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Maximum a posteriori based approach for target
detection in MTI radar

Md Mashud Hyder and Kaushik Mahata

Abstract—We propose a sparse recovery approach to detect
moving targets in clutter. In presence of clutter, the target
space is not sparse. We propose a simple way to estimate
the clutter region. We then enforce sparsity by modeling the
clutter as a single extended cluster of nonzero components. This
done by solving a sparse signal recovery problem with partially
known support within a maximum a posteriori (MAP) estimation
framework. The resulting algorithm is applied in angle-Doppler
imaging for moving target indication (MTI) in an airborne radar.
Our approach has a number of advantages including improved
robustness to noise and increased resolution with limited data.

Index Terms—Sparse representation, airborne radar, maxi-
mum a posteriori estimation, angle-Doppler imaging

I. INTRODUCTION

Detection of targets in presence of non-stationary clutter
and noise is a major problem in airborne Ground-Moving-
Target-Indicator (GMTI) radar systems [1], [2]. A space-
time adaptive processing (STAP) [2] can, in principle, be
used to mitigate the clutter. STAP relies on the clutter-and-
noise covariance matrix, and thus, requires sufficiently long
record of target-free training data, see e.g. [1], [2]. Moreover,
since the target statistics are not considered in the covariance
estimation, STAP is suboptimal in presence of multiple targets.
These issues have motivated knowledge-aided STAP [3], [4].
However, the clutter return is often non-stationary in complex
propagation conditions and highly variable backscatter. This
non-stationarity results performance degradation of STAP.

Methods [5]–[8] aimed at mitigating above issues have
their own limitations. The joint-domain localized method [5]
suffers from broad main beam (smearing) and high side-
lobe level (leakage) problems. Spatially adaptive detectors
[6] can handle spatially structured interferences, but can not
perform well in Doppler spread clutter. Maximum-likelihood
(ML) based adaptive temporal processing [7] requires multiple
snapshots of the radar data, and thus, gets affected by non-
stationarity of clutter return across the range of interest. In
[8] an abruptly time-varying autoregressive (ATVAR) model is
used to accommodate both slowly varying and rapidly varying
clutter statistics during an intra-coherent processing interval
(CPI). The targets are detected via a generalized likelihood
ratio test (GLRT) based on an approximate ML estimate of
the clutter covariance. However, this approach assumes certain
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clutter signal features, which are often quite restrictive in
practice [9] due to uncertainties in clutter motion.

Some high resolution angle-Doppler imaging algorithms
process the data in each range bin of interest (also known
as primary data) independently [10], [11], and do not need
training data to extract clutter statistics. The iterative adaptive
approach (IAA) [10], [12] can handle both stationary and non-
stationary clutter. However, IAA’s performance degrades when
the target signal-to-noise ratio (SNR) is low. Moreover, IAA
does not do well in presence of steering vector error. This
issue is addressed in [13], [14], although these methods are not
directly applicable to angle-Doppler imaging. Sparse learning
via iterative minimization (SLIM) [15] has been applied for
MIMO radar imaging [15], and target detection in presence of
clutter [16]. The idea here is to remove the clutter ridge from
the data, and subsequently use SLIM iterations for target de-
tection. In our experience (see Figure 3), SLIM’s performance
degrades when signal clutter to noise ratio (SCNR) is small.

Sparse signal recovery approaches like [17], [18] are not
useful in presence of a large clutter, as the target space
is no longer sparse. To deal with this issue, we estimate
the clutter region via a simple method. Subsequently, we
detect the targets by solving a “sparse recovery problem with
partially known support” [19]. Here we use our crude estimate
of the clutter region as the “partialy known support”. The
prior knowledge about the support allows us to reconstruct
a sparse signal from significantly less number of samples
[19]–[21]. However, the previous algorithms [19]–[21] need
fairly accurate knowledge of the support. Since we don’t
have such accurate prior estimate of the clutter ridge, an
improved algorithm is needed, see Figure 3 for details. We
acomplish this by using a MAP estimation approach. Suppose,
the unknown signal is x. We set up a priori density function for
x, such that a component of x within the known support is of
large magnitude with a high probability, and a component of x
outside the known support is of large magnitude with a very
small probability. We propose numerical strategies to solve
the resulting optimization problem. Subsequently, we give a
new method to correct steering vector errors in practical MTI
radar. The correction approach is equally applicable to other
conventional algorithms like, IAA [10]. In the experiments, the
proposed approach exhibits a number of advantages over other
angle-Doppler imaging techniques, which include increased
resolution, and improved robustness to noise. In addition, it
does not require an accurate initialization.
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II. PROBLEM FORMULATION

Consider the standard setting [1], [2], where an airborne
radar uses a M element sensor array. It transmits N pulses
during a coherent processing interval (CPI) at a pulse repeti-
tion interval H . The transmitted signals are reflected by the
targets, and the reflections are received. Let the whole range
of interest be divided into R uniform range-bins. For a fixed
elevation angle, the location of the t-th target can be specified
by its range index i, azimuth angle f̄t, and normalized Doppler
frequency ω̄t. In the following, we assume that the data due
to the return for each range bin is processed independently.
Hence we drop the range bin index. Then the t-th target is
indicated by an angle-Doppler pair (f̄t, ω̄t). We assume there
is no range and Doppler frequency ambiguities. This is a
common assumption [10].

