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Two-qubit states occupy a large and relatively unexplored Hilbert space. Such states can be succinctly

characterized by their degree of entanglement and purity. In this article we investigate entangled mixed states

and present a class of states that have the maximum amount of entanglement for a given linear entropy.

DOI: 10.1103/PhysRevA.64.030302 PACS number~s!: 03.67.Dd, 03.65.Ta, 42.79.Sz

With the recent rapid developments in quantum informa-

tion there has been a renewed interest in multiparticle quan-

tum mechanics and entanglement. The properties of states

between the pure, maximally-entangled, and completely

mixed ~separable! limits are not completely known and have
not been fully characterized. The physically allowed degree
of entanglement and mixture is a timely issue, given that
entangled qubits are a critical resource in many quantum-
information applications ~such as quantum computation
@1,2#, quantum communication @3#, quantum cryptography
@4,5# and teleportation @6,7#!, and that entangled mixed states
could be advantageous for certain quantum information situ-
ations @8#.

The simplest nontrivial multiparticle system that can be
investigated both theoretically and experimentally consists of
two qubits. A two-qubit system displays many of the para-
doxical features of quantum mechanics such as superposition
and entanglement. Extreme cases are well known and clear
enough: maximally entangled two particle states have been
produced in a range of physical systems @9–12#, while two-
qubits have been encoded in product ~nonentangled! states
@13# via liquid nuclear magnetic resonance @14#. Recently,
however White et al. have experimentally generated
polarization-entangled photons in both nonmaximally en-
tangled states @15#, and general states with variable degree of
mixture and entanglement @16#.

In this Rapid Communication, we explore theoretically
the domain between pure, highly entangled states, and highly
mixed, weakly entangled states. We will partially character-
ize @17# such two-qubit states by their purity and degree of

entanglement @18#. Specifically, we address the question:
What is the form of maximally entangled mixed states, that
is, states with the maximum amount of entanglement for a
given degree of purity? Ishizaka et al. @19# have proposed
two-qubit mixed states in which the degree of entanglement
cannot be increased further by any unitary operations ~the
Werner state @20# is one such example!. A numerical explo-
ration of the entanglement—purity plane is used to establish
an upper bound for the maximum amount of entanglement
possible for a given purity, and vice versa. We derive an
analytical form for this class of maximally entangled mixed

states ~MEMS! and show it to be optimal for the entangle-
ment and purity measures considered.

Currently a variety of measures are known for quantifying
the degree of entanglement in a bipartite system. These in-
clude the entanglement of distillation @18#, the relative en-
tropy of entanglement @2#, but the canonical measure of en-
tanglement is called the entanglement of formation @18# and
for an arbitrary two-qubit system is given by @21#

EF~ r̂ !5hS 11A12t

2
D , ~1!

where h(x)52x log2(x)2(12x)log2(12x) is Shannon’s en-
tropy function and t , the ~‘‘concurrence’’ squared! ‘‘tangle’’
@21# is given by

t5C
2
5@max$l12l22l32l4,0%#2. ~2!

Here the l’s are the square roots of the eigenvalues, in de-

creasing order, of the matrix, r̂ r̃̂5 r̂sy
A

^ sy
Br̂*sy

A
^ sy

B ,

where r̂* denotes the complex conjugation of r̂ in the com-
putational basis $u00&,u01&,u10&,u11&%, and is an antiunitary
operation. Since the entanglement of formation EF is a
strictly monotonic function of t , the maximum of t corre-
sponds to the maximum of EF . Thus in this paper we use the
tangle directly as our measure of entanglement. For a
maximally-entangled pure state t51, while for an unen-
tangled state t50.

There exist for the degree of mixture of a state a number
of measures. These include the von Neumann entropy of a

state, given by S52Tr@ r̂ ln r̂# @22#, and the purity Tr@ r̂2# . In
this paper we use the linear entropy given by @23#

SL5
4
3 $12Tr@ r̂2#%, ~3!

which ranges from 0 ~for a pure state! to 1 ~for a maximally-
mixed state!. The linear entropy is generally a simpler quan-
tity to calculate and hence its choice here.

Let us now examine our two-qubit states and the region
they occupy in the tangle–linear-entropy plane. We begin by
randomly generating two million density matrics represent-
ing physical states, and determining their linear entropy and
tangle. In Fig. 1~a! we display a subset of these results for
30 000 points. We see that quite a large region of this plane is*Email address: bill_munro@hp.com
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filled with physically acceptable states ~obviously a maxi-
mally mixed, maximally entangled state is not possible!. Zy-
czkowski et al. @24# have performed similar numerical stud-
ies, but their work focused on how many entangled states are
in the set of all quantum states. In Fig. 1~a! we have also
explicitly plotted the tangle versus linear entropy for the
Werner state, a mixture of the maximally entangled state and
the maximally mixed state @20#:

r̂5

12g

4
I2 ^ I21guF1&^F1u, ~4!

where I2 is the identity matrix and uF1&51/A2@ u0&u0&
1u1&u1&]. We have labeled our orthogonal qubit states by
u0& and u1& . This Werner state is entangled ~inseparable! for
g.1/3 @25# and maximally-entangled when g51. The re-
sults from Fig. 1~a! clearly indicate a class of states that have
a larger degree of entanglement for a given linear entropy
than the Werner states. We also generated a second set of
data ~by random perturbations about the maximally en-
tangled mixed states! so as to examine the boundary of pos-
sible states, which in the previous data set was a sparsely

populated region. As can be seen in Fig. 1~b!, a definite
boundary to the physically possible states exists.

