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Abstract We propose an exact branch-and-bound algorithm for the problem of
maximizing the minimum machine completion time on identical parallel machines.
The proposed algorithm is based on tight lower and upper bounds as well as an effective
symmetry-breaking branching strategy. Computational results performed on a large
set of randomly generated instances attest to the efficacy of the proposed algorithm.
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1 Introduction

We investigate the problem of maximizing the minimum machine completion time
on identical parallel machines. This problem has been first described by Deuermeyer
et al. (1982) and is formally described as follows: a set J of n jobs has to be scheduled
on m identical parallel machines (with n > m ≥ 2). Each job j ∈ J has to be
processed non-preemptively for p j units of time. The processing times are assumed
to be deterministic and integers. Each machine processes at most one job at one
time and each job cannot be processed by more than one machine at one time. The
machines process jobs continuously from time zero onwards and all jobs are ready for
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processing at time zero (thus, a machine never needs to wait idle for a job becoming
available). Let Ji ⊂ J denote the set of jobs assigned to machine Mi (i = 1, . . . , m),

then the completion time of Mi is defined as Ci = ∑
j∈Ji

p j . The problem is to find a
schedule that maximizes the minimum machine completion time Cmin =min1≤i≤m Ci .
Using the standard three-field notation of Lawler et al. (1993), this problem is denoted
P||Cmin.

An application of P||Cmin arises in the context of regional allocation of investments
as follows. Given a set of n investment projects to be carried out in m different regions.
Each project j ( j = 1, . . . , n) is expected to generate a revenue p j (or alternatively, p j

might represent the number of generated new jobs) and will be entirely carried out in a
chosen region i (i = 1, . . . , m). For the sake of equity, the projects should be allocated
to the different regions so as to maximize the minimal total regional revenue (or number
of generated new jobs). Another application arises in the process of scheduling the
replacement parts for the repeated repair of a machine. This problem occurs for instance
in the context of modular gas turbine aircraft engines maintenance and is described
as follows. A machine includes m identical working parts which frequently require
replacement. A finite inventory of n spares is initially available. In most cases the
inventory consists of both new as well as refurbished parts. Hence, these spares may
have different field lives. Let p j ( j = 1, . . . , n) denotes the (deterministic) field life
of spare j . The problem is to find a replacement part sequencing that maximizes the
total time elapsed before the inventory is eventually replenished.

To the best of our knowledge, the literature related to P||Cmin is solely devoted
to the investigation of approximation algorithms. Deuermeyer et al. (1982) show that
the longest processing time (LPT) heuristic has a performance guarantee of 3/4. This
analysis has been tightened by Csirik et al. (1992) who show that the exact worst-case
ratio of LPT is (3m −1)/(4m −2). Finally, Woeginger (1997) gave a polynomial-time
approximation scheme for this problem. Moreover, the on-line version of the problem
has been addressed by Azar and Epstein (1997) and Tan and He (2002). Actually,
this scanty literature is in sharp contrast to the huge number of papers that have been
devoted so far to the investigation of the “dual” of P||Cmin. Indeed, if the objective is
to minimize {max1≤i≤m Ci } instead of maximizing {min1≤i≤m Ci }, then the problem
turns out to be the well-known P||Cmax. This latter problem is definitely the most
classical NP-hard parallel machine scheduling problem. At this point, it is worth
noting that while these two problems are in general different, it is easy to see that for
the special two-machine case they are strictly equivalent. Hence, P||Cmin is NP-hard.

The objective of this paper is to present an exact branch-and-bound algorithm for
P||Cmin. The proposed algorithm is based on tight lower and upper bounds as well as
an effective branching scheme which make it feasible to solve to optimality many hard
P||Cmin instances. The remainder of the paper is organized as follows. In Sect. 2,
we describe several upper bounds. In Sect. 3, we describe an optimization-based
heuristic. In Sect. 4, we describe the branching scheme as well several important
features of the branch-and-bound algorithm. In Sect. 5, we present the results of
extensive computational experiments. Finally, some concluding remarks are provided.

In the sequel, w.l.o.g it is assumed that p1 ≥ p2 ≥ · · · ≥ pn and C1 ≤ C2 ≤ · · · ≤
Cm .
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Maximizing the minimum completion time on parallel machines 377

2 Upper bounds

It is well-known that the global effectiveness of a branch-and-bound algorithm strongly
relies on the tightness of the embedded upper bounding procedure (for a maximization
problem). In this section, we propose several upper bounds for P || Cmin.

2.1 A simple upper bound

Obviously, we have
m∑

i=1

Ci ≥ mC1 (2.1)

Since,
∑m

i=1 Ci = ∑n
j=1 p j , thus we get a simple O(n) upper bound

U0 =
⌊∑n

j=1 p j

m

⌋

(2.2)

where �a� represents the largest integer that is smaller than or equal to a.

2.2 Upper bounds derived from the P||Cmax

Now, we elucidate the close relationship between P||Cmin and P||Cmax and we show
that lower bounds of the latter can be used to derive upper bounds for the former.

