

In summary, we have shown that conditional on the
occurrence of f� ¼ s; � ¼Wi1g, the random times char-
acterizing the DCS at time s satisfy Assumptions A1 and
A2. Therefore, by shifting the time origin from t ¼ 0 to
t ¼ s, we can think of the emergent DCS as the original
system but withmi � 1 tasks in the queue of the ith node,
while other system initial conditions remain the same. In
addition, due to the shift of origin, the LB instant is now
at tb � s units of time from the new origin. Hence, we
conclude that

P
	
T 0Kðtb;Q0 � ��ii;F0;C0Þ <1

���¼s; �¼Wi1



¼P

	
TKðtb � s;Q0 � ��ii;F0;C0Þ <1



;

which completes the proof of Lemma 1. tu
Lemmas 2-5 are presented without proof as they follow

similar principles as those of Lemma 1.

Lemma 2. For s � tb, PfTKðtb;Q0;F0;C0Þ <1
���¼s; �¼XQ

ijg
¼PfTKðtb � s;Q0 þ ��ji;F0;C0Þ <1g.

Lemma 3. For s � tb, PfTKðtb;Q0;F0;C0Þ <1
���¼s; � ¼

Yig¼PfTKðtb � s;Qii
0 ;F

ii
0 ;C

Yi

0 Þ <1g.
Lemma 4. For s � tb, PfTKðtb;Q0;F0;C0Þ <1

���¼s; �¼XF
ijg

¼PfTKðtb � s;Qji
0 ;F

ji
0 ;C0Þ <1g.

Lemma 5. For s � tb, PfTKðtb;Q0;F0;C0Þ <1
���¼s; � ¼

Zjig¼PfTKðtb � s;Q0 þ fiilji��ii;F0;C
Zji

0 Þ <1g.
Lemma 6. PfTKðtb;Q0;F0;C0Þ<1

��� > tbg¼PfTKð0;Q0;
F0;C0Þ<1g.

Proof. The occurrence of the event f� > tbg implies that the
systemconditionof theDCSat time tb is exactly the sameas
the initial system condition of the original system. There-
fore, for f� > tbg, letT 00Kðtb;Q0;F0;C0Þ be the time taken by
the new DCS emerging at tb to serve all tasks if the LB
policyK is executedbyall functioningnodesat time tb, and
provided that the system condition at t ¼ tb is specified by
Q0, F0, and C0. Therefore, by construction, PfTK

ðtb;Q0;F0;C0Þ <1j� > tbg ¼ Pftb þ T 00Kðtb;Q0;F0;C0Þ <
1 j� > tbg. Let the random times characterizing the DCS
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emerging at tb beW
00
ki; X

Q00
jk ; Y

00
k ;X

F 00
jk , and Z

00
ik, all measured

from tb. We have that W
00
i1 ¼Wi1 � tb, XQ00

jk ¼ XQ
jk � tb,

Y
00
k ¼ Tk � tb, X

F 00
jk ¼ XF

jk � tb, and Z
00
ik ¼ Zik � tb. Based on

AssumptionsA1 andA2, it is straightforward to show that

PfW 00
ki� tj� >tbg¼ð1� expð��dktÞÞuðtÞ and PfW 00

ki � t1;

Y
00
k � t2j� > tbg ¼ PfW 00

ki � t1j� >tbgPfY 00
k � t2j� > tbg.

Similarly, conditional on the occurrence of f� > tbg, the
conditional distributions of XQ00