We use an overcomplete representation of the signal re-
ceived by the radar antenna array. We set up a uniform grid
over the whole azimuth angle range consisting of T points.
Similarly, we set up a L point uniform grid over the Doppler
frequency range. Let X ∈ CT×L be a matrix such that Xt,ℓ

(i.e. the element at t-th row and ℓ-th column) denotes the
complex amplitude of the returned signal due to the reflection
from a target located at (ft, ωℓ). Every Xt,ℓ is assumed to
remain constant during a CPI and is proportional to the radar-
cross-section of the corresponding target. The data vector y(j)
obtained by matched filtering and digitizing the received signal
due to the j-th pulse can be modeled as [10], [11]

y(j) =
T∑

t=1

L∑
ℓ=1

ϕ(ft)Xt,ℓe
i2π(j−1)ωℓ + e(j), (1)

where y(j) ∈ CM×1, e(j) accounts for additive noise, and
ϕ(ft) ∈ CM×1 denotes the array steering vector corresponding
to an azimuth angle ft, which depends on the array geometry.
Defining Φ = [ ϕ(f1) · · · ϕ(fT ) ], we get

Y = [ y(1) · · · y(N) ] = ΦXΘ+ E. (2)

Here E = [ e(1) · · · e(N) ]; the matrix Θ is given as

[Θ]ℓ,j = ei2πωℓ(j−1) : j = 1, · · · , N,

and θ(ωℓ) = [1 ei2πωℓ · · · ei2πωℓ(N−1)] indicates one row
corresponding to Doppler ωℓ. One uses X to visualize the
azimuth angle and Doppler shifts of the targets in form of
an image, with each Xt,ℓ representing a pixel. A non-zero
Xt,ℓ represents a target at the t-th azimuth angle and the ℓ-
th Doppler bin. As we design the grid, the matrices Φ,Θ are
known and do not depend on the actual target location (f̄t, ω̄t).

Note that for any given t, the true attribute (f̄t, ω̄t) may
not lie exactly on a grid-point of our azimuth-Doppler grid.
In other words, there may not exist i and j satisfying f̄t = fi
and ω̄t = ωj exactly. Nevertheless, by making the grid dense
enough one can ensure f̄t ≈ fi and ω̄t ≈ ωj for some i and
j, and the remaining model error is absorbed by the residual
term E. Suppose there are P scatterers. Then only P pixels
of X are nonzero, i.e. Xi,j ̸= 0 only if fi ≈ f̄t and ωj ≈ ω̄t

for some t ∈ {1, 2, . . . , P}. In effect, (2) allows us to pose
the problem of estimating {(f̄k, ω̄t)}Pt=1 as that of estimating
the sparse matrix X .

III. PROPOSED RECONSTRUCTION APPROACH

In presence of a big clutter consisting of numerous point
scatterers, X can no longer be considered sparse, and methods
like [11] cannot be used. We propose a two step algorithm
to deal with this issue. First we approximately identify the
clutter location. Then we apply a MAP based sparse recovery
approach to locate the moving targets.

A. Step 1 - Approximate Localization of the Clutter Spread

Consider a stationary scatterer within the clutter located at
an azimuth angle f relative to the array. Then for a side-
looking airborne radar and small carb angle, the normalized
Doppler shift ω induced on the scatterer is given by [2]

ω =
2vairT

γ
sin(f) =: βf̂ , (3)

where f̂ = sin(f); vair is the ragar-speed; γ is the operating
wavelength. However, clutter has intrinsic motion resulting in
random Doppler spreads causing the clutter energy to “leak”
in both sides of the line ω = βf̂ along the ω direction.

Given the a priori information in form of (3), we use
the principles of MAP to device a fast algorithm to roughly
estimate the clutter spread. Since the clutter to signal ratio
is generally above 30 dB in practice [22], at this stage we
assume that the non-zero components in X are due to the
clutter only. We assume that the a priori density of Xt,ℓ is a
Gaussian density with mean zero and variance σ2

t,ℓ, and Xt1,ℓ1

is independent of Xt2,ℓ2 if t1 ̸= t2 and/or ℓ1 ̸= ℓ2. The fact
that the clutter is concentrated around the line ω = βf̂ is used
to specify the value σ2

t,ℓ. We set

σ2
t,ℓ = e−κ(ωℓ−βf̂t)

2

.

where κ is a constant whose value depends on the clutter
spread. In practice, the variance of the Doppler spread due
to intrinsic motion in the clutter is known from physical
experiments [23], [24]. With the assumption on the a priori
density of X , the MAP estimate of X is given by [25]

X(0) = argmin
X

T∑
t=1

L∑
ℓ=1

|Xt,ℓ|2

2σ2
t,ℓ

subject to Y = ΦXΘ.

(4)
Here we assume the variance of the elements of E are negligi-
ble compared to the clutter energy, which is quite appropriate
in practice. The solution to (4) can be given analytically. Let

Σ = diag

vec


 σ2

1,1 · · · σ2
1,L

...
...