Lemma 2.1 Given an instance I of P||Cmin and a valid lower bound L(I ) on the
optimal make span of the corresponding P||Cmax, then a valid upper bound on the
optimal solution of the P||Cmin instance is

U (I ) =

⎢
⎢
⎢
⎢
⎢
⎢
⎣

n∑

j=1
p j − L(I )

m − 1

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.3)

Proof It suffices to observe that L(I ) ≤ Cm ⇒ ∑m−1
i=1 Ci ≤ ∑n

j=1 p j − L(I ).

Moreover, (m − 1)C1 ≤
m−1∑

i=1
Ci . Thus, we get C1 ≤

∑n
j=1 p j −L(I )

m−1 .

Consequently, any valid lower bound for P||Cmax having a complexity O( f (n))

might be used to derive a corresponding upper bound for P||Cmin having a complexity
O(max(n, f (n)) (in practice, both bounds would have the same complexity). The
P||Cmax is a fundamental scheduling problem that has been extensively investigated,
and several lower bounds have been proposed in the literature. For instance,
Dell’Amico and Martello (1995) have proposed the following simple linear-time lower
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bound

L1 = max

⎛

⎝p1, pm + pm+1,

⎡

⎢
⎢
⎢

n∑

j=1

p j/m

⎤

⎥
⎥
⎥

⎞

⎠ (2.4)

(recall that the jobs are indexed so that p1 ≥ p2 ≥ · · · ≥ pn ). Moreover, Dell’Amico
and Martello (1995) have developed a tricky O(n2)-time lower bound L DM which
is based on the equivalence between the decision problems corresponding to the bin
packing problem (BPP) and P||Cmax, respectively. Indeed, checking whether n jobs
could be processed on the m machines such that the makespan does not exceed a trial
value C is equivalent to checking whether n items can be packed into m bins where
the capacity of each bin is equal to C . A “no” answer to P||Cmax decision problem is
provided if a lower bound on the minimal number of bins (machines) that are required
for packing the n items (jobs) exceeds m. Consequently, a valid lower bound for P ||
Cmax is C∗ + 1 where C∗ is the largest value of C that yields a “no” answer. The
BPP lower bound that has been proposed by Dell’Amico and Martello (1995) can be
briefly described as follows: for each integer p ∈ {pm+2, pm+3, . . . , pn} and p ≤ C

2 ,
let

J1 = {
j ∈ J ; C − p < p j

}

J2 =
{

j ∈ J ; C

2
< p j ≤ C − p

}

J3 =
{

j ∈ J ; p ≤ p j ≤ C

2

}

and define

B P P1(C, p) = |J1| + |J2| + max

(

0,

⌈∑
j∈J3

p j − C |J2| +∑
j∈J2

p j

C

⌉)

B P P2(C, p) = |J1| + |J2| + max

⎛

⎜
⎜
⎝0,

⎡

⎢
⎢
⎢
⎢
⎢

|J3| −∑
j∈J2

⌊
C − p j

p

⌋

⌊
C

p

⌋

⎤

⎥
⎥
⎥
⎥
⎥

⎞

⎟
⎟
⎠

Thus, a valid BPP lower bound is L BB P P =maxp{max(B P P1(C, p), B P P2(C, p))}.
Hence, the corresponding P||Cmax bound is denoted by L DM .

Haouari et al. (2006) observe that a practical way for (possibly) improving a lower
bound is to consider subset of machines and/or jobs. This observation is based on the
following lemma.

Lemma 2.2 (Haouari and Gharbi 2004) In any feasible schedule of a parallel
machines problem with n jobs and m machines, there is at least a set of k machines
(1 ≤ k ≤ m) which must process at least λk = k �n/m� + min(k, ρ) jobs, where
ρ = n − m �n/m�.
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Maximizing the minimum completion time on parallel machines 379

Based on this lemma, Haouari et al. (2006) have derived from L1 and L DM two
stronger P||Cmax lower bounds to which we refer as L2 and L3, respectively. The
complexity of these two bounds are O(n2) and O(n3), respectively. In the sequel, we
denote by Ui (i = 1, 2, 3) to the upper bounds that are derived from Li , respectively.

Example 2.3 Consider the instance with n = 5, m = 3, p1 = 118, p2 = 107,

p3 = 86, p4 = 81, p5 = 80. We have U0 = ⌊ 472
3

⌋ = 157, and L1 = max(118, 86 +
81,

⌈ 472
3

⌉
) = 167. Thus, U1 =

⌊
472−167

3−1

⌋
= 152.

2.3 Enhancement procedures

In order to get tighter upper bounds, we propose two enhancement procedures which
aim at strengthening previously developed upper bounds.

2.3.1 A lifting procedure for P||Cmin

An interesting consequence of Lemma 2.2 is the following corollary.

Corollary 2.4 In any feasible schedule of a parallel machines problem with n jobs
and m machines, there is at most a set of k machines (1 ≤ k ≤ m) which must process
at most µk = k �n/m� + max(0, ρ − m + k) jobs.

Proof Obviously, for k = m we have µk = n. For 1 ≤ k ≤ m − 1, we have

µk = n − λm−k . Thus, we get µk =
{

k �n/m� , for 1 ≤ k ≤ m − ρ

k �n/m� + ρ − m + k, for m − ρ < k ≤ m.

