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ABSTRACT
Models for the processes by which ideas and influence propagate
through a social network have been studied in a number of do-
mains, including the diffusion of medical and technological innova-
tions, the sudden and widespread adoption of various strategies in
game-theoretic settings, and the effects of “word of mouth” in the
promotion of new products. Recently, motivated by the design of
viral marketing strategies, Domingos and Richardson posed a fun-
damental algorithmic problem for such social network processes:
if we can try to convince a subset of individuals to adopt a new
product or innovation, and the goal is to trigger a large cascade of
further adoptions, which set of individuals should we target?

We consider this problem in several of the most widely studied
models in social network analysis. The optimization problem of
selecting the most influential nodes is NP-hard here, and we pro-
vide the first provable approximation guarantees for efficient algo-
rithms. Using an analysis framework based on submodular func-
tions, we show that a natural greedy strategy obtains a solution that
is provably within 63% of optimal for several classes of models;
our framework suggests a general approach for reasoning about the
performance guarantees of algorithms for these types of influence
problems in social networks.

We also provide computational experiments on large collabora-
tion networks, showing that in addition to their provable guaran-
tees, our approximation algorithms significantly out-perform node-
selection heuristics based on the well-studied notions of degree
centrality and distance centrality from the field of social networks.
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1. INTRODUCTION
A social network — the graph of relationships and interactions

within a group of individuals — plays a fundamental role as a
medium for the spread of information, ideas, and influence among
its members. An idea or innovation will appear — for example, the
use of cell phones among college students, the adoption of a new
drug within the medical profession, or the rise of a political move-
ment in an unstable society — and it can either die out quickly
or make significant inroads into the population. If we want to un-
derstand the extent to which such ideas are adopted, it can be im-
portant to understand how the dynamics of adoption are likely to
unfold within the underlying social network: the extent to which
people are likely to be affected by decisions of their friends and
colleagues, or the extent to which “word-of-mouth” effects will
take hold. Such network diffusion processes have a long history
of study in the social sciences. Some of the earliest systematic
investigations focused on data pertaining to the adoption of medi-
cal and agricultural innovations in both developed and developing
parts of the world [8, 27, 29]; in other contexts, research has inves-
tigated diffusion processes for “word-of-mouth” and “viral market-
ing” effects in the success of new products [4, 7, 10, 13, 14, 20, 26],
the sudden and widespread adoption of various strategies in game-
theoretic settings [6, 12, 21, 32, 33], and the problem of cascading
failures in power systems [2, 3].

In recent work, motivated by applications to marketing, Domin-
gos and Richardson posed a fundamental algorithmic problem for
such systems [10, 26]. Suppose that we have data on a social
network, with estimates for the extent to which individuals influ-
ence one another, and we would like to market a new product that
we hope will be adopted by a large fraction of the network. The
premise of viral marketing is that by initially targeting a few “influ-
ential” members of the network — say, giving them free samples
of the product — we can trigger a cascade of influence by which
friends will recommend the product to other friends, and many in-
dividuals will ultimately try it. But how should we choose the few
key individuals to use for seeding this process? In [10, 26], this
question was considered in a probabilistic model of interaction;
heuristics were given for choosing customers with a large overall
effect on the network, and methods were also developed to infer the
influence data necessary for posing these types of problems.

In this paper, we consider the issue of choosing influential sets of
individuals as a problem in discrete optimization. The optimal so-
lution is NP-hard for most models that have been studied, including
the model of [10]. The framework proposed in [26], on the other



hand, is based on a simple linear model where the solution to the
optimization problem can be obtained by solving a system of linear
equations. Here we focus on a collection of related, NP-hard mod-
els that have been extensively studied in the social networks com-
munity, and obtain the first provable approximation guarantees for
efficient algorithms in a number of general cases. The generality
of the models we consider lies between that of the polynomial-time
solvable model of [26] and the very general model of [10], where
the optimization problem cannot even be approximated to within a
non-trivial factor.

We begin by departing somewhat from the Domingos-Richardson
framework in the following sense: where their models are essen-
tially descriptive, specifying a joint distribution over all nodes’ be-
havior in a global sense, we focus on more operational models
from mathematical sociology [15, 28] and interacting particle sys-
tems [11, 17] that explicitly represent the step-by-step dynamics
of adoption. We show that approximation algorithms for maximiz-
ing the spread of influence in these models can be developed in
a general framework based on submodular functions [9, 23]. We
also provide computational experiments on large collaboration net-
works, showing that in addition to their provable guarantees, our al-
gorithms significantly out-perform node-selection heuristics based
on the well-studied notions of degree centrality and distance cen-
trality [30] from the field of social network analysis.

Two Basic Diffusion Models. In considering operational models
for the spread of an idea or innovation through a social network
G, represented by a directed graph, we will speak of each indi-
vidual node as being either active (an adopter of the innovation)
or inactive. We will focus on settings, guided by the motivation
discussed above, in which each node’s tendency to become active
increases monotonically as more of its neighbors become active.
Also, we will focus for now on the progressive case in which nodes
can switch from being inactive to being active, but do not switch in
the other direction; it turns out that this assumption can easily be
lifted later. Thus, the process will look roughly as follows from the
perspective of an initially inactive node v: as time unfolds, more
and more of v’s neighbors become active; at some point, this may
cause v to become active, and v’s decision may in turn trigger fur-
ther decisions by nodes to which v is connected.

Granovetter and Schelling were among the first to propose mod-
els that capture such a process; their approach was based on the use
of node-specific thresholds [15, 28]. Many models of this flavor
have since been investigated (see e.g. [5, 15, 18, 19, 21, 25, 28, 29,
31, 32, 33])but the following Linear Threshold Model lies at the
core of most subsequent generalizations. In this model, a node v is
influenced by each neighbor w according to a weight bv,w such that∑
w neighbor of v

bv,w ≤ 1. The dynamics of the process then proceed

as follows. Each node v chooses a threshold θv uniformly at ran-
dom from the interval [0, 1]; this represents the weighted fraction
of v’s neighbors that must become active in order for v to become
active. Given a random choice of thresholds, and an initial set of
active nodes A0 (with all other nodes inactive), the diffusion pro-
cess unfolds deterministically in discrete steps: in step t, all nodes
that were active in step t − 1 remain active, and we activate any
node v for which the total weight of its active neighbors is at least
θv:

∑
w active neighbor of v

bv,w ≥ θv.

Thus, the thresholds θv intuitively represent the different latent ten-
dencies of nodes to adopt the innovation when their neighbors do;

the fact that these are randomly selected is intended to model our
lack of knowledge of their values — we are in effect averaging
over possible threshold values for all the nodes. (Another class of
approaches hard-wires all thresholds at a known value like 1/2; see
for example work by Berger [5], Morris [21], and Peleg [25].)

