Maximum A Posteriori Decoding Algorithms For Turbo Codes

Hamid R. Sadjadpour

AT&T research-Shannon Labs,
Florham Park, NJ,
email: sadjadpourQ@research.att.com

ABSTRACT

The symbol-by-symbol maximum a posteriori (MAP) known also as BCJR algorithm is described. The logarith-
mic versions of the MAP algorithm, namely, Log-MAP and Max-Log-MAP decoding algorithms along with a new
Simplified-Log-MAP algorithm, are presented here. Their bit error rate (BER) performance and computational com-
plexity of these algorithms are compared. A new hardware architecture for implementing the MAP-based decoding
algorithms suitable for chip design is also presented here.

Keywords: Iterative decoding, MAP decoding, Turbo Codes.

1. INTRODUCTION

The near Shannon limit error correction performance of Turbo codes [1] and serial concatenated convolutional codes
[2] have raised a lot of interest in the research community to find practical decoding algorithms for implementation of
these codes. The MAP decoding also known as BCJR [3] algorithm is not a practical algorithm for implementation
in real systems. The MAP algorithm is computationally complex and sensetive to SNR mismatch and inaccurate
estimation of the noise variance [4]. This algorithm requires non-linear functions for computation of the probabilities
and both multiplication and addition are also required to compute the variables of this algorithm. The fixed-point
representation of the MAP decoding variables usually require between 16 to 24 bits for a QPSK signal constellation.
Based on the above hardware requirements, MAP algorithm is not practical to implement in a chip. The logarithmic
version of the MAP algorithm [5-7] and the Soft Output Viterbi Algorithm (SOVA)[8-9] are the practical decoding
algorithms for implementation. These algorithms are less sensetive to SNR mismatch and inaccurate estimation of
the noise variance and fixed-point representation of their variables require approximately 8 bits for a QPSK signal
constellatoin. All different logarithmic versions of the MAP algorithm only require addition and a max-operation
which can be conducted utilizing a simple look-up table [7] or a threshold detector [10]. SOVA has the least
computational complexity and the worse bit error rate (BER) performance among these algorithms, while the Log-

MAP algorithm [5] has the best BER performance equivalent to the MAP algorithm and the highest computational
complexity.

This paper describes briefly all versions of MAP decoding algorithm and introduces a new logarithmic version
of the MAP decoding algorithm. The new algorithm, Simplified-Log-MAP algorithm, is less complex than the
Log-MAP algorithm but it performs very close to the Log-MAP algorithm. Also a new hardware architechture for
implementation of the MAP-based decoding algorithms is introduced.

In section 2, different MAP decoding algorithms are described. Section 3 introduces a new hardware architecture
for MAP-based decoding algorithms which is currently implemented in a chip. Section 4 compares their BER
performance of these algorithms for different QAM constellation sizes.

2. TURBO DECODING ALGORITHMS

Figure 1. illustrates the structure of the Turbo encoder. The systematic data, di, and two parity bits from the
output of the recursive systematic convolutional (RSC) encoders, ¥ and yZ, are the outputs of the Turbo encoder.
The two RSC encoders are in a parallel structure similar to [1]. The length of memory for each RSC encoder is v
and consequently, the total number of states for each decoder is M = 2¥. The received systematic data and parity
bits from the i-th encoder are represented as dj and y;’ respectively. The Turbo block length is N. The two RSC
encoders are separated by an N-bit interleaver or permuter. Thus, the input to the second encoder is the interleaved
version of the input information data. If we transmit the data as shown in figure 1, the encoder is rate 1. There is an

3
option of puncturing the parity bits to achieve different coding rates. The role of the interleaver in the performance

In Digital Wireless Communication I, Raghuveer M. Rao, Soheil A. Dianat, Michael D. Zoltowski, Editors,
Proceedings of SPIE Vol. 4045 (2000) e 0277-786X/00/$15.00

73

74

of the Turbo code is important specially when the Turbo block size (N) is small. The discussion on the significance
of the interleaver design is beyond the scope of this paper. There are some papers on the design of the interleavers
[11-15] for Turbo codes. Each RSC encoder has the generator matrix |1, %’;—;i(%%] where gpp(D) and gpg(D) are
the feedforward and feedback polynomials respectively. The feedback polynomial is usually selected a primitive
polynomial.