Hence, there are at most µk jobs that are scheduled on any subset of k machines
(k = 1, . . . , m). Consequently, if we consider the auxiliary P||Cmin instance Ik that is
defined on k machines and the job-set Jk = {1, . . . , µk} (i.e., Jk includes the µk jobs
that have the largest processing times), then its minimum completion time Cmin(Ik)

is a valid upper bound on the minimum completion time of the P||Cmin instance.
Therefore, if U (Ik) denotes an upper bound on Cmin(Ik), then a valid lifted upper
bound for the P||Cmin instance is

Ū = min
1≤k≤m

U (Ik) (2.5)

Consequently, from each upper bound Ui (i = 0, . . . , 3) we can use (2.5) to derive
a corresponding lifted upper bound Ūi . Clearly, if the computation of U requires
O( f (n)) time, then Ū requires the computation of m bounds and can therefore be
computed in O(m f (n)) time.

Example 2.5 Continued. We have ρ = 2. Thus, for k = 1 we get µ1 = 1,
J1 = {1} and U0(I1) = ⌊ 118

1

⌋ = 118. For k = 2, we get µ2 = 3, J2 = {1, 2, 3} and
U0(I2) = ⌊ 118+107+86

2

⌋ = 155. For k = 3, we get µ3 = 5, J3 = {1, 2, 3, 4, 5} and
U0(I3) = ⌊ 118+107+86+81+80

3

⌋ = 157. Thus we get Ū0 = 118. Note that in this case
we have Ū0 < U1 < U0.
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2.3.2 Second enhancement procedure

This procedure is based on the following observation. Given an upper bound U , we
can derive a possibly better valid upper bound Û by solving the following subset sum
problem (SSP).

For each job j ( j = 1, . . . , n), denote by x j the binary variable that takes the value
1 if job j is assigned to the machine having the minimum completion time and 0
otherwise. Thus, a valid upper bound is

Û = Max
∑

j∈J

p j x j (2.6)

subject to:

∑

j∈J

p j x j ≤ U, (2.7)

x j ∈ {0, 1}, ∀ j ∈ J. (2.8)

It is well-known that although being anNP-hard problem, the SSP can be efficiently
solved in a pseudo-polynomial time (see, Pisinger 2003). In the sequel, we denote by
Ûi (i = 0, . . . , 3) the bounds that are obtained through enhancing the bounds Ui via
solving an SSP, respectively.

2.3.3 A hybrid enhancement procedure

We have implemented a hybrid enhancement procedure which is based on a combi-
nation of both above-described enhancements procedures. More precisely, for each
upper bound Ui (i = 0, . . . , 3), we derive

U∗
i = min

1≤k≤m
Ûi (Ik) (2.9)

Hence, instead of using an upper bound Ui (Ik) for instance Ik (as in 2.5), we solve
an SSP for each k, and then we use the enhanced resulting value Ûi (Ik).

Furthermore, for each bound Ui (i = 1, 2, 3) which is based on a P||Cmax lower
bound Li , we have used in (3) the tightened value L̂i which is given by

L̂i = Min
∑

j∈J

p j y j (2.10)

subject to:

∑

j∈J

p j y j ≥ Li , (2.11)

x j ∈ {0, 1}, ∀ j ∈ J. (2.12)
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Maximizing the minimum completion time on parallel machines 381

where the binary variable y j is defined for each job j ( j = 1, . . . , n) and takes the
value 1 if job j is assigned to the machine having the maximum completion time and 0
otherwise. This hybrid enhancement strategy has been assessed through computational
experiments on randomly generated instances. For these instances, the enhanced upper
bounds exhibit an excellent performance. Indeed, in 92.32% of the cases U∗

3 yields a
proven optimal value.

3 A heuristic algorithm

Now, we turn our attention to the description of an effective heuristic which consti-
tutes the second key feature of our branch-and-bound algorithm. This heuristic is in
the spirit of the approach that has been implemented by Haouari et al. (2006) for
P || Cmax. Basically, the proposed heuristic is a multi-start local search method which
requires iteratively solving a sequence of P2||Cmin instances. At each iteration, a pair
of machines M1 and Mm are selected (recall that C1 ≤ C2 ≤ · · · ≤ Cm) and the
resulting P2||Cmin instance which is defined on the jobset J̃ = J1 ∪ Jm is solved
to optimality. To that aim, the P2||Cmin is reformulated as the following subset sum
problem

Maximize
∑

j∈ J̃

p j z j (3.1)

subject to:

∑

j∈ J̃

p j z j ≤
⎢
⎢
⎢
⎣
∑

j∈ J̃

p j/2

⎥
⎥
⎥
⎦ (3.2)

x j ∈ {0, 1}, ∀ j ∈ J̃ , (3.3)

where the binary variable z j is defined for each job j ∈ J̃ and takes the value 1 if job
j is assigned to the machine having the minimum completion time and 0 otherwise.

Let Cm
min denote the minimum completion time that is obtained after solving the

corresponding subset sum problem. If an improved two-machine schedule has been
obtained (hence, Cm

min > C1), then the schedules of machines M1 and Mm are replaced
by the new ones, the new values Ck (k = 1, . . . , m) are computed, the machines are
reindexed so that C1 ≤ C2 ≤ · · · ≤ Cm, and the procedure is reiterated (i.e., machines
M1 and Mm are rescheduled). Otherwise, the pair of machines (M1, Mm−1) is selected
and the corresponding P2||Cmin instance is solved as a subset sum problem and so
on. The procedure is stopped if no improvement has been achieved after sequentially
considering all of the machine pairs (M1, Mk) (k = m, m −1, . . . , 2). A pseudo-code
of the heuristic is described below.