Based on work in interacting particle systems [11, 17] from prob-
ability theory, we can also consider dynamic cascade models for
diffusion processes. The conceptually simplest model of this type
is what one could call the Independent Cascade Model, investi-
gated recently in the context of marketing by Goldenberg, Libai,
and Muller [13, 14]. We again start with an initial set of active
nodes A0, and the process unfolds in discrete steps according to
the following randomized rule. When node v first becomes active
in step t, it is given a single chance to activate each currently inac-
tive neighbor w; it succeeds with a probability pv,w — a parameter
of the system — independently of the history thus far. (If w has
multiple newly activated neighbors, their attempts are sequenced in
an arbitrary order.) If v succeeds, then w will become active in step
t + 1; but whether or not v succeeds, it cannot make any further at-
tempts to activate w in subsequent rounds. Again, the process runs
until no more activations are possible.

The Linear Threshold and Independent Cascade Models are two
of the most basic and widely-studied diffusion models, but of course
many extensions can be considered. We will turn to this issue later
in the paper, proposing a general framework that simultaneously
includes both of these models as special cases. For the sake of con-
creteness in the introduction, we will discuss our results in terms of
these two models in particular.

Approximation Algorithms for Influence Maximization. We are
now in a position to formally express the Domingos-Richardson
style of optimization problem — choosing a good initial set of
nodes to target — in the context of the above models. Both the
Linear Threshold and Independent Cascade Models (as well as the
generalizations to follow) involve an initial set of active nodes A0

that start the diffusion process. We define the influence of a set
of nodes A, denoted σ(A), to be the expected number of active
nodes at the end of the process, given that A is this initial active
set A0. The influence maximization problem asks, for a parameter
k, to find a k-node set of maximum influence. (When dealing with
algorithms for this problem, we will say that the chosen set A of
k initial active nodes has been targeted for activation by the algo-
rithm.) For the models we consider, it is NP-hard to determine the
optimum for influence maximization, as we will show later.

Our first main result is that the optimal solution for influence
maximization can be efficiently approximated to within a factor
of (1 − 1/e − ε), in both the Linear Threshold and Independent
Cascade models; here e is the base of the natural logarithm and
ε is any positive real number. (Thus, this is a performance guar-
antee slightly better than 63%.) The algorithm that achieves this
performance guarantee is a natural greedy hill-climbing strategy
related to the approach considered in [10], and so the main con-
tent of this result is the analysis framework needed for obtaining a
provable performance guarantee, and the fairly surprising fact that
hill-climbing is always within a factor of at least 63% of optimal
for this problem. We prove this result in Section 2 using techniques
from the theory of submodular functions [9, 23], which we describe
in detail below, and which turn out to provide a natural context for
reasoning about both models and algorithms for influence maxi-
mization.

In fact, this analysis framework allows us to design and prove
guarantees for approximation algorithms in much richer and more
realistic models of the processes by which we market to nodes. The



deterministic activation of individual nodes is a highly simplified
model; an issue also considered in [10, 26] is that we may in reality
have a large number of different marketing actions available, each
of which may influence nodes in different ways. The available bud-
get can be divided arbitrarily between these actions. We show how
to extend the analysis to this substantially more general framework.
Our main result here is that a generalization of the hill-climbing al-
gorithm still provides approximation guarantees arbitrarily close to
(1 − 1/e).

It is worth briefly considering the general issue of performance
guarantees for algorithms in these settings. For both the Linear
Threshold and the Independent Cascade models, the influence max-
imization problem is NP-complete, but it can be approximated well.
In the linear model of Richardson and Domingos [26], on the other
hand, both the propagation of influence as well as the effect of the
initial targeting are linear. Initial marketing decisions here are thus
limited in their effect on node activations; each node’s probability
of activation is obtained as a linear combination of the effect of tar-
geting and the effect of the neighbors. In this fully linear model,
the influence can be maximized by solving a system of linear equa-
tions. In contrast, we can show that general models like that of
Domingos and Richardson [10], and even simple models that build
in a fixed threshold (like 1/2) at all nodes [5, 21, 25], lead to influ-
ence maximization problems that cannot be approximated to within
any non-trivial factor, assuming P �= NP. Our analysis of approx-
imability thus suggests a way of tracing out a more delicate bound-
ary of tractability through the set of possible models, by helping to
distinguish among those for which simple heuristics provide strong
performance guarantees and those for which they can be arbitrarily
far from optimal. This in turn can suggest the development of both
more powerful algorithms, and the design of accurate models that
simultaneously allow for tractable optimization.

Following the approximation and NP-hardness results, we de-
scribe in Section 3 the results of computational experiments with
both the Linear Threshold and Independent Cascade Models, show-
ing that the hill-climbing algorithm significantly out-performs strate-
gies based on targeting high-degree or “central” nodes [30]. In Sec-
tion 4 we then develop a general model of diffusion processes in
social networks that simultaneously generalizes the Linear Thresh-
old and Independent Cascade Models, as well as a number of other
natural cases, and we show how to obtain approximation guaran-
tees for a large sub-class of these models. In Sections 5 and 6, we
also consider extensions of our approximation algorithms to mod-
els with more realistic scenarios in mind: more complex market-
ing actions as discussed above, and non-progressive processes, in
which active nodes may become inactive in subsequent steps.

2. APPROXIMATION GUARANTEES IN THE
INDEPENDENT CASCADE AND LINEAR
THRESHOLD MODELS

The overall approach. We begin by describing our strategy for
proving approximation guarantees. Consider an arbitrary function
f(·) that maps subsets of a finite ground set U to non-negative real
numbers.1 We say that f is submodular if it satisfies a natural “di-
minishing returns” property: the marginal gain from adding an ele-
ment to a set S is at least as high as the marginal gain from adding

1Note that the influence function σ(·) defined above has this form;
it maps each subset A of the nodes of the social network to a real
number denoting the expected size of the activated set if A is tar-
geted for initial activation.

the same element to a superset of S. Formally, a submodular func-
tion satisfies

f(S ∪ {v}) − f(S) ≥ f(T ∪ {v}) − f(T ),

for all elements v and all pairs of sets S ⊆ T .
Submodular functions have a number of very nice tractability

properties; the one that is relevant to us here is the following. Sup-
pose we have a function f that is submodular, takes only non-
negative values, and is monotone in the sense that adding an ele-
ment to a set cannot cause f to decrease: f(S ∪ {v}) ≥ f(S)
for all elements v and sets S. We wish to find a k-element set S
for which f(S) is maximized. This is an NP-hard optimization
problem (it can be shown to contain the Hitting Set problem as a
simple special case), but a result of Nemhauser, Wolsey, and Fisher
[9, 23] shows that the following greedy hill-climbing algorithm ap-
proximates the optimum to within a factor of (1 − 1/e) (where e
is the base of the natural logarithm): start with the empty set, and
repeatedly add an element that gives the maximum marginal gain.

THEOREM 2.1. [9, 23] For a non-negative, monotone submod-
ular function f , let S be a set of size k obtained by selecting ele-
ments one at a time, each time choosing an element that provides
the largest marginal increase in the function value. Let S∗ be a
set that maximizes the value of f over all k-element sets. Then
f(S) ≥ (1−1/e) ·f(S∗); in other words, S provides a (1−1/e)-
approximation.