σ2
T,1 · · · σ2

T,L



 ,

x(0) = vec(X(0)), y = vec(Y ), Ψ = Θ′ ⊗ Φ. Then

x(0) = ΣΨ∗(ΨΣΨ∗)−1y. (5)

Since the values of σ2
t,ℓ in (4) are just guesses, one would

expect somewhat better estimation performance if we repeat
the estimation with better estimates of σ2

t,ℓ. This suggests an
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iterative procedure where we compute the i-th iterate x̂(i) =
vec(X(i)), i > 0 as

x̂(i) = ΣiΨ
∗(ΨΣiΨ

∗)−1y, (6)

where for i ≥ 0 we define

Σi+1 = diag

vec




|X(i)
1,1|2 · · · |X(i)

1,L|2
...

...
|X(i)

T,1|2 · · · |X(i)
T,L|2



 . (7)

The iterative approaches like above are quite popular in signal
processing, and are often called the iteratively re-weighted
least squares (IRLS) [26]. Also the use of (7) is quite common,
see e.g. [12]. In particular, the FOCal Underdetermined System
Solver (FOCUSS) [27] for sparse recovery, and SLIM use a
similar approach. In general, the t + 1 th iterate x(t+1) in
FOCUSS [27] or SLIM [15] has the form

x(t+1) = Wt+1Ψ
∗ [ΨWt+1Ψ

∗ + ςI]
−1

y, (8)

where Wt+1 = diag{|x(t)
n |2−p} and 0 < p ≤ 1. There

are few differences between the proposed IRLS and FO-
CUSS/SLIM. Here we use p = 0 and ς = 0. Also we take
the advantage of initial approximation of x in (5). Finally,
unlike FOCUSS/SLIM, we do not wait for convergence of the
proposed IRLS algorithm. Our goal is to get an approximate
knowledge of the clutter support, and in our experience we get
a result of desired accuracy in about three iterations. Figure
1 illustrates a typical result. The angle-Doppler image of a
typical clutter (considering β = 0.5 in (3)) is shown in Figure
1 (a). The recovered angle-Doppler image estimated after three
IRLS iterations is shown in Figure 1(b).

We need a criterion to determine the clutter spread from
the angle-Doppler image (Figure 1(b)) obtained using the
MAP/IRLS approach described above. In that goal, let us
define the cumulative distribution function

g(δ) :=
T∑

t=1

 ∑
ℓ∈Lδ(t)

|X(3)
t,ℓ |

2

 , (9)

where Lδ(t) = {ℓ : ωℓ < βf̂t + δ}. Figure 1(c) shows g(δ) as
a function of δ for angel-Doppler images obtained by different
algorithms. As expected, g(δ) increases rapidly around the
clutter region i.e., around δ = 0. Note that IRLS provides
a closer estimation of clutter energy compared to DAS [5].
Now to approximate the clutter region we have to determine
a band around the line ω = βf̂ so that most of the energy lie
within this band. Hence we set a small ε > 0, and then find
the clutter region as

Iε =

{
(t, ℓ) : ε ≤ g(ωℓ − βft)∑T

t=1

∑L
ℓ=1 |X

(3)
t,ℓ |2

≤ 1− ε

}
. (10)

In the experiments, we set ε = 0.02.

B. Step 2 - Sparse Recovery Algorithm for Target Detection

1) MAP Formulation: In absence of clutter, X is a sparse
matrix, with non-zero entries associated with a small number
of targets. This has been the main motivation behind several

radar imaging algorithms based in compressed sensing [17],
[18]. However in presence of a clutter, so far there is no known
way to exploit the sparsity of the targets. In the following we
propose a statistical framework to address this issue.

The matrix X has two types of elements. If (t, ℓ) ∈ Iε,
then we know that this point lies within the clutter support.
Hence there is a point scatterer in this point with a high
probability, and hence |Xt,ℓ| is large with high probability.
On the other hand if (t, ℓ) /∈ Iε, then we know that this point
lies outside the clutter support. Hence there is a target in this
point with a quite low probability, and hence |Xt,ℓ| is large
with a low probability. Such a-priori information is often used
by modeling the a priori density function of X as a Gaussian
mixture model. To characterize the two types of elements in
X , we use two positive numbers ϱ and µ̂ with ϱ ≫ µ̂. Then we
assume that Xt,ℓ is a random variable which draws its value
either from a complex Gaussian density of zero mean and
standard deviation1 ϱ with probability p(t,ℓ); or from another
complex Gaussian density of zero mean and standard deviation
µ̂ with probability 1 − p(t,ℓ). In other words, the probability
density function of Xt,ℓ is given by

h(Xt,ℓ, pt,ℓ) := pt,ℓN (Xt,ℓ, ϱ) + (1− pt,ℓ)N (Xt,ℓ, µ̂), (11)

where

N (x,ϖ) =
1

2πϖ2
exp

{
− |x|2

2ϖ2

}
. (12)

In order to distinguish Iε from its complement, we assign

p(t,ℓ) =

{
τ1, (t, ℓ) ∈ Iε
τ2, (t, ℓ) /∈ Iε.