Step 0. (Initialization)
Generate an initial schedule σ .

Step 1. (Computation of the completion times)
Compute Ck for k = 1, . . . , m, Set k = m.
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Step 2. (Rescheduling of a machine pair)
Solve using (13)–(15) the P2||Cmin instance that is defined on M1 and Mk .
Let Ck

min denotes the obtained minimum completion time.
Step 3. (Solution update)

If Ck
min < C1 then update σ and go to Step 1.

Step 4. (Termination test)
If (k > 2) then Set k = k − 1 and go to Step 2, otherwise Stop.

In order to produce an improved solution, the above described heuristic is reiterated
i ter times (where the parameter i ter is set empirically) after varying the initial sche-
dule. The starting solutions are obtained with a randomized LPT rule. This procedure
iteratively selects two unscheduled jobs with the longest processing times and then
randomly assigns one out of this pair to the first available machine. In our implemen-
tation, we set the maximal number of starting solutions (i ter ) to 100. However, the
generation process is prematurely halted if a proven optimal solution (i.e., equal to an
upper bound) is generated.

4 A branch-and-bound algorithm

4.1 Solution representation

Let S denote a feasible P||Cmin solution with a corresponding job partition
J1, J2, . . . , Jm . Note that since the problem exhibits a natural symmetry inherent to
identical machines and (possibly) some indistinguishable jobs (i.e., having identical
processing times), we can associate with S a set of alternative symmetric solutions
that might be generated by re-indexing machines and/or identical jobs. Actually, the
number of such alternative symmetric solutions is generally huge. For instance, even
for the apparently “benign” case where all jobs are different, we can associate with
any feasible solution S, a set of m! − 1 alternative symmetric solutions. Obviously,
this symmetry might significantly increase the computational burden and challenge
the efficacy of an optimization algorithm. In order to avoid this serious drawback,
we propose an efficient symmetry-breaking representation. It is noteworthy that the
concept of symmetry-breaking (or -defeating) is widely used in computational integer
programming for improving discrete model representations (see, Sherali and Smith
2001). We denote by ni (i = 1, . . . , m) the number of jobs that are assigned to machine
Mi (i.e., ni = |Ji |). Each subset Ji (i = 1, . . . , m) is represented by a permutation
σi = (σ 1

i , σ 2
i , . . . , σ

ni
i ) of the ni job indices. Hence, we associate to each solution S a

permutation σ(S) = σ1σ2 . . . σm . Such a permutation is said to be valid if it satisfies
the following conditions:

(C1) σ k
i < σ k+1

i , for k = 1, . . . , ni − 1, i = 1, . . . , m
(C2)

∑ni
k=1 pσ k

i
≤ ∑ni+1

k=1 pσ k
i+1

, for i = 1, . . . , m − 1

(C3) if for some i (i = 1, . . . , m − 1), we have
∑ni

k=1 pσ k
i

= ∑ni+1
k=1 pσ k

i+1
then

σ 1
i < σ 1

i+1
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Maximizing the minimum completion time on parallel machines 383

(C4) if for some j ( j = 1, . . . , m − 1), we have p j = p j+1 then job j + 1 is
sequenced after job j in σ .

Condition (C1) specifies that each subsequence σi (i = 1, . . . , m) is a nondecrea-
sing list of the job indices. Condition (C2) requires that the machines are indexed
according to nondecreasing completion times. Condition (C3) specifies that ties are
broken in favor of the machine having the smallest job index. Condition (C4) requires
that if two jobs j and j + 1 are identical and j is assigned to a machine Mα then j + 1
is necessarily assigned to machine Mβ such that β ≥ α.

The main advantage of this representation is that each set of alternative symmetric
solutions is represented by a unique permutation of the n jobs.

Example 4.1 Consider the instance with n = 8, m = 3, p1 = 15, p2 = 12, p3 = 12,

p4 = 10, p5 = 9, p6 = 8, p7 = 5, p8 = 5. Let S denote the solution which is
specified by the following assignment: jobs 1, 6, and 7 are assigned to a first machine,
jobs 2, 5, and 8 are assigned to a second machine, and jobs 3 and 4 are assigned to a
third machine. The only valid representation of this solution is σ(S) = σ1σ2σ3 where
σ1 = (2, 4), σ2 = (3, 5, 7), and σ3 = (1, 6, 8).

Conversely, given a valid permutation σ ∗ and a (feasible) threshold value Cmin,

one can construct in O(n) time a feasible solution S having a minimum completion
time equal to Cmin and satisfying σ(S) = σ ∗. Clearly, the jobs that are assigned
to M1 are {σ ∗(1), σ ∗(2), . . . , σ ∗(ν1)} where ν1 is the smallest integer ν satisfying∑ν

j=1 pσ ∗( j) ≥ Cmin. Next, the jobs that are assigned to Mk (2 ≤ k ≤ m − 1)

are {σ ∗(νk−1 + 1), . . . , σ ∗(νk)} where νk is the smallest integer ν satisfying∑ν
j=νk−1+1 pσ ∗( j) ≥ Ck−1. Finally, the unscheduled jobs {σ ∗(νm−1 + 1), . . . , σ ∗(n)}

are assigned to Mm .