Due to its generality, this result has found applications in a num-
ber of areas of discrete optimization (see e.g. [22]); the only direct
use of it that we are aware of in the databases and data mining lit-
erature is in a context very different from ours, for the problem of
selecting database views to materialize [16].

Our strategy will be to show that for the models we are consid-
ering, the resulting influence function σ(·) is submodular. A subtle
difficulty lies in the fact that the result of Nemhauser et al. assumes
that the greedy algorithm can evaluate the underlying function ex-
actly, which may not be the case for the influence function σ(A).
However, by simulating the diffusion process and sampling the re-
sulting active sets, we are able to obtain arbitrarily close approxi-
mations to σ(A), with high probability. Furthermore, one can ex-
tend the result of Nemhauser et al. to show that for any ε > 0, there
is a γ > 0 such that by using (1 + γ)-approximate values for the
function to be optimized, we obtain a (1−1/e−ε)-approximation.

As mentioned in the introduction, we can extend this analysis
to a general model with more complex marketing actions that can
have a probabilistic effect on the initial activation of nodes. We
show in Section 6 how, with a more careful hill-climbing algorithm
and a generalization of Theorem 2.1, we can obtain comparable
approximation guarantees in this setting.

A further extension is to assume that each node v has an asso-
ciated non-negative weight wv , capturing how important it is that
v be activated in the final outcome. (For instance, if we are mar-
keting textbooks to college teachers, then the weight could be the
number of students in the teacher’s class, resulting in a larger or
smaller number of sales.) If we let B denote the (random) set ac-
tivated by the process with initial activation A, then we can define
the weighted influence function σw(A) to be the expected value
over outcomes B of the quantity

∑
v∈B wv . The influence func-

tion studied above is the special case obtained by setting wv = 1
for all nodes v. The objective function with weights is submodular
whenever the unweighted version is, so we can still use the greedy
algorithm for obtaining a (1−1/e−ε)-approximation. Note, how-
ever, that a sampling algorithm to approximately choose the next
element may need time that depends on the sizes of the weights.



Independent Cascade
In view of the above discussion, an approximation guarantee for
influence maximization in the Independent Cascade Model will be
a consequence of the following

THEOREM 2.2. For an arbitrary instance of the Independent
Cascade Model, the resulting influence function σ(·) is submodu-
lar.

In order to establish this result, we need to look, implicitly or
explicitly, at the expression σ(A ∪ {v}) − σ(A), for arbitrary sets
A and elements v. In other words, what increase do we get in the
expected number of overall activations when we add v to the set
A? This increase is very difficult to analyze directly, because it is
hard to work with quantities of the form σ(A). For example, the
Independent Cascade process is underspecified, since we have not
prescribed the order in which newly activated nodes in a given step
t will attempt to activate their neighbors. Thus, it is not initially
obvious that the process is even well-defined, in the sense that it
yields the same distribution over outcomes regardless of how we
schedule the attempted activations.

Our proof deals with these difficulties by formulating an equiv-
alent view of the process, which makes it easier to see that there
is an order-independent outcome, and which provides an alternate
way to reason about the submodularity property.

Consider a point in the cascade process when node v has just be-
come active, and it attempts to activate its neighbor w, succeeding
with probability pv,w. We can view the outcome of this random
event as being determined by flipping a coin of bias pv,w. From the
point of view of the process, it clearly does not matter whether the
coin was flipped at the moment that v became active, or whether it
was flipped at the very beginning of the whole process and is only
being revealed now. Continuing this reasoning, we can in fact as-
sume that for each pair of neighbors (v, w) in the graph, a coin of
bias pv,w is flipped at the very beginning of the process (indepen-
dently of the coins for all other pairs of neighbors), and the result is
stored so that it can be later checked in the event that v is activated
while w is still inactive.

With all the coins flipped in advance, the process can be viewed
as follows. The edges in G for which the coin flip indicated an
activation will be successful are declared to be live; the remaining
edges are declared to be blocked. If we fix the outcomes of the coin
flips and then initially activate a set A, it is clear how to determine
the full set of active nodes at the end of the cascade process:

CLAIM 2.3. A node x ends up active if and only if there is a
path from some node in A to x consisting entirely of live edges.
(We will call such a path a live-edge path.)

Consider the probability space in which each sample point spec-
ifies one possible set of outcomes for all the coin flips on the edges.
Let X denote one sample point in this space, and define σX(A) to
be the total number of nodes activated by the process when A is
the set initially targeted, and X is the set of outcomes of all coin
flips on edges. Because we have fixed a choice for X , σX(A) is in
fact a deterministic quantity, and there is a natural way to express
its value, as follows. Let R(v, X) denote the set of all nodes that
can be reached from v on a path consisting entirely of live edges.
By Claim 2.3, σX(A) is the number of nodes that can be reached
on live-edge paths from any node in A, and so it is equal to the
cardinality of the union ∪v∈AR(v, X).

Proof of Theorem 2.2. First, we claim that for each fixed out-
come X , the function σX(·) is submodular. To see this, let S and

T be two sets of nodes such that S ⊆ T , and consider the quantity
σX(S ∪ {v})−σX(S). This is the number of elements in R(v, X)
that are not already in the union ∪u∈SR(u, X); it is at least as large
as the number of elements in R(v, X) that are not in the (bigger)
union ∪u∈T R(u, X). It follows that σX(S ∪ {v}) − σX(S) ≥
σX(T ∪ {v}) − σX(T ), which is the defining inequality for sub-
modularity. Finally, we have

σ(A) =
∑

outcomes X

Prob[X] · σX(A),

since the expected number of nodes activated is just the weighted
average over all outcomes. But a non-negative linear combination
of submodular functions is also submodular, and hence σ(·) is sub-
modular, which concludes the proof.

Next we show the hardness of influence maximization.

THEOREM 2.4. The influence maximization problem is NP-hard
for the Independent Cascade model.

Proof. Consider an instance of the NP-complete Set Cover prob-
lem, defined by a collection of subsets S1, S2, . . . , Sm of a ground
set U = {u1, u2, . . . , un}; we wish to know whether there exist
k of the subsets whose union is equal to U . (We can assume that
k < n < m.) We show that this can be viewed as a special case of
the influence maximization problem.

Given an arbitrary instance of the Set Cover problem, we define
a corresponding directed bipartite graph with n + m nodes: there
is a node i corresponding to each set Si, a node j corresponding
to each element uj , and a directed edge (i, j) with activation prob-
ability pi,j = 1 whenever uj ∈ Si. The Set Cover problem is
equivalent to deciding if there is a set A of k nodes in this graph
with σ(A) ≥ n + k. Note that for the instance we have defined,
activation is a deterministic process, as all probabilities are 0 or
1. Initially activating the k nodes corresponding to sets in a Set
Cover solution results in activating all n nodes corresponding to
the ground set U , and if any set A of k nodes has σ(A) ≥ n + k,
then the Set Cover problem must be solvable.

Linear Thresholds
We now prove an analogous result for the Linear Threshold Model.

THEOREM 2.5. For an arbitrary instance of the Linear Thresh-
old Model, the resulting influence function σ(·) is submodular.