jk , Y
00
k , X

F 00
jk , and Z

00
ki can be

shown to satisfy A1 and A2. Consequently, nothing has

changed in the initial condition as well as the statistics of

the random times characterizing the DCS while tb units of

time have elapsed. Therefore, we can shift the origin by tb

units of time, which makes the LB instant at t ¼ 0 for the

new DCS. So, PfT 00Kðtb;Q0;F0;C0Þ <1j� > tbg ¼ PfTK

ð0; Q0;F0;C0Þ <1g. tu
Proof of Theorem 1. First we observe that from Assump-

tions A1 and A2, it is straightforward to show that

f� ðtÞ ¼ � expð��tÞuðtÞ, w h e r e � ¼Pn
i¼1ð�di þ �fi þPgi

j¼1 ~�j;i þ
P

j6¼kð�Q
jk þ �F

jkÞÞ. Next, we condition the

service reliability on the regeneration time to obtain

RKðtb;Q0;F0;C0Þ ¼ PfTKðtb;Q0;F0;C0Þ <1g

¼
Z tb

0

PfTKðtb;Q0;F0;C0Þ <1j�¼sgf� ðsÞ ds

þ
Z 1
tb

PfTKðtb;Q0;F0;C0Þ <1j�¼sgf� ðsÞ ds:
ð6Þ

Moreover, we can further condition the first integrand at

the right side of (6) on all the possible, disjoint

regeneration events occurring at the time � ¼ s as

PfTKðtb;Q0;F0;C0Þ <1j�¼sg ¼
Xn
i¼1

Pf�¼Wi1j�¼sg

	 PfTKðtb;Q0;F0;C0Þ <1j�¼s; �¼Wi1g

þ
Xn
i¼1

Xn
j¼1;j 6¼i

P
	
TKðtb;Q0;F0;C0Þ <1j�¼s; �¼XQ

ij




Pf�¼Xijj�¼sg þ
Xn
i¼1

PfTKðtb;Q0;F0;C0Þ<1j�¼s;

�¼YigPf�¼Yij�¼sg þ
Xn
i¼1

Xn
j¼1;j 6¼i

P
	
TKðtb;Q0;F0;C0Þ

<1j�¼s; �¼XF
ij


	 Pf�¼XF
ij j�¼sg

þ
Xn
i¼1

Xgi
j¼1

Pf�¼Zjij�¼sg 	 PfTKðtb;Q0;F0;C0Þ

<1j�¼s; �¼Zjig:
ð7Þ

In addition, note that
R1
tb
PfTKðtb;Q0;F0;C0Þ <1j� ¼

sgf� ðsÞ ds ¼ PfTKðtb;Q0;F0;C0Þ <1j� > tbgPf� > tbg.
We now apply Lemma 6 to the later result and Lemmas

1-5 to (7), and substitute those results in (6) to obtain:

RKðtb;Q0;F0;C0Þ ¼
Z tb

0

 Xn
i¼1

Pf�¼Wi1j�¼sg

	RKðtb � s;Q0 � ��ii;F0;C0Þ þ
Xn
i¼1

Xn
j¼1;j6¼i

P
	
�¼XQ

ij j�¼s



	RKðtb � s;Q0 þ ��ji;F0;C0Þ þ
Xn
i¼1

Pf�¼Yij�¼sg

	RKðtb � s;Qii
0 ;F

ii
0 ;C

Yi

0 Þ þ
Xn
i¼1

Xn
j¼1;j6¼i

P
	
�¼XF

ij j�¼s



	RK

�
tb � s;Qji

0 ;F
ji
0 ;C0

�þXn
i¼1

Xgi
j¼1

Pf�¼Zjij�¼sg

	RK

�
tb � s;Q0 þ fiilji��ii;F0;C

Zji

0

�!
f�ðsÞ ds

þ Pf� >tbgRKð0;Q0;F0;C0Þ:

Using basic concepts from probability theory, we can

show that Pf� ¼Wi1j� ¼ sg ¼ �di�
�1, Pf� ¼ XQ

jkj� ¼
sg ¼ �Q

jk�
�1, Pf� ¼ Ykj� ¼ sg ¼ �fk�

�1, Pf� ¼ XF
jkj� ¼

sg ¼ �F
jk�
�1, Pf� ¼ Zjij� ¼ sg ¼ ~�ji�

�1, Therefore, the

last equation becomes

RKðtb;Q0;F0;C0Þ ¼
Z tb

0

expð��sÞ�Xn
i¼1

�diRKðtb � s;Q0 � ��ii;F0;C0Þ

þ
Xn
i¼1

Xn
j¼1;j 6¼i

�Q
ijRKðtb � s;Q0 þ ��ji;F0;C0Þ

þ
Xn
i¼1

�fiRK

�
tb � s;Qii

0 ;F
ii
0 ;C

Yi

0

�

þ
Xn
i¼1

Xn
j¼1;j 6¼i

�F
ijRK

�
tb � s;Qji

0 ;F
ji
0 ;C0

�

þ
Xn
i¼1

Xgi
j¼1

~�jiRK

�
tb � s;Q0 þ fiilji��ii;F0;C

Zji

0

��
ds

þ Pf� >tbgRKð0;Q0;F0;C0Þ:

ð8Þ

Finally, by differentiating (8) with respect to tb and

rearranging terms we obtain (2). tu
Proof of Equation (5). Let us look at the conditional

distribution of W
0
j1, with j 6¼ i:

PfW 0
j1 � tj�¼s; �¼Wi1g ¼ PfWj1 � � � tj�¼s; �¼Wi1g
¼ PfWj1� tþ sj�¼s; �¼Wi1g:

Note that the event f� ¼ s; � ¼Wi1g is equivalent to

fWi1 ¼ s;W11 > s; . . . ;Wði�1Þ1 > s;Wðiþ1Þ1 > s; . . .Wn1

> s; Y1 > s; . . . ; Yn > s;XQ
12 > s; . . . ; XQ

nðn�1Þ
> s;XF

12 > s; . . . ; XF
nðn�1Þ > s;Z11 > s; . . . ; Zngn > sg:
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Therefore, the latter equation becomes

PfW 0
j1 � tj� ¼ s; � ¼Wi1g ¼ PfWj1 � tþ sjWi1 ¼ s;

W11 > s; . . . ;Wði�1Þ1 > s;Wðiþ1Þ1 > s; . . . ;Wn1 > s;

Y1 > s; . . . ; Yn > s;XQ
12 > s; . . . ; XQ

nðn�1Þ > s;

XF
12 > s; . . . ; XF

nðn�1Þ > s;Z11 > s; . . . ; Zngn > sg:
Exploiting the independence (Assumption A2), we

obtain PfW 0
j1 � tj� ¼ s; � ¼Wi1g ¼ PfWj1 � tþ sjWj1 >

sg ¼ ð1� expð��dj tÞÞuðtÞ. tu
Proof of the conditional independence of W

0
j1 and Y

0
k .

Recall that W
0
j1 ¼Wj1 � � and Y

0
k ¼ Yk � � . Therefore, for

any real number t1 and t2, we have

PfW 0
j1 � t1; Y

0
k � t2j� ¼ s; � ¼Wi1g

¼ PfWj1 � t1 þ s; Yk � t2 þ sj� ¼ s; � ¼Wi1g
¼ P

	
Wj1 � t1 þ s; Y1 � t2 þ sjWi1 ¼ s;W11 > s; . . . ;

Wði�1Þ1 > s;Wðiþ1Þ1 > s; . . . ;Wn1 > s; Y1 > s; . . . ;

Yn > s;XQ
12 > s; . . . ; XQ

nðn�1Þ > s;XF
12 > s; . . . ;

XF
nðn�1Þ > s;Z11 > s; . . . ; Zngn > s



;

since the events conditioning the probability are equiva-

lent. Next, by exploiting Assumption A2, we have

PfW 0
j1 � t1; Y

0
k � t2j� ¼ s; � ¼Wi1g

¼ PfWj1 � t1 þ s; Yk � t2 þ sj� ¼ s; � ¼Wi1g
¼ PfWj1 � t1 þ s; Yk � t2 þ sjWj1 > s; Yk > sg

¼ PfWj1 � t1 þ s; Yk � t2 þ s;Wj1 > s; Yk > sg
PfWj1 > s; Yk > sg

¼ Pfs < Wj1 � t1 þ sg
PfWj1 > sg

Pfs < Yk � t2 þ sg
PfYk > sg :

Therefore, we get PfW 0
j1 � t1; Y

0
k � t2j� ¼ s; � ¼Wi1g ¼

PfW 0
j1 � t1jWj1 > sgPfY 0

k � t2jYk > sg, which concludes

the proof by noting that PfW 0
j1 � t1j� ¼ s; � ¼Wi1g ¼

PfW 0
j1 � t1jWj1 > sg a n d PfY 0

k � t2j� ¼ s; � ¼Wi1g ¼
PfY 0

k � t2jYk > sg. tu
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