4.2 Branching scheme and data representation

Since each solution is represented by a permutation of the n jobs, we have adopted the
following branching scheme. Each node Nl of level l of the search tree corresponds to
a partial valid permutation σ(Nl) = (σ1, σ2, . . . , σl) of l jobs. Therefore, the corres-
ponding set of unscheduled jobs is J̄ (Nl) = J \{σ1, σ2, . . . , σl}. Obviously, the root
node N0 corresponds to the empty permutation. Each child of node Nl corresponds to
appending an unscheduled job j0 ∈ J̄ (Nl) to σ(Nl) and thus getting an extended par-
tial permutation (σ1, σ2, . . . , σl , j0). This branching strategy amounts to sequentially
loading M1, M2, . . . , Mm, in that order, while taking heed of Conditions (C1)–(C4).

With each node N at level l of the search tree is associated the following data:

– σ(N ) : valid permutation of l jobs
– J (N ) : subset of scheduled jobs (|J (N )| = l)
– i(N ) : index of the last loaded machine
– L(N ) : total workload of machine Mi(N )

– C1(N ) : total workload of machine M1
– a(N ) : lower bound on the workload of machine Mi(N )

– b(N ) : upper bound on the workload of machine Mi(N )
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– j (N ) : index of the last scheduled job (i.e., j (N ) = σl)

– j0(N ) : smallest index of the jobs scheduled on Mi(N )−1
– j1(N ) : smallest index of the jobs scheduled on Mi(N )

– J̄ (N ) : set of unscheduled jobs that are candidate to be scheduled on Mi(N ).

The data associated with the root node N0 is : σ(N0) = ∅, J (N0) = ∅, i(N0) = 1,

L(N0) = 0, C1(N0) = 0, a(N0) = L B + 1 (where L B denotes the value of the heu-
ristic solution), b(N0) = U B (where U B denotes the value of an upper bound which
is computed at the root node), j (N0) = 0, j0(N0) = 0, j1(N0) = 0, and J̄ (N0) = J .
Now, we provide some details for a non-root node N .

Computation ofa(N ) : If i(N ) = 1 then a(N ) = L B + 1 (because we are seeking
for a solution that strictly outperforms the heuristic one). Moreover, since only valid
permutations are generated, then from conditions (C2) and (C3), we get

a(N ) :
{

Ci(N )−1, if i(N ) > 1 and j1(N ) > j0(N )

Ci(N )−1 + 1 , if i(N ) > 1 and j1(N ) < j0(N ).

Computation of b(N ): An upper bound on the total workload of Mi(N ) is computed
by considering a reduced P||Cmin instance defined on m

′ = m − i(N ) + 1 machines
and n

′ = ∣
∣ J̄ (N )

∣
∣ + 1 jobs. The jobset comprises the unscheduled jobs as well as a

dummy job n + 1 corresponding to the subset of jobs that have been already assigned
to Mi(N ). Thus, the processing time of this dummy job is equal to the total workload
of machine Mi(N ) (i.e., pn+1 = L(N ))

Computation of J̄ (N ): The set of unscheduled jobs that are candidate to be scheduled
on Mi(N ) immediately after j (N ) is

J̄ (N ) = {
j ∈ J \ J (N ) : j > j (N ) and p j + L(N ) ≤ b(N )

}

Assume that node N is branched and that each child node N+ is obtained by appending
a job j ∈ J \ J (N ) to σ(N ). First, consider the situation where 1 < i(N ) ≤ m − 1.
Two cases may occur:

Case (i): L(N ) < a(N ) and j ∈ J̄ (N )) : in this case, additional jobs must be assi-
gned to machine Mi(N ) and job j is a valid candidate. Therefore, for node
N+ we define σ(N+) = σ(N ) j , J (N+) = J (N ) ∪ { j}, i(N+) = i(N ),

L(N+) = L(N ) + p j , C1(N+) = C1(N ), a(N+) = a(N ), j (N+) = j,
j0(N+) = j0(N ), j1(N+) = j1(N ). Moreover, b(N+) and J̄ (N+) are
computed directly.

Case (ii): L(N ) ≥ a(N ) or j /∈ J̄ (N ) : in this case, no further job should be
assigned to machine Mi(N ) and job j should be assigned to the next machine
Mi(N )+1. Therefore, the data of N+ is : σ(N+) = σ(N ) j , J (N+) =
J (N ) ∪ { j}, i(N+) = i(N ) + 1, L(N+) = p j , C1(N+) = C1(N ),

a(N+) = a(N )+δ where δ = 1 if j < j1(N ) and 0, otherwise, j (N+) =
j, j0(N+) = j1(N ), j1(N+) = j . Here again, b(N+) and J̄ (N+) are
computed directly.

Now, consider the special case where i(N ) = 1. Here, three cases may occur:
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Case (iii): L(N ) < a(N ) and j ∈ J̄ (N ) : in this case additional jobs must be
assigned to machine M1 and job j is a valid candidate. We set C1(N+) =
L(N ) + p j . The remaining data are updated similarly to Case (i).