Proof. The analysis is a bit more intricate than in the proof of The-
orem 2.2, but the overall argument has a similar structure. In the
proof of Theorem 2.2, we constructed an equivalent process by ini-
tially resolving the outcomes of some random choices, considering
each outcome in isolation, and then averaging over all outcomes.
For the Linear Threshold Model, the simplest analogue would be to
consider the behavior of the process after all node thresholds have
been chosen. Unfortunately, for a fixed choice of thresholds, the
number of activated nodes is not in general a submodular function
of the targeted set; this fact necessitates a more subtle analysis.

Recall that each node v has an influence weight bv,w ≥ 0 from
each of its neighbors w, subject to the constraint that

∑
w bv,w ≤ 1.

(We can extend the notation by writing bv,w = 0 when w is not a
neighbor of v.) Suppose that v picks at most one of its incoming
edges at random, selecting the edge from w with probability bv,w

and selecting no edge with probability 1 − ∑
w bv,w. The selected

edge is declared to be “live,” and all other edges are declared to
be “blocked.” (Note the contrast with the proof of Theorem 2.2:
there, we determined whether an edge was live independently of



the decision for each other edge; here, we negatively correlate the
decisions so that at most one live edge enters each node.)

The crux of the proof lies in establishing Claim 2.6 below, which
asserts that the Linear Threshold model is equivalent to reachabil-
ity via live-edge paths as defined above. Once that equivalence is
established, submodularity follows exactly as in the proof of The-
orem 2.2. We can define R(v, X) as before to be the set of all
nodes reachable from v on live-edge paths, subject to a choice X
of live/blocked designations for all edges; it follows that σX(A) is
the cardinality of the union ∪v∈AR(v, X), and hence a submodu-
lar function of A; finally, the function σ(·) is a non-negative linear
combination of the functions σX(·) and hence also submodular.

CLAIM 2.6. For a given targeted set A, the following two dis-
tributions over sets of nodes are the same:

(i) The distribution over active sets obtained by running the Lin-
ear Threshold process to completion starting from A; and

(ii) The distribution over sets reachable from A via live-edge paths,
under the random selection of live edges defined above.

Proof. We need to prove that reachability under our random choice
of live and blocked edges defines a process equivalent to that of
the Linear Threshold Model. To obtain intuition about this equiv-
alence, it is useful to first analyze the special case in which the
underlying graph G is directed and acyclic. In this case, we can
fix a topological ordering of the nodes v1, v2, . . . , vn (so that all
edges go from earlier nodes to later nodes in the order), and build
up the distribution of active sets by following this order. For each
node vi, suppose we already have determined the distribution over
active subsets of its neighbors. Then under the Linear Threshold
process, the probability that vi will become active, given that a sub-
set Si of its neighbors is active, is

∑
w∈Si

bvi,w. This is precisely
the probability that the live incoming edge selected by vi lies in Si,
and so inductively we see that the two processes define the same
distribution over active sets.

To prove the claim generally, consider a graph G that is not
acyclic. It becomes trickier to show the equivalence, because there
is no natural ordering of the nodes over which to perform induc-
tion. Instead, we argue by induction over the iterations of the Lin-
ear Threshold process. We define At to be the set of active nodes
at the end of iteration t, for t = 0, 1, 2, . . . (note that A0 is the set
initially targeted). If node v has not become active by the end of
iteration t, then the probability that it becomes active in iteration
t+1 is equal to the chance that the influence weights in At \At−1

push it over its threshold, given that its threshold was not exceeded

already; this probability is

∑
u∈At\At−1

bv,u

1 − ∑
u∈At−1

bv,u
.

On the other hand, we can run the live-edge process by revealing
the identities of the live edges gradually as follows. We start with
the targeted set A. For each node v with at least one edge from the
set A, we determine whether v’s live edge comes from A. If so,
then v is reachable; but if not, we keep the source of v’s live edge
unknown, subject to the condition that it comes from outside A.
Having now exposed a new set of reachable nodes A′

1 in the first
stage, we proceed to identify further reachable nodes by perform-
ing the same process on edges from A′

1, and in this way produce
sets A′

2, A
′
3, . . . . If node v has not been determined to be reachable

by the end of stage t, then the probability that it is determined to
be reachable in stage t + 1 is equal to the chance that its live edge
comes from At \ At−1, given that its live edge has not come from

any of the earlier sets. But this is

∑
u∈At\At−1

bv,u

1 − ∑
u∈At−1

bv,u
, which is the

same as in the Linear Threshold process of the previous paragraph.
Thus, by induction over these stages, we see that the live-edge pro-
cess produces the same distribution over active sets as the Linear
Threshold process.

Influence maximization is hard in this model as well.

THEOREM 2.7. The influence maximization problem is NP-hard
for the Linear Threshold model.

Proof. Consider an instance of the NP-complete Vertex Cover prob-
lem defined by an undirected n-node graph G = (V, E) and an in-
teger k; we want to know if there is a set S of k nodes in G so that
every edge has at least one endpoint in S. We show that this can be
viewed as a special case of the influence maximization problem.

Given an instance of the Vertex Cover problem involving a graph
G, we define a corresponding instance of the influence maximiza-
tion problem by directing all edges of G in both directions. If there
is a vertex cover S of size k in G, then one can deterministically
make σ(A) = n by targeting the nodes in the set A = S; con-
versely, this is the only way to get a set A with σ(A) = n.

In the proofs of both the approximation theorems in this section,
we established submodularity by considering an equivalent process
in which each node “hard-wired” certain of its incident edges as
transmitting influence from neighbors. This turns out to be a proof
technique that can be formulated in general terms, and directly ap-
plied to give approximability results for other models as well. We
discuss this further in the context of the general framework pre-
sented in Section 4.

3. EXPERIMENTS
In addition to obtaining worst-case guarantees on the perfor-

mance of our approximation algorithm, we are interested in under-
standing its behavior in practice, and comparing its performance
to other heuristics for identifying influential individuals. We find
that our greedy algorithm achieves significant performance gains
over several widely-used structural measures of influence in social
networks [30].

The Network Data. For evaluation, it is desirable to use a network
dataset that exhibits many of the structural features of large-scale
social networks. At the same time, we do not address the issue
of inferring actual influence parameters from network observations
(see e.g. [10, 26]). Thus, for our testbed, we employ a collabo-
ration graph obtained from co-authorships in physics publications,
with simple settings of the influence parameters. It has been argued
extensively that co-authorship networks capture many of the key
features of social networks more generally [24]. The co-authorship
data was compiled from the complete list of papers in the high-
energy physics theory section of the e-print arXiv (www.arxiv.org).2

The collaboration graph contains a node for each researcher who
has at least one paper with co-author(s) in the arXiv database. For
each paper with two or more authors, we inserted an edge for each
pair of authors (single-author papers were ignored). Notice that
this results in parallel edges when two researchers have co-authored
multiple papers — we kept these parallel edges as they can be in-
terpreted to indicate stronger social ties between the researchers
involved. The resulting graph has 10748 nodes, and edges between
about 53000 pairs of nodes.
2We also ran experiments on the co-authorship graphs induced by
theoretical computer science papers. We do not report on the results
here, as they are very similar to the ones for high-energy physics.