Figure 2 demonstrates one example of RSC encoder suitable for Turbo codes with feedback and feedforward
generator polynomials equal to 23, and 35, respectively.

dy
>
d Ykl
k > RSC Encoderl —
A J
Delay
line N
Interleaving
Yk2
I— RSC Encoder2 —p

Figure 1. Turbo encoder.

l Yk 1/)’k2

N\

Figure 2. Example of RSC encoder for Turbo codes with generator matrix [1, %%:—i‘]

2.1. MAP Algorithm

The MAP decoding algorithm is a recursive technique that computes the Log-Likelihood Ratio (LLR) of each bit
based on the entire observed data block of length N.

Pr(dy = 1|RY)

A(dy) = lOgP—r(d—kTRlN) (1)

Pr(dx = 1|RY) is the a posteriori probability (APP) of the information input data at time k (dr) when it is equal
to 1 given the entire recieved data. The observation block data sequence is RYY = {R,,..., Ry, .. ., RN} where
Ry = {d}, y;'}. The state of the encoder Sy, is represented by a v-tuple

Sk = (Gk, @k=1, . . -, Ck—v+1) 2)

where ay, is the output of the first shift register in the RSC encoder. The conditional joint probability I fc (s) is defined
as

T{(s) = Pr(dy = j, Sk = s|RY) 3)
The APP of dj, is thus equal to _
Pr(dy = jIRY) =) Ti(s), =01 (4)

75

76

The LLR can be rewritten by substituting (4) into (1).

1
A1 (di) = log %—s% (5)

The numerator and denominator of (5) can be multiplied by Pr(RY’) and these values will become joint probabilities
instead of conditional joint probabilities. If the system at time k — 1 is at state s , then (5) can be written as

Zs Zsr Pl‘(dk = 1,Sk =8, Sk-—l = SI, R{V)

A1(dy) =1 6
l(k) og ESZSI Pr(dk :—O,Sk:S,Sk_]:S’,R{V) ()
The BCJR algorithm (3] defines these joint probabilities in terms of three parameters.
ak(s) = Pr(Sk = s|R}) (7)
Pr(RY, ISk =)
Bre(s) = ——an—mr (8)
) = PRI
and
’Yj(RkyS 73) =Pr(dk =jv Sk :SkalSk—l =S) (9)
The LLR in (6) can now be described in terms of (7), (8), and (9).
3, (R s, 8)ak-1(s")Bx(s)
Aq1(dx) =1o =2 ; ; 10
) ng >y Yo(R, 8, 8)ak-1(8")Br(s) (10)
ax(s) and Bx(s) can be computed by forward and backward recursions respectively based on 7;(Rx, s,8).
l 7 !
a(s) =ha > Vi(Re,s ,8)ak-1(s) (11)
s’ j=0
l ! 7
Be(s) =hs DY 7i(Ri+1,85)Besa(s) (12)
s’ J=0

where h, and hg are the normalization factors. ~;(Rk, s, s) consists of the transition probability of the descrete
Gaussian memoryless channel and transition probabilities of the encoder trellis. From (9), 7;(Rx, s, 5) is given by

~;(Ra, s, 8) = Pr(R|dx = j, Sk = 5, Sk—1 = 5) X Pr(dk = j|Sk = 5, Sk-1 = §)x Pr(Sp = s|Sk-1=5) (13)

The second term in (13) is the transition probability of the discrete channel, the third term is equal to 1 or 0
depending on whether it is possible for di = j when the sytem transition is from state s to state s, and the fourth
term is the transition state probabilities and for equiprobable binary data, it is equal to % In the first iteration,
decoder 1 does not have any additional a priori information. The second decoder however, will utilize the output
information from the first decoder as a priori information. After the first interation, each decoder utilizes output
information from the other decoder as a priori information. This output information of each decoder corresponds
to the parity information of that decoder. dj, and Yo are two uncorrelated Gaussian variables in R based on the
conditions expressed in (13). Therefore, the second term in (13) can be divided into two terms.