Case (iv): L(N ) ≥ a(N ) and j /∈ J̄ (N ) : in this case job j cannot be assigned to
machine M1 and requires to be therefore assigned to machine M2. This
situation is similar to Case (ii).

Case (v): L(N ) ≥ a(N ) and j ∈ J̄ (N ) : in this case, job j is either assigned to
machine M1 or to machine M2. Of course, in this latter case no further job
would be assigned to M1. It is noteworthy that this yields two different
descendent nodes N+

1 and N+
2 having the same partial permutation. The-

refore, the data associated with nodes N+
1 and N+

2 are updated similarly
to Cases (ii) and (iii), respectively.

4.3 Implementation details

Implemented bounds. We have performed extensive computational experiments in
order to assess different combinations of upper bounding procedures. We found that
an efficient implementation is obtained when U∗

3 is computed at the root node and Ū1
at non-root nodes. While the former upper bound is often very tight, but is (relatively)
time-consuming, the latter one performs reasonably well and is very fast. Moreover,
the lower bound at the root node (L B) is delivered by the heuristic which is described
in Sect. 3.

Node pruning. Obviously, whenever a solution having a minimum completion time
satisfying Cmin > L B is found, the incumbent value is updated and all the active
nodes N having C1(N ) ≤ L B are pruned. In addition, a node N is pruned if any of
the following conditions holds:

– b(N ) < a(N )

– i(N ) = m − 1 and L(N ) ≥ a(N ).

The first condition refers to the case where N is infeasible (i.e., the corresponding
permutation is not valid). The second condition refers to the case where N is a leaf
of the search tree. Indeed, if m − 1 machines are loaded, then the unscheduled jobs
are necessarily assigned to the remaining unloaded machine Mm . In this case, the
incumbent value is updated by setting L B = min(L B, C1(N ),

∑
j∈ J̄ (N ) p j ).

Taking heed of Condition (C4). Assume that for some node N , we have { j, j + 1,

. . . , j + h} ⊂ (J \J (N )) and p j = p j+1 = · · · = p j+h . Then, in order to generate a
permutation for which Condition (C4) holds, the children nodes that are obtained by
appending to σ(N ) the h jobs j + 1, . . . , j + h, respectively, are not created.

Search strategy. We have adopted a depth-first search strategy. In the sequel, we refer
to the resulting branch-and-bound algorithm by B B1.

123



386 M. Haouari, M. Jemmali

4.4 An alternative branching strategy

In order to get a better insight of the actual pertinence of the proposed symmetry-
breaking branching strategy, we have implemented a second version of the proposed
depth-first branch-and-bound algorithm with the same upper and lower bounds but with
a different branching strategy. This latter strategy is similar to the one that has been
previously implemented by Dell’Amico and Martello (1995) for solving P||Cmax.
Hereafter, we refer to this second version by B B2. On the contrary to the above
described branching strategy, the m machines are loaded simultaneously. Indeed, while
the root node represents the empty schedule, at level k (k ≥ 1) of the search tree, a node
represents a partial schedule on the m machines of the job subset {1, 2, . . . , k}. Given
a node at level k, m child nodes are created by assigning job k + 1 to machines M1,

M2, . . . , Mm, respectively. An associated upper bound is computed by considering a
Pm||Cmin instance defined on the subset J̄ of unscheduled jobs as well as m dummy
jobs having processing times C1, C2, . . . , Cm , respectively.

Moreover, we have implemented the three following dominance rules:

Rule 1: If for some machine Mi (i = 1, . . . , m − 1) we have Ci = Ci+1 then job
k + 1 is only assigned to machine Mi (otherwise unnecessary equivalent
solutions would be created)

Rule 2: If for some job j ( j = 1, . . . , n − 1) we have p j = p j+1 and job j is
assigned to machine Mi (i ≥ 2) then job j + 1 could not be assigned to any
of machines M1, M2, . . . , Mi−1 (here again, because unnecessary equivalent
solutions would be created)

Rule 3: If
∣
∣ J̄
∣
∣ < m then job j + 1 could only be assigned to machines M1, M2, . . . ,

M∣
∣ J̄
∣
∣ (otherwise, dominated nodes would be created).

5 Computational results

We have coded the proposed upper and lower bounds as well as the branch-and-bound
algorithms B B1 and B B2 in Microsoft Visual C++ (Version 6.0). All our experiments
were obtained on a Pentium IV 3.2 GHz Personal Computer with 3 GB RAM. We have
considered five problem classes that have been randomly generated as described in
Dell’Amico and Martello (1995) who used them for testing an exact branch-and-bound
algorithm for P||Cmax . The processing times were generated according to the follo-
wing distributions:

– Class 1: discrete uniform distribution on [1,100]
– Class 2: discrete uniform distribution on [20,100]
– Class 3: discrete uniform distribution on [50,100]
– Class 4: normal distribution with Mean 100 and SD 50
– Class 5: normal distribution with Mean 100 and SD 20.
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The number of jobs is ranging between 10 and 10,000, and the number of machines
is ranging between 2 and 15. For each class, and each (n, m) combination, 10 instances
were generated. Hence, a total number of 2,050 instances have been generated.