While processing the data, we corrected many common types of
mistakes automatically or manually. In order to deal with aliasing
problems at least partially, we abbreviated first names, and unified
spellings for foreign characters. We believe that the resulting graph
is a good approximation to the actual collaboration graph (the sheer
volume of data prohibits a complete manual cleaning pass).

The Influence Models. We compared the algorithms in three dif-
ferent models of influence. In the linear threshold model, we treated
the multiplicity of edges as weights. If nodes u, v have cu,v parallel
edges between them, and degrees du and dv , then the edge (u, v)
has weight cu,v

dv
, and the edge (v, u) has weight cu,v

du
.

In the independent cascade model, we assigned a uniform proba-
bility of p to each edge of the graph, choosing p to be 1% and 10%
in separate trials. If nodes u and v have cu,v parallel edges, then
we assume that for each of those cu,v edges, u has a chance of p
to activate v, i.e. u has a total probability of 1 − (1 − p)cu,v of
activating v once it becomes active.

The independent cascade model with uniform probabilities p on
the edges has the property that high-degree nodes not only have
a chance to influence many other nodes, but also to be influenced
by them. Whether or not this is a desirable interpretation of the
influence data is an application-specific issue. Motivated by this,
we chose to also consider an alternative interpretation, where edges
into high-degree nodes are assigned smaller probabilities. We study
a special case of the Independent Cascade Model that we term
“weighted cascade”, in which each edge from node u to v is as-
signed probability 1/dv of activating v. The weighted cascade
model resembles the linear threshold model in that the expected
number of neighbors who would succeed in activating a node v is
1 in both models.

The algorithms and implementation. We compare our greedy
algorithm with heuristics based on nodes’ degrees and centrality
within the network, as well as the crude baseline of choosing ran-
dom nodes to target. The degree and centrality-based heuristics are
commonly used in the sociology literature as estimates of a node’s
influence [30].

The high-degree heuristic chooses nodes v in order of decreasing
degrees dv . Considering high-degree nodes as influential has long
been a standard approach for social and other networks [30, 1], and
is known in the sociology literature as “degree centrality”.

“Distance centrality” is another commonly used influence mea-
sure in sociology, building on the assumption that a node with short
paths to other nodes in a network will have a higher chance of influ-
encing them. Hence, we select nodes in order of increasing average
distance to other nodes in the network. As the arXiv collaboration
graph is not connected, we assigned a distance of n — the number
of nodes in the graph — for any pair of unconnected nodes. This
value is significantly larger than any actual distance, and thus can
be considered to play the role of an infinite distance. In particu-
lar, nodes in the largest connected component will have smallest
average distance.

Finally, we consider, as a baseline, the result of choosing nodes
uniformly at random. Notice that because the optimization problem
is NP-hard, and the collaboration graph is prohibitively large, we
cannot compute the optimum value to verify the actual quality of
approximations.

Both in choosing the nodes to target with the greedy algorithm,
and in evaluating the performance of the algorithms, we need to
compute the value σ(A). It is an open question to compute this
quantity exactly by an efficient method, but very good estimates
can be obtained by simulating the random process. More specif-

ically, we simulate the process 10000 times for each targeted set,
re-choosing thresholds or edge outcomes pseudo-randomly from
[0, 1] every time. Previous runs indicate that the quality of approx-
imation after 10000 iterations is comparable to that after 300000 or
more iterations.

The results. Figure 1 shows the performance of the algorithms
in the linear threshold model. The greedy algorithm outperforms
the high-degree node heuristic by about 18%, and the central node
heuristic by over 40%. (As expected, choosing random nodes is
not a good idea.) This shows that significantly better marketing
results can be obtained by explicitly considering the dynamics of
information in a network, rather than relying solely on structural
properties of the graph.
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Figure 1: Results for the linear threshold model

When investigating the reason why the high-degree and central-
ity heuristics do not perform as well, one sees that they ignore such
network effects. In particular, neither of the heuristics incorporates
the fact that many of the most central (or highest-degree) nodes
may be clustered, so that targeting all of them is unnecessary. In
fact, the uneven nature of these curves suggests that the network
influence of many nodes is not accurately reflected by their degree
or centrality.

Figure 2 shows the results for the weighted cascade model. No-
tice the striking similarity to the linear threshold model. The scale
is slightly different (all values are about 25% smaller), but the
behavior is qualitatively the same, even with respect to the exact
nodes whose network influence is not reflected accurately by their
degree or centrality. The reason is that in expectation, each node is
influenced by the same number of other nodes in both models (see
Section 2), and the degrees are relatively concentrated around their
expectation of 1.

The graph for the independent cascade model with probability
1%, given in Figure 3, seems very similar to the previous two at
first glance. Notice, however, the very different scale: on average,
each targeted node only activates three additional nodes. Hence,
the network effects in the independent cascade model with very
small probabilities are much weaker than in the other models. Sev-
eral nodes have degrees well exceeding 100, so the probabilities
on their incoming edges are even smaller than 1% in the weighted
cascade model. This suggests that the network effects observed for
the linear threshold and weighted cascade models rely heavily on
low-degree nodes as multipliers, even though targeting high-degree
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Figure 2: Results for the weighted cascade model

nodes is a reasonable heuristic. Also notice that in the independent
cascade model, the heuristic of choosing random nodes performs
significantly better than in the previous two models.
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Figure 3: Independent cascade model with probability 1%

The improvement in performance of the “random nodes” heuris-
tic is even more pronounced for the independent cascade model
with probabilities equal to 10%, depicted in Figure 4. In that model,
it starts to outperform both the high-degree and the central nodes
heuristics when more than 12 nodes are targeted. It is initially sur-
prising that random targeting for this model should lead to more
activations than centrality-based targeting, but in fact there is a nat-
ural underlying reason that we explore now.

The first targeted node, if chosen somewhat judiciously, will ac-
tivate a large fraction of the network, in our case almost 25%.
However, any additional nodes will only reach a small additional
fraction of the network. In particular, other central or high-degree
nodes are very likely to be activated by the initially chosen one, and
thus have hardly any marginal gain. This explains the shapes of the
curves for the high-degree and centrality heuristics, which leap up
to about 2415 activated nodes, but make virtually no progress after-
wards. The greedy algorithm, on the other hand, takes the effect of
the first chosen node into account, and targets nodes with smaller
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Figure 4: Independent cascade model with probability 10%

marginal gain afterwards. Hence, its active set keeps growing, al-
though at a much smaller slope than in other models.

The random heuristic does not do as well initially as the other
heuristics, but with sufficiently many attempts, it eventually hits
some highly influential nodes and becomes competitive with the
centrality-based node choices. Because it does not focus exclu-
sively on central nodes, it eventually targets nodes with additional
marginal gain, and surpasses the two centrality-based heuristics.