(13)

with τ1 ≫ τ2. This reflects the fact that |Xt,ℓ| is large with a
high probability if (t, ℓ) ∈ Iε. Otherwise, it is large with a very
small probability. Since τ2 is the probability of finding a target
at a point, its value is determined from the prior knowledge
about the experimental setting. On the other hand τ1, denotes
the probability of finding a scatterer in the clutter, which is
very close to 1. For instance, τ1 = 0.99 and τ2 = 0.01 is
considered for the experimental settings in the sequel. Note
that the values of τ1 and τ2 need not be accurate, see [28] for
details.

As before, we assume that Xt1,ℓ1 is independent of Xt2,ℓ2

if t1 ̸= t2 and/or ℓ1 ̸= ℓ2. Hence the negative log likelihood
of X is given by

−
T∑

t=1

L∑
ℓ=1

ln[h(Xt,ℓ, pt,ℓ)].

Assume that the elements of E in (2) are mutually independent
and identically distributed as zero mean Gaussian distribution
with a variance 1/λ. Then using (2) the joint negative log-
likelihood of X and Y is given by

℘(X,Y ) =
λ

2
||Y −ΦXΘ||2F −

T∑
t=1

L∑
ℓ=1

ln[h(Xt,ℓ, pt,ℓ)], (14)

1When we say a complex valued random variable x = x1+ix2 is complex
Gaussian with a standard deviation ϱ, we mean that x1 and x2 are independent
and each of them has a variance ϱ2.
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Fig. 1. Clutter detection. (a) True clutter, (b) IRLS, (c) Normalize h(δ) vs δ of the angle-Doppler image by different algorithms.

where ∥.∥F indicates Frobenius norm. In order to estimate
X , we propose to minimize ℘(X,Y ) with respect to X . This
approach is same as the maximum a posteriori estimation idea.
Since, we minimize (14) with respect to X , we write ℘(X)
instead of ℘(X,Y ) for simplicity.

2) Optimization algorithm: Using (12) and (11) we have

− ln[h(Xt,ℓ, pt,ℓ)] =
X2

t,ℓ

2ϱ2
− ln

[
1 + rt,ℓ exp

{
−
X2

t,ℓ

2σ̂2

}]
(15)

up to a constant independent of X , where

rt,ℓ =
(1− pt,ℓ)ϱ

2

pt,ℓ µ̂2
,

1

σ̂2
=

1

µ̂2
− 1

ϱ2
. (16)

Using (15) and (14) we get

℘(X) =

T∑
t=1

L∑
ℓ=1

{
|Xt,ℓ|2

2ϱ2
− ln

[
1 + r(t,ℓ) exp

(
−|Xt,ℓ|2

2σ̂2

)]}
+

λ

2
∥Y − ΦXΘ∥2F . (17)

Like many optimization problems encountered in CS literature
[29], [30], (17) is a nonconvex problem, and there is no known
numerical algorithm with guaranteed convergence properties.
To deal with the nonconvex optimization problem we adopt
a sequential optimization approach where we construct a
sequence of functions ℘j(X), j = 0, 1, 2, . . . , w such that

• ℘0(X) is quadratic;
• |℘j+1(X)−℘j(X)| is small in the neighbourhood of the

minimizer X̂(j) of ℘j(X);
• ℘w(X) = λ℘(X) for a user chosen integer w.

Because ℘0(X) is quadratic we shall be able to compute X̂(0)

using the standard analytical expression. Then as |℘1(X) −
℘0(X)| is small in the neighborhood of X̂(0), by initializing
a numerical algorithm to minimize ℘1(X) at X̂(0) one has a
high probability of converging to X̂(1). If we continue this
process of initializing the numerical algorithm to optimize
℘j+1(X) at our estimate of X̂(j) obtained by numerically
optimizing ℘j(X), then one can expect that X̂(w) is likely
to be the minimizer of ℘w(X).

We construct {℘j(X)}wj=0 as follows. We choose appropri-
ate real numbers σ̂1 and λ1 (more details on how the choices
are made will follow shortly), and define

℘0(X) =
1

2
∥Y − ΦXΘ∥2F ;

℘j(X) = ℘̃j(X) +
1

2
∥Y − ΦXΘ∥2F , j = 1, 2, . . . , w,

where

℘̃j(X) =
1

λj

T∑
t=1

L∑
ℓ=1

{
|Xt,ℓ|2

2ϱ2
− ln

[
1 + r(t,ℓ)e

|Xt,ℓ/σ̂j |2/2
]}

,

(18)
where σ̂j = (σ̂/σ̂1)

j/wσ̂1, and λj = (λ/λ1)
j/wλ1. We take

σ̂1 and λ1 quite large positive numbers. By taking λ1 large,
we ensure that |℘1(X) − ℘0(X)| is small. The subsequent
changes |℘j+1(X)− ℘j(X)| for j ≥ 1 depends on w.