Pr(Ry|di = J, Sk = 5, Sk—1 = 8) = Pr(df|dx = 5, Sk = 5, S—1 =8) X Pr(yi’|dx = J, Sp = 5, Sp-1 = s) (14)

The received signals are utilized to compute v;(Rx, s’, s) and consequently, accurate computation of this variable is
very important in computation of other variables of the MAP decoding algorithm.

The MAP decoding algorithm consists of the following steps:

1. Initialize o, (s) and By (s) as follows:

ao(s) = {

Bn(s) =

should be initialized accordingly [7].

0 otherwise

(15)

(16)

where M is the total number of states. The above initialization is based on trellis termination of the Turbo
block into arbitrary state. Turbo block can be terminated to all zero state and in this case, Sy (s) function

2. Upon receiving each dj, and its corresponding %;‘, the decoder computes "yj(Rk,s’,s) for j=0 and 1, then
computes oy (s) for all values of s according to (11). The computed values of 7; (R, s',s) and oy (s) are stored

for 1<k <N.

3. The backward recursion for (x(s) is performed after all the N data sequence and their corresponding parity

bits are received based on (12) for 1 <k < N — 1.

4. The soft output decoded bits, A1(dx), are computed according to (10) for 1 <k < N.

It can be shown [1] that the soft output decoded bits, A;(di) or Az(d), can be divided into three terms. Figure
3 shows this iterative decoding scheme. The inputs to each decoder are the received input data sequence, df, the
received parity bits ;' or y;?, and the logarithm of the likelihood ratio (LLR) associated with the parity bits from
the other decoder (W)} or W), which is used as a priori information. All these inputs are utilized by the decoder to
create three outputs corresponding to the weighted version of these inputs. In Figure 3, dy, represents the weighted
version of the received input data sequence, d},. Also d7, in the same figure demonstrates the fact that the input data
sequence is fed into the second decoder after interleaving. The input to each decoder from the other decoder is used
as a priort information in the next decoding step and corresponds to the weighted version of the parity bits.

De-Interleaver

4

Wl

“ 72
k
k Interleaver
d; 5
LN d,
Decoderl ———>
; w2
Y
— > kK

Figure 3. Turbo Decoder.

In order to utilize this algorithm, a4(s) variables are computed for the entire data block of length N, then S (s)
variables are computed. This approach requires to store all these variables for the entire of Turbo block. For the
cases that N is a large number, the memory requirement for MAP-based decoding algorithm becomes extremely

r
dn-——»
n
b J—

Decoder2

77

78

large. If all the ax(s) and Bx(s) variables are computed within on clock cycle for each k, then this approach requires
2N clock cycles to compute all the variables of the MAP decoding algorithm. We will propose another hardware
implementation that requires to store only half of the ax(s) and [k(s) variables and the computations of these
variables will be carried with the minimum number of clock cycles (N clock cycles).

2.2. MAX-Log-MAP Algorithm

As described earlier, MAP algorithm is computationally very intensive for most applications and it is not suitable for
chip design. There are two major problems with MAP decoding algorithm. First, MAP requires accurate estimation
of the noise variance and its performance is very sensitive to SNR mismatch. Second, the fixed-point representation
of the MAP decoding variables requires between 16 to 24 bits. These requirements are not suitable for VLSI chip
design.

To avoid these problems we can compute the Natural logarithm of all these variables, i.e., v;(Rx, s, s), ak (s),
and ﬁk(s) Since 7;(Ry, § , 5) is the result of multiplication of three factors in (13), thus the logarlthm of v;(Rg, s , s),
7; (Rx, s, 5), is the addition of the logarithm of these three factors.