Table 1 displays a summary of the results that were obtained for the upper bounding
procedures. In this table, each column corresponds to an (n, m) combination. For each
upper bound, we provide the number of times (out of 50) it yields the minimal value
over all of the bounds.

We see from this table, that the enhanced bounds exhibit a very good performance.
In particular, the bound U∗

3 consistently dominates all the other ones.
In Table 2, we report a summary of the results obtained with B B1. From this

table, we see that the implemented bounds are very tight, since for most instances
branching was unnecessary. Actually, we found that branching was required for only
166 instances out of 2,050. Moreover, we observe that only 6 instances remained
unsolved after reaching the time limit of 800 s.

Table 3 displays the results that were obtained with B B2. Since we have imple-
mented the same upper and lower bounds as in B B1, then here again branching was
required for 166 instances out of 2,050. However, we observe that 89 instances remai-
ned unsolved after reaching the CPU time limit. This result provides evidence of the
superiority of the symmetry-breaking branching strategy that has been implemented
in B B1.

In order to get a better picture of the performance of B B1, we have generated
an additional class of 260 instances where for each instance with n jobs (n = 10,
25, 50, 100, 250, 500, 1,000) the processing times are drawn from discrete uniform
distribution on [1, n]. For these instances, it is expected that only a few jobs have equal
processing times. The results are summarized in Table 4. We see that while all of these
instances were optimally solved by B B1 (mostly at the root node), there are seven
instances that remained unsolved by B B2.

Finally, we have run our algorithms on a class of perfect packing instances. This
class comprises 1,520 instances that have been randomly generated as indicated in
Dell’Amico and Martello (1995). A nice property peculiar to this latter class is that
the optimal schedule has an equal completion time on each machine (note that in this
case P||Cmin and P||Cmax are strictly equivalent). The results are consistent with those
obtained for the other problem classes. Indeed, all of these instances were solved to
optimality by B B1 and branching was required for only 18 instances. Among these
18 instances, B B2 failed to solve 15.

6 Conclusion

In this paper, we have proposed an exact branch-and-bound algorithm for P||Cmin. The
proposed algorithm includes several distinctive algorithmic features. In particular, it is
based on tight lower and upper bounds as well as an effective symmetry-breaking bran-
ching strategy. Computational results attest to the efficacy of the proposed algorithm,
which has been able to solve to optimality all but 6 instances out of 3,830 randomly
generated instances.
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Table 2 Performance of the branch and bound algorithm B B1

n m Class 1 Class 2 Class 3 Class 4 Class 5

NN Time NN Time NN Time NN Time NN Time

10 2 1 – 1 – 1 – 1 – 1 –

3 90 0.001 137 0.001 48 0.002 215 0.002 100 0.002

5 128 0.002 152 0.002 188 – 150 0.003 140 0.002

25 2 1 – 1 – 1 0.002 1 – 1 –

3 1 – 1 – 1 – 1 – 1 –

5 1 – 1 – 1 – 1 – 1 –

10 19649828 85 31675367 129 (9) 235178 1.380 4294944.9 19.625 10014760 38.675

15 24572119 128 (9) 268948 1.900 42 0.006 14537221 77.878 48 0.005

50 2 1 – 1 – 1 – 1 – 1 –

3 1 – 1 – 1 – 1 – 1 –

5 1 – 1 – 1 – 1 – 1 –

10 1 – 1 – 1 – 1 – 1 –

15 17 0.003 21 0.001 1 0.001 (8) 4498586.8 20.335 1 0.001 (8)

100 3 1 – 1 – 1 – 1 – 1 –

5 1 – 1 – 1 – 1 – 1 –

10 1 – 1 – 1 – 1 – 1 –

15 1 – 1 – 1 – 1 – 1 –

250 3 1 – 1 – 1 – 1 – 1 –

5 1 – 1 – 1 – 1 – 1 –

– – – – –

10 1 – 1 – 1 – 1 – 1 –

15 1 – 1 – 1 – 1 – 1 –

500 3 1 – 1 0.001 1 0.001 1 – 1 0.001

5 1 – 1 – 1 – 1 – 1 –

10 1 – 1 – 1 – 1 – 1 0.001

15 1 – 1 0.001 1 0.002 1 – 1 0.002

1,000 3 1 – 1 0.004 1 0.006 1 – 1 0.004

5 1 – 1 – 1 – 1 – 1 0.003

10 1 – 1 – 1 – 1 – 1 0.004

15 1 – 1 0.006 1 0.008 1 0.002 1 0.006

2,500 3 1 0.002 1 0.016 1 0.021 1 0.002 1 0.016

5 1 0.002 1 0.002 1 0.002 1 0.002 1 0.016

10 1 0.002 1 0.002 1 0.002 1 0.002 1 0.016

15 1 0.002 1 0.02 1 0.021 1 0.003 1 0.019

3 1 0.006 1 0.07 1 0.084 1 0.005 1 0.062

5 1 0.006 1 0.004 1 0.005 1 0.005 1 0.050
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Table 2 continued

n m Class 1 Class 2 Class 3 Class 4 Class 5

NN Time NN Time NN Time NN Time NN Time

5,000 10 1 0.006 1 0.005 1 0.005 1 0.005 1 0.047

15 1 0.005 1 0.08 1 0.098 1 0.005 1 0.070

10,000 3 1 0.016 1 0.519 1 0.520 1 0.016 1 0.294

5 1 0.015 1 0.016 1 0.016 1 0.016 1 0.177

10 1 0.015 1 0.016 1 0.016 1 0.016 1 0.177

15 1 0.016 1 1.588 1 2.605 1 0.016 1 0.575

(-) means that the average CPU time is less than 0.001 s
The figures in brackets indicate the number of solved instances if less than 10