The parameter σ̂j controls the degree of nonconvexity
in ℘̃j (and ℘j). If we take σ̂1 → ∞, then the logarith-
mic term in (18) tends to ln(1 + r(t,ℓ)), making ℘̃1(x) =∑T

t=1

∑L
ℓ=1[|Xt,ℓ|2/(2ϱ2)− ln(1 + r(t,ℓ))], a quadratic func-

tion in X . In practice, we take

σ̂1 ≥ 5max
(t,ℓ)

|X̂(0)
t,ℓ |,

This ensures exp{−|X̂(0)
t,ℓ |2/(2σ̂2

1)} ≥ 0.99 for all t, ℓ. Con-
sequently, exp{−|Xt,ℓ|2/(2σ̂2

1)} ≈ 1 for all X satisfying
||X − X̂(0)||F < ||X̂(1) − X̂(0)||F [31].

By increasing j form 1 to w, we gradually transform ℘j

from a convex function ℘0 to the likelihood function ℘w. If w
is sufficiently large, then the change from ℘j−1 to ℘j is small,
and so is the change from X̂(j−1) to X̂(j). A Gauss-Newton
type convex-concave procedure is used to minimize ℘j for a
fixed σ̂j which builds on the following Lemma.

Lemma 1. Define the mapping ζj : CT×L → CT×L such that

vec{ζj(X)} = λj

[
Υj/σ̂

2
j + λjΨ

∗Ψ
]−1

Ψ∗y, (19)

and Υj is an S × S diagonal matrix defined as

Υ = diag

vec


 ξj(1, 1) · · · ξj(1, L)

...
...

ξj(T, 1) · · · ξj(T, L)



 ,
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TABLE I
MAP BASED ALGORITHM FOR TARGET DETECTION

Initialization
1. Set vec(X) = Ψ∗(ΨΨ∗)−1y.
2. Set σ̂0 = 5maxt,ℓ |Xt,ℓ|.
3. Set j = 1, choose ν ∈ (0, 1], β = 0.5 and w.

repeat
4. Set κ = 1.
5. while ℘j [κζj(X) + (1− κ)X] > ℘j(X)

κ = βκ.
end

6. Xo = X , and X = κζj(X) + (1− κ)X

7. If ∥X−Xo∥F

∥Xo∥2
< ν

j = j + 1.
end

while j ≤ w.

where

ξj(t, ℓ) =
1

ϱ2
+

r(t,ℓ) exp
(
− |Xt,ℓ|2

2σ̂2
j

)
σ̂2
j

[
1 + r(t,ℓ) exp

(
− |Xt,ℓ|2

2σ̂2
j

)] . (20)

Then X̂(j) = ζ{X̂(j)}. Furthermore, for any X ∈ CT×L there
exists a real-valued scalar α ≥ 0 such that

Lσ[αζ(X) + (1− α)X] ≤ Lσ(X). (21)

Proof. The proof is similar to that of Lemma 1 in [32].

The major fraction of the computation is involved in com-
puting ζj(X) in (19). However, using the matrix inversion
lemma in (19), one can verify that

vec{ζj(X)} = Υ−1
j Ψ∗ [I/λj +ΨΥ−1

j Ψ∗]−1
y. (22)

Using (22) one can reduce the computation time significantly.
The optimization strategy is summarized in Table I. The

algorithm assumes that ϱ and µ̂ are known. In each iteration,
along the decent-direction ζj(X)−X we find the step-length
κ using the standard backtracking strategy (step 4-5) [33]. We
set β = 0.5. The inner-iteration for updating X for a given j
terminates when the relative change in the magnitude of X is
below ν, see step 7. Upon convergence of each inner iteration
we increment j (step 7). We found that in MAP, we can choose
w between 15 and 40. Note that a smaller η and a larger w
will increase the reliability in the cost of computation time.
Our experimental study suggests that choosing w = 20, and
ν = 0.02 makes a good tradeoff. Upon convergence at j = w,
MAP algorithm stops its iteration.

C. Steering Vector Error

So far we have assumed that the matrix Φ is known exactly.
In this section, we consider the error in Φ due to imperfections
in sensor positioning. We consider a generic 3 dimensional ar-
rangement of an arbitrary sensor array. The nominal location of
the i-th sensor is indicated by z(i) = (z

(i)
1 , z

(i)
2 , z

(i)
3 ). However,

due to manufacturing errors, the actual sensor location may not

be the same as the nominal locations. Let the coordinates of
actual sensor locations be given by

z̄(i) = z(i) + δ(i); for i = 1, · · · ,M − 1, (23)

where δ(i) = (δ
(i)
1 , δ

(i)
2 , δ

(i)
3 ) denote the unknown error in

positioning the i th sensor. Note that without any loss of
generality we can set z̄(0) = z(0) = 0.

In the following we distinguish between the true manifold
matrix Φ̊ associated with the true (but unknown) sensor
positions {z̄(i)}M−1

i=0 , and the nominal manifold matrix Φ
corresponding to the nominal sensor positions {z(i)}M−1

i=0 , and
characterize Φ̃ := Φ̊− Φ in terms of {δ(i)}M−1

i=1 .
The i-th row of the array manifold matrix in (2) is a function

of the position of i-th sensor. In particular, we know the
function γ so that we can write

Φ̊ = [ γ(z̄(0)) · · · γ(z̄(M−1)) ]ᵀ,

Φ = [ γ(z(0)) · · · γ(z(M−1)) ]ᵀ. (24)

Now for small ||δ(i)||2 we can neglect the higher order terms
of the Taylor’s series expansion of γ(z̄(i)) in the neighborhood
of z(i) to get

γ(z̄(i)) = γ(z(i)) + δ
(i)
1 γ1(z

(i)) + δ
(i)
2 γ2(z

(i)) + δ
(i)
3 γ3(z

(i))
(25)

where, γt(z) =
∂γ(z)
∂zt

, t = 1, 2, 3. Now let

Φt = [ 0 γt(z
(1)) · · · γt(z

(M−1)) ]ᵀ, t = 1, 2, 3.