%(Rk,s,8) = Inv;(Ri,s’,s) =In(Pr(Rlde = j,Sk = 5, Sk—1 = 5)) + In(Pr(dy = j|Sk = 5,Sk-1 = 5))
+ In(Pr(Sk = 5|Sk—1 = 5)) (17)

In an additive white Gaussian noise (AWGN) environment, the first term in the right side of (17) is an exponent and
by taking the Natural logarithm of this value, we get rid of the non-linear exponent operation, e.g., In(exp(A4)) = A
For a4 (s) we have

1
&k (s) = n(ox(s)) =In(ha D > vi(Re, 5, 8)ak-1(s))- (18)
s’ =0
A simple approximation to the logarithm of the sum of numbers is the logarithm of the maximum number.
In(A+ B+ C+...) ~In(max(4, B,C,...)) (19)

Therefore, @ (s) can be approximated as
e (s) = In(ax(s)) =~ n;?;;(:yj(Rk, s, 8) + dk_1(s)) + Inha (20)
aits

with the following initialization condition:

5o ={ %o nern (21)

—oo otherwise
Similar approximation can be used to compute Gy (s)-
Br(s) = In(Bx(s)) = max(Y; (Ri+1, 5, s') + Brsa(s) +Inhg (22)
The initialization of [(s) based on (16) is
[}N(s) = ln(-—lj‘z) for all s (23)

The soft output of the decoded data for this approach is
Ra(dr) = max (1 (Re, s',) + Ge-1() + Bi(s)) = max (o(Rr, ', 8) + Ge-1(5) + Be(s)) (24)
alls,s alls,s

The ai(s) and Fx(s) parameters in the MAP algorithm are approximated in the MAX-Log-MAP algorithm by
maximization operation. Therefore, there is an approximation error in the computation of these two variables.
Since these two variables are computed recursively, this approximation error is propagated throughout the entire
block of data. If the SNR requirement for a given BER performance is very high, then this approximation error is
comparable to the noise and it will have a significant effect on the performance of the system. On the other hand, if
the SNR requirement is not high, then this approximation error is much less than the noise power and this will not
be a significant factor in performance degradation. We will show this in the simulation results section. The BER
performance of the MAX-Log-MAP is always worse than that of the MAP algorithm.

2.3. Log-MAP Algorithm

The Log-MAP algorithm computes the MAP parameters by utilizing a correction function to compute the logarithm
of sum of numbers. More precisely for A; = A + B, then

A; = In(A + B) = max(A, B) + f.(|A - B|) (25)

where f.(|A — BY) is the correction function. f.(|A — B|) can be computed using either a look-up table [7] or simply
a threshold detector [10] that performs similar to look-up table. The simple equation for threshold detector is

0.375 if |[A—B|<2
0 otherwise

fetid-) - {

(25) can be extended recursively. If Ay = A+ B + C, then
Ay = In(A, + C) = max(A1, C) + fo(|A; - €)) (26)

This recursive operation is specially needed for computation of the soft output decoded bits.

At each step, the logarithm of addition of two values by maximization operation is accommodated for by additional
correction value which is provided by a look-up table or a threshold detector in the Log-MAP algorithm. The

Log-MAP parameters are very close approximations of the MAP parameters and therefore, the Log-MAP BER
performance is close to that of the MAP algorithm.

2.4. Simplified-MAX-Log-MAP Algorithm

Study of the MAP algorithm shows that accurate computation of 'yj(Rk,s',s) function is very important since it
contains all the received information data. a(s) and B (s) parameters are computed recursively, therefore any
error in the computation of these parameters can propagate and results in poor estimation of these parameters. For
example, if ai(s) is computed with approximation using (19), then this error will result in inaccurate computation
of the values of ag41(s). Any additional error in computation of ak41(s) will create larger errors in computation of
ak+2(s) and this can continue until the end of the Turbo block. This is the main reason that the MAX-Log-MAP
algorithm performs worse than the MAP algorithm. Similar discussion is true for the backward recursive computation
of fBr(s) parameters. ax(s) and Bi(s) can then be computed as

ax(s) = g;asa,cﬁj(Rk,s',w +-1(8)) + foll Da]) (27)
Br(s) = max(¥;(Ris1,5,)+ Brar(s) + fe(l D) (28)

where A, is defined as the difference between the maximum and minimum values of (% (R, 5 ,8)+ar_1(s")). @o(s)
and Bn(s) initializations are similar to (21) and (23).