Table 3 Performance of the branch and bound algorithm B B2

n m Class 1 Class 2 Class3 Class 4 Class 5

NN Time NN Time NN Time NN Time NN Time

10 2 1 – 1 – 1 – 1 – 1 —

3 48 0.001 117 0.001 45 0.001 207 0.001 97 0.002

5 1,366 0.007 1,019 0.005 582 0.004 2,159 0.013 645 0.004

2 1 – 1 – 1 0.002 1 – 1 –

3 1 – 1 – 1 – 1 – 1 –

25 5 1 – 1 – 1 – 1 – 1 –

10 2,9754,513 181.901 (7) 4,6047,433 (2) 1 0.007 (2) 43,02,480 30.422 (2) – (0)

15 – (0) 1 (1) 1 0.003 (3) (0) 1 0.003 (3)

50 2 1 – 1 – 1 – 1 – 1 –

3 1 – 1 – 1 – 1 – 1 –

5 1 – 1 – 1 – 1 – 1 –

10 1 – 1 – 1 – 1 – 1 –

15 1 – (8) 1 0.001 1 0.002 (9) 1 0.002 (6) 1 – (8)

100 3 1 – 1 – 1 – 1 – 1 –

5 1 – 1 – 1 – 1 – 1 –

10 1 – 1 – 1 – 1 – 1 –

15 1 – 1 – 1 – 1 – 1 –

250 3 1 – 1 – 1 – 1 – 1 –

5 1 – 1 – 1 – 1 – 1 –

10 1 – 1 – 1 – 1 – 1 –

15 1 – 1 – 1 – 1 – 1 –

500 3 1 – 1 0.001 1 0.001 1 – 1 0.001

5 1 – 1 – 1 – 1 – 1 –

10 1 – 1 – 1 – 1 – 1 0.001

15 1 – 1 0.001 1 0.002 1 – 1 0.002

1,000 3 1 – 1 0.004 1 0.006 1 – 1 0.004

5 1 – 1 – 1 – 1 – 1 0.003

10 1 – 1 – 1 – 1 – 1 0.004

15 1 – 1 0.006 1 0.008 1 0.002 1 0.006

3 1 0.002 1 0.016 1 0.021 1 0.002 1 0.016

5 1 0.002 1 0.002 1 0.002 1 0.002 1 0.016
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Table 3 continued

n m Class 1 Class 2 Class3 Class 4 Class 5

NN Time NN Time NN Time NN Time NN Time

2,500 10 1 0.002 1 0.002 1 0.002 1 0.002 1 0.016

15 1 0.002 1 0.02 1 0.021 1 0.003 1 0.019

5,000 3 1 0.006 1 0.07 1 0.084 1 0.005 1 0.062

5 1 0.006 1 0.004 1 0.005 1 0.005 1 0.050

10 1 0.006 1 0.005 1 0.005 1 0.005 1 0.047

15 1 0.005 1 0.080 1 0.098 1 0.005 1 0.070

10,000 3 1 0.016 1 0.519 1 0.520 1 0.016 1 0.294

5 1 0.015 1 0.016 1 0.016 1 0.016 1 0.177

10 1 0.015 1 0.016 1 0.016 1 0.016 1 0.177

15 1 0.016 1 1.588 1 2.605 1 0.016 1 0.575

(-) means that the average CPU time is less than 0.001 s
The figures in brackets indicate the number of solved instances if less than 10

Table 4 Performance of B B1
and B B2 on instances with
processing times drawn from
[1, n]

(-) means that the average CPU
time is less than 0.001 s.
The figures in brackets indicate
the number of solved instances if
less than 10

n m BB1 BB2

NN Time NN Time

10 3 1 – 1 –

5 101 – 66 –

25 3 1 – 1 –

5 1 – 1 –

10 3954509 21.165 2545768 15.335

15 12301985 73.786 242984 2.549(3)

50 3 1 – 1 –

5 1 – 1 –

10 1 – 1 –

15 1 – 1 –

100 3 1 – 1 –

5 1 – 1 –

10 1 – 1 –

15 1 – 1 –

250 3 1 – 1 –

5 1 – 1 –

10 1 – 1 –

15 1 – 1 –

500 3 1 – 1 –

5 1 0.001 1 0.001

10 1 – 1 –

15 1 0.001 1 0.001

1,000 3 1 0.002 1 0.002

5 1 0.003 1 0.003

10 1 0.004 1 0.004

15 1 0.005 1 0.005
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We expect that some of the ideas that have been developed in this paper would
prove useful for the exact solution of similar parallel machine scheduling problems,
but this would require further investigation.
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