Then by (24) and (25) we have

Φ̃ = Φ̊− Φ = ∆1Φ1 +∆2Φ2 +∆3Φ3

where, ∆t = diag(0 δ
(1)
t · · · δ(M−1)

t ). Consequently, we have
a modified model

Y = Φ̊XΘ+ E = {Φ+ Φ̃}XΘ+ E

= ΦXΘ+ Ẽ (26)

where, Ẽ = Φ̃XΘ + E. Thus if we knew Ẽ, then we could
estimate {∆t}3t=1 by solving a least squares problem

min
∆1,∆2,∆3

||Ẽ − (∆1Φ1 +∆2Φ2 +∆3Φ3)XΘ||2F . (27)

In the following we assume E {||E||2F } = µ2, where E
is the mathematical expectation operator. Furthermore, we
assume the sensor errors {δ(i)}M−1

i=1 are independent of E,
and are mutually independent and identically distributed zero
mean random vectors with a known covariance matrix ν2I .
Then it can be shown that

χ2 := E {||Ẽ||2F } = µ2 + ν2Tr{Φ1ΞΦ
∗
1 +Φ2ΞΦ

∗
2 +Φ3ΞΦ

∗
3}

(28)

where Ξ = XΘΘ∗X∗. Using the observations made so far we
now present an iterative approach which is able to correct the
sensor positioning error while estimating X . This approach
relies on tuning the parameter λ in (18). If we neglect the
sensor positioning error then according to the concept in
Section III-B2 we should set

λ = χ−2, (29)
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TABLE II
STEERING VECTOR ERROR APPROXIMATION

Initialization
1. Set i = 0, λ(i) = 1/χ2, construct Φ, {Φt}3t=1

using nomimal {z(i)}M−1
i=1 .

repeat
2. Estimate X using algorithm in Table I with λ = λ(i),

denote the estimate by X̂(i).
3. Calculate the residual Ẽ(i) = Y − ΦX̂(i)Θ.
4. Solve min∆1,∆2,∆3 ||Ẽ(i) −

∑3
t=1 ∆tΦtX̂

(i)Θ||2F
to obtain estimates δ̂

(1)

i · · · δ̂
(M−1)

i , and denote
the associated estimate of Φ̃ by Φ̃i.

5. Set z(j) = z(j) + δ̂
(j)

i , for j = 0, · · ·M − 1,
and update Φ, {Φt}3t=1 accordingly.

6. Calculate χ2 using (28) with X = X̂(i).
7. Set λ(i+1) = 1/χ2 and i = i+ 1.

until
∑3

j=1 ||δ
(j)
i ||2 > a predefined threshold.

which is the starting value of λ used in our algorithm. Note
that we need X to compute χ. For this purpose we use the
solution obtained via the IRLS approach discussed in Section
III-A. Using the value of λ in (29) we can obtain an initial
estimate X̂(1) which can be used to compute an estimate of
Ẽ. This estimate of Ẽ can be used to solve the optimization
problem in (27) to estimate the sensor positioning errors. Next
we can update the manifold matrix Φ by incorporating the
estimates of {δ(i)}M−1

i=1 , and the procedure can be repeated.
The resulting iterative approach is outlined in Table II. The
iterative algorithm in Table II is basically refines the estimates
of X and {δ(j)}M−1

j=0 in each iteration.

IV. SIMULATION RESULTS

We consider a radar with M = 10 element uniform linear
array with half wavelength spacing between sensors. In each
CPI, the radar transmits N = 32 pulses. The pulse repletion
frequency (PRF) is 1 KHz. We mainly consider cases with
significant intrinsic clutter motion (ICM) [23], [24]. In all sim-
ulations, we take β = 0.5 in (3). The noise vectors {e(n)}Nn=1

are mutually independent, complex Gaussian distributed with
zero-mean, and covariance matrix η2I . The SNR of the p-th
target is defined as

SNR = 10 log10(ϑ
2
p/η

2), (30)

where ϑ2
p is the power of p-th target and η = 0.5. We set

T = 90 and L = 128. For an arrangement having P targets,
we say the targets are detected correctly when an algorithm
produces P spikes outside the true clutter region, and the
maximum absolute difference between any actual Doppler and
recovered Doppler is π/30 radian. We say there is a spike at a
particular location in the angle-Doppler image if the image has
a local-maximum at that location with an absolute magnitude
above a threshold 10−4. We consider three techniques: (i) a CS
based approach [34], (ii) the iterative adaptive approach (IAA)
[10], and (iii) MAP. IAA is an iterative algorithm based on a
weighted least squares criterion [12]. IAA usually converges

in 10 to 14 iterations [10], [12], and thus, in our simulations
we consider 14 iterations (See Appendix-A for a description
of the IAA implementation considered in the sequel). The CS
approach solves

min
x

∥x∥1 subject to ∥y −Ψx∥2 ≤ η. (31)

The SPGL1 [34] framework is used to optimize (31) numeri-
cally.