4. A GENERAL FRAMEWORK FOR INFLU-
ENCE MAXIMIZATION

General Threshold and Cascade Models. We have thus far been
considering two specific, widely studied models for the diffusion
of influence. We now propose a broader framework that simulta-
neously generalizes these two models, and allows us to explore the
limits of models in which strong approximation guarantees can be
obtained. Our general framework has equivalent formulations in
terms of thresholds and cascades, thereby unifying these two views
of diffusion through a social network.

• A general threshold model. We would like to be able to
express the notion that a node v’s decision to become ac-
tive can be based on an arbitrary monotone function of the
set of neighbors of v that are already active. Thus, associ-
ated with v is a monotone threshold function fv that maps
subsets of v’s neighbor set to real numbers in [0, 1], sub-
ject to the condition that fv(∅) = 0. The diffusion pro-
cess follows the general structure of the Linear Threshold
Model. Each node v initially chooses θv uniformly at ran-
dom from the interval [0, 1]. Now, however, v becomes active
in step t if fv(S) ≥ θv , where S is the set of neighbors of v
that are active in step t − 1. Note that the Linear Threshold
Model is the special case in which each threshold function
has the form fv(S) =

∑
u∈S bv,u for parameters bv,u such

that
∑

u neighbor of v

bv,u ≤ 1.

• A general cascade model. We generalize the cascade model
to allow the probability that u succeeds in activating a neigh-
bor v to depend on the set of v’s neighbors that have already
tried. Thus, we define an incremental function pv(u, S) ∈
[0, 1], where S and {u} are disjoint subsets of v’s neighbor



set. A general cascade process works by analogy with the
independent case: in the general case, when u attempts to ac-
tivate v, it succeeds with probability pv(u, S), where S is the
set of neighbors that have already tried (and failed) to acti-
vate v. The Independent Cascade Model is the special case
where pv(u, S) is a constant pu,v , independent of S. We will
only be interested in cascade models defined by incremental
functions that are order-independent in the following sense:
if neighbors u1, u2, . . . , u� try to activate v, then the proba-
bility that v is activated at the end of these � attempts does not
depend on the order in which the attempts are made.

These two models are equivalent, and we give a method to con-
vert between them. First, consider an instance of the general thresh-
old model with threshold functions fv . To define an equivalent
cascade model, we need to understand the probability that an ad-
ditional neighbor u can activate v, given that the nodes in a set S
have already tried and failed. If the nodes in S have failed, then
node v’s threshold θv must be in the range θv ∈ (fv(S), 1]. How-
ever, subject to this constraint, it is uniformly distributed.Thus, the
probability that a neighbor u /∈ S succeeds in activating v, given
that the nodes in S have failed, is

pv(u, S) =
fv(S ∪ {u}) − fv(S)

1 − fv(S)
.

It is not difficult to show that the cascade process with these func-
tions is equivalent to the original threshold process.

Conversely, consider a node v in the cascade model, and a set
S = {u1, . . . , uk} of its neighbors. Assume that the nodes in S try
to activate v in the order u1, . . . , uk, and let Si = {u1, . . . , ui}.
Then the probability that v is not activated by this process is by def-
inition

∏k
i=1(1 − pv(ui, Si−1)). Recall that we assumed that the

order in which the ui try to activate v does not affect their overall
success probability. Hence, this value depends on the set S only,
and we can define fv(S) = 1 − ∏k

i=1(1 − pv(ui, Si−1)). Anal-
ogously, one can show that this instance of the threshold model is
equivalent to the original cascade process.

An Inapproximability Result. The general model proposed above
includes large families of instances for which the influence function
σ(·) is not submodular. Indeed, it may become NP-hard to approx-
imate the optimization problem to within any non-trivial factor.

THEOREM 4.1. In general, it is NP-hard to approximate the in-
fluence maximization problem to within a factor of n1−ε, for any
ε > 0.

Proof. To prove this result, we reduce from the Set Cover prob-
lem. We start with the construction from the proof of Theorem
2.4, letting u1, . . . , un denote the nodes corresponding to the n
elements; i.e. ui becomes active when at least one of the nodes cor-
responding to sets containing ui is active. Next, for an arbitrarily
large constant c, we add N = nc more nodes x1, . . . , xN ; each
xj is connected to all of the nodes ui, and it becomes active only
when all of the ui are.

If there are at most k sets that cover all elements, then activating
the nodes corresponding to these k sets will activate all of the nodes
ui, and thus also all of the xj . In total, at least N + n + k nodes
will be active. Conversely, if there is no set cover of size k, then
no targeted set will activate all of the ui, and hence none of the xj

will become active (unless targeted). In particular, fewer than n+k
nodes are active in the end. If an algorithm could approximate the
problem within n1−ε for any ε, it could distinguish between the
cases where N + n + k nodes are active in the end, and where

fewer than n + k are. But this would solve the underlying instance
of Set Cover, and therefore is impossible assuming P �= NP.

Note that our inapproximability result holds in a very simple
model, in which each node is “hard-wired” with a fixed threshold.

Exploring the Boundaries of Approximability. Thus, the gen-
eral threshold and cascade models are too broad to allow for non-
trivial approximation guarantees in their full generality. At the
same time, we have seen that the greedy algorithm achieves strong
guarantees for some of the main special cases in the social networks
literature. How far can we extend these approximability results?

We can generalize the proof technique used in Theorems 2.2 and
2.5 to a model that is less general (and also less natural) than the
general threshold and cascade models; however, it includes our spe-
cial cases from Section 2, and every instance of this model will have
a submodular influence function. The model is as follows.

• The Triggering Model. Each node v independently chooses
a random “triggering set” Tv according to some distribution
over subsets of its neighbors. To start the process, we target
a set A for initial activation. After this initial iteration, an
inactive node v becomes active in step t if it has a neighbor
in its chosen triggering set Tv that is active at time t − 1.
(Thus, v’s threshold has been replaced by a latent subset of
Tv of neighbors whose behavior actually affects v.)

It is useful to think of the triggering sets in terms of “live” and
“blocked” edges: if node u belongs to the triggering set Tv of v,
then we declare the edge (u, v) to be live, and otherwise we declare
it to be blocked. As in the proofs of Theorems 2.2 and 2.5, a node
v is activated in an instance of the Triggering Model if and only
if there is a live-edge path from the initially targeted set A to v.
Following the arguments in these proofs, we obtain the following

THEOREM 4.2. In every instance of the Triggering Model, the
influence function σ(·) is submodular.

Beyond the Independent Cascade and Linear Threshold, there
are other natural special cases of the Triggering Model. One ex-
ample is the “Only-Listen-Once” Model. Here, each node v has a
parameter pv so that the first neighbor of v to be activated causes v
to become active with probability pv , and all subsequent attempts
to activate v deterministically fail. (In other words, v only listens
to the first neighbor that tries to activate it.) This process has an
equivalent formulation in the Triggering Set Model, with an edge
distribution defined as follows: for any node v, the triggering set
Tv is either the entire neighbor set of v (with probability pv), or
the empty set otherwise. As a result, the influence function in the
Only-Listen-Once Model is also submodular, and we can obtain a
(1 − 1/e − ε)-approximation here as well.

However, we can show that there exist models with submodu-
lar influence functions that do not have equivalent formulations in
terms of triggering sets, so it makes sense to seek further models in
which submodularity holds.