Let us now analytically determine the form of these
MEMS. As our starting point, let us consider the Werner
state given by Eq. ~4!. How can one increase its degree of
entanglement without changing its purity, or, alternatively,
how can one increase its linear entropy given a certain de-
gree of entanglement? It was shown by Lewenstein and San-
pera @26# that any two-qubit entangled state can be written as
a mixture of a separable state and a single pure entangled
state. The Werner state ~4! is recognizably of this form. All
its entanglement arises from the guF1&^F1u term, and
hence, to leave the degree of entanglement fixed while in-
creasing the linear entropy this term needs to remain un-
touched. Local unitary operations will not affect the degree
of entanglement or linear entropy. In deriving our ansatz, we
will note the following points:

~i! The I2 ^ I2 term of the Werner states represents the
maximally mixed state. It can be written as an equal inco-

herent mixture of the four Bell states uC6&51/A2@ u0&u1&
6u1&u0&] and uF6&51/A2@ u0&u0&6u1&u1&]. If in our pro-
posed ansatz we increase the amount of any of the uC6& or
uF2& Bell states, then the net entanglement in the total sys-
tem generally decreases.

~ii! In a general two-qubit density matrix there are two
types of off-diagonal terms, those that represent the entangle-
ment and those that represent single-particle superposition.
These single-particle superposition terms can be set to zero
by local linear operations, and so, by definition, cannot
change the net entanglement or linear entropy.

~iii! The diagonal elements of the two-qubit density ma-
trix do not affect the system’s maximum entanglement ~given
a specified amount of uF1&^F1u!. The diagonal elements,
however, have a significant impact on the linear entropy.
These principles lead us to postulate an ansatz of the form

r̂5S x1

g

2
0 0

g

2

0 a 0 0

0 0 b 0

g

2
0 0 y1

g

2

D . ~5!

This comprises a mixture of the maximally-entangled Bell
state uF1& and a mixed diagonal state ~whose populations
are specified by the real and non-negative parameters
a ,b ,x ,y). Without loss of generality we choose g to be a
positive real number, which ensures that the ansatz density
matrix is positive semidefinite. From normalization,

x1y1a1b1g51, ~6!

the linear entropy is simply given by

SL5

4

3
$12a2

2b2
2x2

2y2
2g~x1y !2g2%, ~7!

with the concurrence given by

FIG. 1. Plot of the tangle t and linear entropy SL of numerically

generated two-qubit random matrices. Two sets of data are plotted:

~a! 30 000 randomly generated matrices, which show the extent of

physical states in the entanglement-purity plane; ~b! 30 000 ran-

domly generated matrices weighted to explore the boundary region.

Also shown are analytical curves for ~i! the Werner state, a mixture

of the maximally entangled state and the maximally mixed state;

and ~ii! the maximally entangled mixed states, states with the maxi-

mal amount of entanglement for a given degree of linear entropy ~or

vice versa!. See text for further details.
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C5max@g22Aab ,0# . ~8!

To determine the form of the two-qubit maximally-
entangled mixed states, we begin by specifying that the con-
currence C must be greater than zero. Thus C5max@g
22Aab ,0#5g22Aab>0 and therefore is maximized when
C5g . This requires either a50 and/or b50 ~without loss of
generality we set b50). Using the normalization constraint
given by Eq. ~6!, the linear entropy is given by

SL5
4
3 $2a1~g12x !~12a2g !22x2

22a2%. ~9!

Calculating the turning point of Eq. ~9!, we find that
]SL /]x50 when either x50 ~a minimum! or 2x512a

2g ~a maximum! and ]SL /]a50 when either a50 ~a mini-
mum! or 4a5222x2g ~a maximum!. First examining the
]SL /]x stationary solution and the maximum given by 2x

512a2g , we observe that this condition requires x5y . If
a512g then the stationary point corresponds to a turning
point. We now need to examine several parameter regimes to
determine the optimal solution. The first region has concur-
rence values in the region 2/3<C[g<1. In this region the
optimal situation occurs when x50 and a512g . This
means the maximally entangled mixed state has the form

r̂MEMS5S g/2 0 0 g/2

0 12g 0 0

0 0 0 0

g/2 0 0 g/2

D . ~10!

The second regime occurs for 0<C[g<2/3. In this case the
optimal solution occurs when a51/3 and x1g/251/3. The
optimal maximally entangled mixed state in this region has
the form

r̂MEMS5S 1/3 0 0 g/2

0 1/3 0 0

0 0 0 0

g/2 0 0 1/3

D . ~11!