The signal-to-clutter-and-noise ratio (SCNR) is defined as
[10]

SCNR = 10 log10

(
1

P

∑P
p=1 tr[ϑ

2
pΩ(fp, ωp)Ω

∗(fp, ωp)]

tr[RCN ]

)
(32)

where RCN is the true clutter-and-noise covariance matrix
which is defined as [10]: RCN = ΨQΨ∗, where Q ∈ RS×S

is the diagonal matrix with the clutter scatterer powers corre-
sponding to the scanning points on the diagonal. Also fp and
ωp are the azimuth angle and normalize Doppler frequency of
p-th target and Ω(fp, ωp) = θ(ωℓ)

′ ⊗ ϕ(ft),. For reference,
to resolve two targets with SNR=2dB, SCNR=−65.22 dB,
T = 90, and L = 128, the computation time required for
CS, IAA, and MAP are 35, 29 and 22 sec, respectively.

We compare the resolution performances of different al-
gorithms in Figure 2. We consider two targets with SNR 2
dB, and an average SCNR −65 dB. At first we investigate
the Doppler resolution achievable by the algorithms (Figure
2(a)). Both targets have azimuth angle −42◦, whereas the first
target has a fixed Doppler shift −0.015. The Doppler shift
of the second target is gradually decreased from 0.05, and
consequently, the difference in Doppler shifts between the two
targets becomes smaller. We define the Doppler resolution of
an algorithm as the minimum difference in Doppler shifts for
which it can resolve the targets in 90% cases. The Doppler
resolutions of IAA and MAP are 0.035 and 0.025, respectively.

We consider the angle resolution performance in Figure
2(b). The Doppler shifts of two targets are −0.015 and
−0.005. The azimuth angle of first target is fixed to −42◦,
while the azimuth angle of second target is brought closer to
−42◦. Figure 2(b) reveals that the angle resolution of IAA is
14◦, while that of MAP is 16◦.

Finally in Figure 2(c) we investigate what happens when
a target is close to the clutter. The first target has azimuth
angle and Doppler shift are −42◦ and −0.015 respectively.
The second target has a fixed Doppler shift −0.035, while
its azimuth angle is gradually decreasing from 30◦, so that it
comes closer to the clutter. Clearly MAP algorithm performs
better than IAA. Figure 3 shows typical angle-Doppler images
when azimuth angle of second target is 21◦. Note that CS
fails to locate targets in presence of large clutter. While IAA
can approximately locate the first target at −42◦ azimuth,
it is unable to locate the second target. MAP detects both
targets clearly. Note that by clustering the approximate clutter
locations, we have several advantages. First, the clutter region
is separate from the whole area which does not produce
any ripples. Second, by enforcing the whole clutter as an
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independent component the number of active components
in the whole angle-Doppler image are reduced significantly.
This is very helpful in sparse recovery techniques. Finally,
as observed in the simulations, the clustering concept helps
MAP algorithm to become robust in the noisy environment.
Note that the actual targets in Figure 3 (a) are not very
bright due to low SNR. However, MAP produces very clear
image of the targets2. For illustration purposes, we consider
another CS based algorithm called modified-CS [19], which
can utilize the clutter information in its optimization process.
Figure 3(e) shows that Modified-CS is unable to detect the
targets in the setting considered. We also consider the SLIM
algorithm [16] in Figure 3(f). Typically, SLIM converges in
about 15 iterations [15]. However, we vary the iterations of
SLIM between 10 and 25, change the value of p in (8) between
0.3 and 0.9 to obtain the best possible output. However, as can
be seen in Figure 3(f), the SLIM always generates ripples in
the area of interest, and often SLIM is unable to locate the
targets. In the following, we do not include the results for
modified-CS and SLIM.

We investigate robustness of the algorithms in different
environments in Figure 4. At first we show effect of noise
variance η (see (30)) on different algorithms in Figure 4(a). We
consider two targets. We fix target SNR to 2 dB. Clearly SCNR
changes with changing η. We fix the clutter power such that
average SCNR remains −65 dB when η = 0.5. The detection
of an algorithm is considered successful when it resolves all
targets. The result is shown in Figure 4(a). MAP algorithm
outperforms IAA. It is interesting to note that IAA performs
well for 0.3 ≤ η ≤ 0.6, and its performance degrades slightly
when η below 0.3.

To illustrate the effect of clutter power on the detection
performance we again consider two targets. The target SNR
is 2 dB and η = 0.5. We then increase clutter power and try
to resolve the targets using different algorithms (Figure 4(b)).
Note that MAP algorithm can resolve targets efficiently even
if the clutter SCNR remains above −75 dB.

In Figure 4(c) we investigate the maximum number of
targets that can be resolved by various algorithms. When
placing targets around the clutter, we ensure that the minimum
separation between the targets is more than resolution limit of
different algorithms, see Figure 2. Note that MAP algorithm
can resolve upto 8 targets properly.