One tractable special case of the cascade model is based on the
natural restriction that the probability of a node u influencing v is
non-increasing as a function of the set of nodes that have previously
tried to influence v. In terms of the cascade model, this means that
pv(u, S) ≥ pv(u, T ) whenever S ⊆ T . We say that a process sat-
isfying these conditions is an instance of the Decreasing Cascade
Model. Although there are natural Decreasing Cascade instances
that have no equivalent formulation in terms of triggering sets, we
can show by a more intricate analysis that every instance of the De-
creasing Cascade Model has a submodular influence function. We
will include details of this proof in the full version of the paper.



A Conjecture. Finally, we state an appealing conjecture that would
include all the approximability results above as special cases.

CONJECTURE 4.3. Whenever the threshold functions fv at ev-
ery node are monotone and submodular, the resulting influence
function σ(·) is monotone and submodular as well.

It is not difficult to show that every instance of the Triggering
Model has an equivalent formulation with submodular node thresh-
olds. Every instance of the Decreasing Cascade Model has such
an equivalent formulation as well; in fact, the Decreasing Cascade
condition stands as a very natural special case of the conjecture,
given that it too is based on a type of “diminishing returns.” When
translated into the language of threshold functions, we find that the
Decreasing Cascade condition corresponds to the following natural
requirement:

fv(S ∪ {u}) − fv(S)

1 − fv(S)
≥ fv(T ∪ {u}) − fv(T )

1 − fv(T )
,

whenever S ⊆ T and u /∈ T . This is in a sense a “normalized
submodularity” property; it is stronger than submodularity, which
would consist of the same inequality on just the numerators. (Note
that by monotonicity, the denominator on the left is larger.)

5. NON-PROGRESSIVE PROCESSES
We have thus far been concerned with the progressive case, in

which nodes only go from inactivity to activity, but not vice versa.
The non-progressive case, in which nodes can switch in both direc-
tions, can in fact be reduced to the progressive case.

The non-progressive threshold process is analogous to the pro-
gressive model, except that at each step t, each node v chooses a
new value θ

(t)
v uniformly at random from the interval [0, 1]. Node

v will be active in step t if fv(S) ≥ θ
(t)
v , where S is the set of

neighbors of v that are active in step t − 1.
From the perspective of influence maximization, we can ask the

following question. Suppose we have a non-progressive model that
is going to run for τ steps, and during this process, we are allowed
to make up to k interventions: for a particular node v, at a particular
time t ≤ τ , we can target v for activation at time t. (v itself may
quickly de-activate, but we hope to create a large “ripple effect.”)
Which k interventions should we perform? Simple examples show
that to maximize influence, one should not necessarily perform all
k interventions at time 0; e.g., G may not even have k nodes.

Let A be a set of k interventions. The influence of these k inter-
ventions σ(A) is the sum, over all nodes v, of the number of time
steps that v is active. The influence maximization problem in the
non-progressive threshold model is to find the k interventions with
maximum influence.

We can show that the non-progressive influence maximization
problem reduces to the progressive case in a different graph. Given
a graph G = (V, E) and a time limit τ , we build a layered graph
Gτ on τ · |V | nodes: there is a copy vt for each node v in G, and
each time-step t ≤ τ . We connect each node in this graph with its
neighbors in G indexed by the previous time step.

THEOREM 5.1. The non-progressive influence maximization prob-
lem on G over a time horizon τ is equivalent to the progressive in-
fluence maximization problem on the layered graph Gτ . Node v is
active at time t in the non-progressive process if and only if vt is
activated in the progressive process.

Thus, models where we have approximation algorithms for the
progressive case carry over. Theorem 5.1 also implies approxima-
tion results for certain non-progressive models used by Asavathi-
ratham et al. to model cascading failures in power grids [2, 3].

Note that the non-progressive model discussed here differs from
the model of Domingos and Richardson [10, 26] in two ways. We
are concerned with the sum over all time steps t ≤ τ of the ex-
pected number of active nodes at time t, for a given a time limit τ ,
while [10, 26] study the limit of this process: the expected number
of nodes active at time t as t goes to infinity. Further, we consider
interventions for a particular node v, at a particular time t ≤ τ ,
while the interventions considered by [10, 26] permanently affect
the activation probability function of the targeted nodes.

6. GENERAL MARKETING STRATEGIES
In the formulation of the problem, we have so far assumed that

for one unit of budget, we can deterministically target any node v
for activation. This is clearly a highly simplified view. In a more
realistic scenario, we may have a number m of different market-
ing actions Mi available, each of which may affect some subset of
nodes by increasing their probabilities of becoming active, with-
out necessarily making them active deterministically. The more we
spend on any one action the stronger its effect will be; however, dif-
ferent nodes may respond to marketing actions in different ways,

In a general model, we choose investments xi into marketing ac-
tions Mi, such that the total investments do not exceed the budget.
A marketing strategy is then an m-dimensional vector x of invest-
ments. The probability that node v will become active is deter-
mined by the strategy, and denoted by hv(x). We assume that this
function is non-decreasing and satisfies the following “diminishing
returns” property for all x ≥ y and a ≥ 0 (where we write x ≥ y
or a ≥ 0 to denote that the inequalities hold in all coordinates):

hv(x + a) − hv(x) ≤ hv(y + a) − hv(y) (1)

Intuitively, Inequality (1) states that any marketing action is more
effective when the targeted individual is less “marketing-saturated”
at that point.

We are trying to maximize the expected size of the final active
set. As a function of the marketing strategy x, each node v be-
comes active independently with probability hv(x), resulting in a
(random) set of initial active nodes A. Given the initial set A, the
expected size of the final active set is σ(A). The expected revenue
of the marketing strategy x is therefore

g(x) =
∑

A⊆V σ(A) · ∏u∈A hu(x) · ∏v /∈A(1 − hv(x)).

In order to (approximately) maximize g, we assume that we can
evaluate the function at any point x approximately, and find a di-
rection i with approximately maximal gradient. Specifically, let ei

denote the unit vector along the ith coordinate axis, and δ be some
constant. We assume that there exists some γ ≤ 1 such that we can
find an i with g(x + δ · ei)−g(x) ≥ γ ·(g(x + δ · ej)−g(x)) for
each j. We divide each unit of the total budget k into equal parts
of size δ. Starting with an all-0 investment, we perform an approx-
imate gradient ascent, by repeatedly (a total of k

δ
times) adding δ

units of budget to the investment in the action Mi that approxi-
mately maximizes the gradient.

The proof that this algorithm gives a good approximation con-
sists of two steps. First, we show that the function g we are trying
to optimize is non-negative, non-decreasing, and satisfies the “di-
minishing returns” condition (1). Second, we show that the hill-
climbing algorithm gives a constant-factor approximation for any
function g with these properties. The latter part is captured by the
following theorem.

THEOREM 6.1. When the hill-climbing algorithm finishes with

strategy x, it guarantees that g(x) ≥ (1− e−
k·γ

k+δ·n ) · g(x̂), where
x̂ denotes the optimal solution subject to

∑
i x̂i ≤ k.