In this case the diagonal elements do not vary with g . Com-
bining both these solutions, we can obtain ~up to local uni-
tary transformations! the following single explicit form for
the maximal entangled mixed state:

r̂MEMS5S g~g ! 0 0 g/2

0 122g~g ! 0 0

0 0 0 0

g/2 0 0 g~g !

D , ~12!

where

g~g !5H g/2, C[g>2/3

1/3, C[g,2/3.
~13!

The degree of entanglement for this maximally entangled
mixed state is simply t5g2, while the linear entropy has the
form

SL5
2
3 @4g~g !„223g~g !…2g2# . ~14!

In Fig. ~1! we have plotted the tangle versus the linear
entropy for the Werner state, and the numerically determined
maximally entangled mixed state. Our analytic expression
for the state ~12! perfectly overlays the numerically gener-
ated optimal curve. It is clear that these states have a signifi-
cantly greater degree of entanglement for a given linear en-
tropy than the corresponding Werner states. The maximally-
entangled mixed state and Werner state curves join each
other at two points in the tangle–linear-entropy plane. The
first and most obvious point occurs at (t ,SL)5(1,0) ~here
both states are maximally entangled!. The second point oc-
curs at (t ,SL)5(0,8/9). Here the two states are given by,

r̂Werner5S 1/3 0 0 1/6

0 1/6 0 0

0 0 1/6 0

1/6 0 0 1/3

D ,

r̂MEMS5S 1/3 0 0 0

0 1/3 0 0

0 0 0 0

0 0 0 1/3

D . ~15!

Neither state is entangled. We observe that r̂MEMS at this
point has no nonzero off-diagonal elements, but the Werner
state does. The maximally entangled mixed state is entangled
as soon as the off-diagonal elements are nonzero (g.0,
while the Werner state requires g.1/3 to be entangled!.

Though r̂Werner and r̂MEMS have different forms they have the
same degree of entanglement ~zero! and linear entropy. Be-
cause of the way the maximally entangled mixed state has
been constructed, it never attains a linear entropy SL51. The
Werner state attains this point because of its maximally
mixed component.

To confirm that our analytic solution is optimal and that
no density matrix has a greater degree of entanglement for a
given linear entropy than the state ~12!, we generated one
million further random density matrices. We found that the
maximally entangled mixed state is indeed optimal. It is in-
teresting to note, however, that the state is only optimal for

mixture measures based on Tr@ r̂2#; if instead the degree of
mixture is measured for instance by the entropy @22#, the
state is not optimal.

Last, how does our class of maximally entangled mixed
states compare with those predicted by Ishizaka and Hi-
roshima @19#? Ishizaka’s two-qubit mixed states, the Werner
state being a specific example, were chosen so that the de-
gree of entanglement of such states cannot be increased fur-
ther by unitary operations. In contrast, we have derived a
class of states that have the maximum amount of entangle-
ment for a given linear entropy ~and vice versa!. Therefore

RAPID COMMUNICATIONS

MAXIMIZING THE ENTANGLEMENT OF TWO MIXED QUBITS PHYSICAL REVIEW A 64 030302

030302-3



our states are members of the Ishizaka et al. class by defini-
tion, although they were not explicitly considered @19#. The
Ishizaka et al. result indicates that a maximally entangled
mixed state cannot have the degree of entanglement in-
creased by unitary operations. This state can however have
its entanglement increased by a simple and experimentally
realizable nonunitary concentration protocol recently pro-
posed by Thew and Munro @27#. Such a protocol is based on
generalization of the Procrustean method originally intro-

duced for pure states @28# and recently demonstrated experi-
mentally @29#. In Fig. 2 we display the results of the concen-
tration protocol for two initial conditions. The solid curves
represent a range of states that are obtainable, from the maxi-
mally entangled mixed state, as the concentration protocol is
applied to improve the output state characteristics. We ob-
serve that for all g , the output characteristics can be signifi-
cantly improved ~solid gray lines!. In fact, for g>2/3 the
maximally entangled mixed state can be concentrated up the
dashed curve to a maximally entangled pure state.

To summarize, we have discovered a class of partially
entangled mixed two-qubit states that have the maximum
amount of entanglement for a given linear entropy. An ana-
lytical form for these states was derived and they were
shown to have significantly more entanglement for a given
degree of purity than the Werner states. The properties of
these states are still largely unknown and require significant
exploration. Open questions such as ‘‘can such states be re-
alized experimentally,’’ ‘‘to what extent do they violate Bell
inequalities,’’ and ‘‘do they have information processing ad-
vantages over other states’’ are the subject of current inves-
tigation.

We wish to thank K. Nemoto and G. J. Milburn for en-
couraging discussions. W.J.M. and A.G.W. would like to ac-
knowledge the support of the Australian Research Council,
while D.F.V.J. would like to thank the University of Queen-
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FIG. 2. Plot of the tangle t versus linear entropy SL for the

maximally entangled mixed state ~dotted line!. By employing a con-

centration protocol @26#, an initial state ~solid circle! can be ma-

nipulated to produce a range of alternative states ~solid gray lines!

with improved entanglement and linear entropy characteristics.
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