We claim in Section III-A that our algorithm needs only
an approximate knowledge of the true clutter. We justify
this in Figure 5 (a). Here the clutter is unevenly distributed
around the diagonal of the angle-Doppler image. Also clutter
is not distributed over the whole diagonal area (similar to the
simulations in [10]). Nevertheless, as can be seen in Figure
5(d), MAP can still locate the targets. IAA can locate only
one target approximately.

Figure 6 illustrates the utility of the steering vector error
correction algorithm presented in Table II. We set ν = 0.01
to generate δ as in (23). We consider two targets with SNR
2 dB and SCNR = −64.8 dB. Figure 6 (a) shows the range-

2Figure 3(d) might appear to be a binary version of the actual image
recovered by MAP. However that is not true.

Doppler images generated by MAP, without error correction.
Note that the image is not satisfactory. We then use algorithm
of Table II to reproduce Φ. The new output using modified
Φ is shown in Figures 6(b) and 6(c). Note that MAP resolves
the targets clearly. Although, IAA also yields an improved
image, its performance is unsatisfactory in presence of a large
clutter. The situation improves when we use our steering vector
correction in IAA. For instance, in Figure 7 we consider SCNR
= −56.8 dB and target SNR = 2 dB. As can be seen in Figure
7, IAA locates the targets fairly.

Figure 8 shows frequency of resolving targets as a function
of ν. The target-arrangement is same as in Figure 6, and
average SCNR = −65 dB. We found that until ν ≤ 0.015,
MAP algorithm can resolve the targets reliably.

Figure 9 shows the receiver operating characteristic (ROC)
of MAP algorithm. We consider two radar setup. In first setup,
the radar is without steering vector error as considered in
Figure 3. In second setup, we consider a radar system with
steering vector error similar to Figure 6. In both cases, the
target-arrangements are similar to the Figures, while the target
SNRs are varied. Let X̂ be estimate of X for a particular
SNR. We then select a threshold τi . Any local maximum of
X̂ with an absolute value is greater than τi is considered as
a target. We vary τi within an interval [τs, τe] and for each
value of τi we record whether all actual targets are detected
and whether any false targets are detected. After repeating
the experiment 100 times, this procedure yields the empirical
probability pa of detecting an actual target, and the empirical
probability pf of detecting any false target for different values
of τi. The sensitivity of the algorithm is defined as the smallest
SNR for which pf ≤ 0.1 and pa ≥ 0.85. In Figure 9(a) we
show the ROC in absence of any steering vector error, while
ROC in presence of steering vector error is shown in 9(b).
Note that in both cases the sensitivity is −1 dB, and the value
corresponding to the threshold is 10−4.

V. CONCLUSIONS

The angle-Doppler imaging problem in presence of clutter
is posed as a sparse signal reconstruction problem. However,
conventional sparse recovery approaches are not suitable for
this framework. We find that under certain reasonable assump-
tions one can approximately estimate the clutter region. Using
the clutter information, the problem of estimating targets can
be posed to the MAP formulation. We compare the algorithm
with other known imaging algorithms.

APPENDIX A
THE IAA ALGORITHM [10]

• Initialization: Set Pt,ℓ = 1
(NM)2 |(ϕ(ft) ⊗ θ(ωℓ))

∗y|2,
for t = 1, 2, · · · , T , and ℓ = 1, 2, · · ·L.

• repeat
1. RIAA = ΨPΨ∗.
2. for t = 1, 2, · · · , T
3. for ℓ = 1, 2, · · ·L
4. Pt,ℓ =

∣∣∣ (ϕ(ft)⊗θ(ωℓ))
∗R−1

IAAy

(ϕ(ft)⊗θ(ωℓ))∗R
−1
IAA(ϕ(ft)⊗θ(ωℓ))

∣∣∣2
– end
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Fig. 2. Resolution performance of algorithms. Average SCNR =−65 dB. (a) Doppler resolution, (b) Angle resolution, (c) Clutter resolution.
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Doppler shifts are −0.015 and −0.035. (a) true image, (b) CS, (c) IAA, (d) MAP algorithm, (e) Modified-CS [19], (f) SLIM [16].
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Fig. 4. Robustness of algorithms. (a) Robustness against noise power. SNRs of two targets are 2 dB and 2 dB. Azimuth angles of the targets are {−42◦, 24◦}
and Doppler shifts are {−0.015,−0.035}. (b) Robustness against clutter power. SNRs of two targets are 2 dB, 2 dB and η = 0.5. Azimuth angles of the
targets are {−42◦, 24◦} and Doppler shifts are {−0.015,−0.035}. (c) Multiple targets detection.
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Fig. 6. Angle-Doppler images in presence of steering vector error. SNRs of two targets are 2 dB and 2 dB. SCNR = −64.8 dB. Azimuth angles of the targets
are {−42◦, 24◦} and Doppler shifts are {−0.015,−0.035}. (a) MAP algorithm with steering vector error. (b) IAA after steering vector error correction. (c)
MAP algorithm after error correction.
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– end
• until a certain number of iterations is reached.
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