The proof of this theorem builds on the analysis used by Nemhauser
et al. [23], and we defer it to the full version of this paper.

With Theorem 6.1 in hand, it remains to show that g is non-
negative, monotone, and satisfies condition (1). The first two are
clear, so we only sketch the proof of the third. Fix an arbitary
ordering of vertices. We then use the fact that for any ai, bi,

∏
i

ai −
∏

i

bi =
∑

i

(ai − bi) ·
∏
j<i

aj ·
∏
j>i

bj , (2)

and change the order of summation, to rewrite the difference

g(x + a) − g(x)

=
∑

u

(
(hu(x + a) − hu(x)) ·

∑
A:u/∈A

(σ(A + u) − σ(A)) ·
∏

j<u,j∈A

hj(x + a) ·
∏

j<u,j /∈A

(1 − hj(x + a)) ·
∏

j>u,j∈A

hj(x) ·
∏

j>u,j /∈A

(1 − hj(x))
)
.

To show that this difference is non-increasing, we consider y ≤
x. From the diminishing returns property of hu(·), we obtain that
hu(x + a)− hu(x) ≤ hu(y + a)− hu(y). Then, applying again
equation (2), changing the order of summation, and performing
some tedious calculations, writing ∆(v,x,y) = hv(x + a) −
hv(y + a) if v < u, and ∆(v,x,y) = hv(x) − hv(y) if v > u,
we obtain that

(g(x + a) − g(x)) − (g(y + a) − g(y))

≤
∑

u,v:u �=v

(
(hu(y + a) − hu(y)) · ∆(v,x,y) ·

∑
A:u,v /∈A

(
σ(A + {u, v}) − σ(A + v) − σ(A + u) + σ(A)

) ·
∏

j<min(u,v),j∈A

hj(x + a) ·
∏

j<min(u,v),j /∈A

(1 − hj(x + a)) ·
∏

u<j<v,j∈A

hj(x) ·
∏

u<j<v,j /∈A

(1 − hj(x)) ·
∏

v<j<u,j∈A

hj(y + a) ·
∏

v<j<u,j /∈A

(1 − hj(y + a)) ·
∏

j>max(u,v),j∈A

hj(y) ·
∏

j>max(u,v),j /∈A

(1 − hj(y))
)

In this expression, all terms are non-negative (by monotonicity
of the hv(·)), with the exception of σ(A + {u, v}) − σ(A + u) −
σ(A + v) + σ(A), which is non-positive because σ is submodular.
Hence, the above difference is always non-positive, so g satisfies
the diminishing returns condition (1).

7. REFERENCES
[1] R. Albert, H. Jeong, A. Barabasi. Error and attack tolerance of

complex networks. Nature 406(2000), 378-382.
[2] C. Asavathiratham, S. Roy, B. Lesieutre, G. Verghese. The

Influence Model. IEEE Control Systems, Dec. 2001.
[3] C. Asavathiratham. The Influence Model: A Tractable

Representation for the Dynamics of Networked Markov Chains.
Ph.D. Thesis, MIT 2000.

[4] F. Bass. A new product growth model for consumer durables.
Management Science 15(1969), 215-227.

[5] E. Berger. Dynamic Monopolies of Constant Size. Journal of
Combinatorial Theory Series B 83(2001), 191-200.

[6] L. Blume. The Statistical Mechanics of Strategic Interaction.
Games and Economic Behavior 5(1993), 387-424.

[7] J. Brown, P. Reinegen. Social ties and word-of-mouth referral
behavior. Journal of Consumer Research 14:3(1987), 350-362.

[8] J. Coleman, H. Menzel, E. Katz. Medical Innovations: A
Diffusion Study Bobbs Merrill, 1966.

[9] G. Cornuejols, M. Fisher, G. Nemhauser. Location of Bank
Accounts to Optimize Float. Management Science, 23(1977).

[10] P. Domingos, M. Richardson. Mining the Network Value of
Customers. Seventh International Conference on Knowledge
Discovery and Data Mining, 2001.

[11] R. Durrett. Lecture Notes on Particle Systems and
Percolation. Wadsworth Publishing, 1988.

[12] G. Ellison. Learning, Local Interaction, and Coordination.
Econometrica 61:5(1993), 1047-1071.

[13] J. Goldenberg, B. Libai, E. Muller. Talk of the Network: A
Complex Systems Look at the Underlying Process of
Word-of-Mouth. Marketing Letters 12:3(2001), 211-223.

[14] J. Goldenberg, B. Libai, E. Muller. Using Complex Systems
Analysis to Advance Marketing Theory Development.
Academy of Marketing Science Review 2001.

[15] M. Granovetter. Threshold models of collective behavior.
American Journal of Sociology 83(6):1420-1443, 1978.

[16] V. Harinarayan, A. Rajaraman, J. Ullman. Implementing
Data Cubes Efficiently. Proc. ACM SIGMOD 1996.

[17] T.M. Liggett. Interacting Particle Systems. Springer, 1985.
[18] M. Macy. Chains of Cooperation: Threshold Effects in

Collective Action. American Sociological Review 56(1991).
[19] M. Macy, R. Willer. From Factors to Actors: Computational

Sociology and Agent-Based Modeling. Ann. Rev. Soc. 2002.
[20] V. Mahajan, E. Muller, F. Bass. New Product Diffusion

Models in Marketing: A Review and Directions for Research.
Journal of Marketing 54:1(1990) pp. 1-26.

[21] S. Morris. Contagion. Review of Economic Studies 67(2000).
[22] G. Nemhauser, L. Wolsey. Integer and Combinatorial

Optimization. John Wiley, 1988. .
[23] G. Nemhauser, L. Wolsey, M. Fisher. An analysis of the

approximations for maximizing submodular set functions.
Mathematical Programming, 14(1978), 265–294.

[24] M. Newman. The structure of scientific collaboration
networks. Proc. Natl. Acad. Sci. 98(2001).

[25] D. Peleg. Local Majority Voting, Small Coalitions, and
Controlling Monopolies in Graphs: A Review. 3rd Colloq. on
Structural Information and Communication, 1996.

[26] M. Richardson, P. Domingos. Mining Knowledge-Sharing
Sites for Viral Marketing. Eighth Intl. Conf. on Knowledge
Discovery and Data Mining, 2002.

[27] E. Rogers. Diffusion of innovations Free Press, 1995.
[28] T. Schelling. Micromotives and Macrobehavior. Norton,

1978.
[29] T. Valente. Network Models of the Diffusion of Innovations.

Hampton Press, 1995.
[30] S. Wasserman, K. Faust. Social Network Analysis.

Cambridge University Press, 1994.
[31] D. Watts. A Simple Model of Global Cascades in Random

Networks. Proc. Natl. Acad. Sci. 99(2002), 5766-71.
[32] H. Peyton Young. The Diffusion of Innovations in Social

Networks. Santa Fe Institute Working Paper 02-04-018(2002).
[33] H. Peyton Young. Individual Strategy and Social Structure:

An Evolutionary Theory of Institutions. Princeton, 1998.