However, after computing the logarithm of these parameters using the correction function, it is not necessary to
compute A;(dx) with high accuracy. As a matter of fact, a lot of times at moderate to high SNR only one value
in the numerator and denominator of (10) are the dominant factors. Therefore, using max operation similar to
(19) to compute A;(di) will not have any significant effect on the BER performance of the Simplified-Log-MAP
algorithm, while it reduces the computational complexity of the Simplified-Log-MAP algorithm compared to that of
the Log-MAP algorithm. Besides any error due to this approximation in computation of A;(dx) will not propagate
through the entire data sequence. The soft output of the decoded bits are approximated as:

Ra(dn) = max (31 (Ri, s, 5) + Gxr(s') + Bi(s) = max (Fo(Ri, s ,5) + Gr-1(s) + Bu(s)) (29)

Table 1 compares the computational complexity of all the MAP-based decoding algorithms for a T1 data rate.
The total number of operations are for only one iteration with v = 3 and M = 8. From this Table, we can conclude

that the total number of operations per bit for the Simplified Log-MAP is 16 and 13 percent less than the MAP and
Log-MAP algorithms respectively.

79

80

Table 1. Complexity comparison between different MAP algorithms.

Operation MAP | Max-Log-MAP | Simplified-Log-MAP | Log-MAP
Maximization 2M -1 | 5SM - 2 3M -2 4M - 4
Addition M 10M - 2 12M - 2 14M - 4
Multiplication 10M 0 0 0

Table Look-up 0 0 2M 4M - 2
Total Operation 14M 10M - 2 12M - 2 14M - 4
Total Ops. for T1 in Mops. | 345.86 | 240.86 290.27 333.5

3. A NEW HARDWARE ARCHITECTURE FOR MAP-BASED DECODING
ALGORITHM

The new hardware implementation of the MAP-based decoding algorithms is based on the assumption that the entire
N block of data is available at the receiver. For instance, the digital subscriber loop (DSL) modems that use the
discrete multi-tone (DMT) technology allocate the information bits to the tones in a transmission frame. The number
of transmitted bits in each frame can be equal to the Turbo block size (N). In other applications that the information
and the parity bits are transmitted sequentially, in order to take full advantage of the coding gain associated to Turbo
codes, we need to perform the decoding opertion for many iterations. Therefore the above assumption is reasonable.
The new approach presented here is for the MAP decoding algorithm. A generalization of these steps to logarithmic
versions of the MAP algorithm is straightforward.

1. Initialize @ (s) and Bn(s) based on (15) and (16). Set k = 1 and Compute 7;(Rk,s ,s) and v;(RN—k4+1,5 ,8)
for all j.

2. Compute ag(s), Bn-kr(s), 'yj(Rk+1,s,,s), and 'yj(RN_(kH)H,s',s) for all values of s,s’, and j in a parallel
structure simultaneously in one clock cycle. Store all these values in memory.

3. Set k =k +1 and go back to step 2 for 1 < k < &. When k > &, then go to step 4.

4. For ¥ 5 +1 <k < N, compute ax(s) and By_i(s) simultaneously. Use these values together with the stored
ag (s) and Bk (s) parameters calculated in step 2 to compute A;(dg) and Ay (dn—k). Do not store a(s) and
Bn_k(s) parameters for & 5 +1 < k. Remember that all the values of v; (R, s ,8) are already computed in steps
2 and .

5. Set k =k + 1 and go back to step 4 and continue the algorithm for the entire Turbo block.
This approach can be used for both decoders.

This approach has many advantages over the previous proposed technique. If there are a total of M = 2V states, the
total memory requirement for a(s) or Bx(s) parameters for this approach is 2¥~! x N as compared to 2¥ x N in
the previous technique. In many applications with Turbo code, N is a large number and this approach reduces the
memory requirements.

The compuation of parameters are carried much faster in this approach with the minimum hardware requirements.
As a matter of fact, the soft output decoding for each iteration is immediately available after finishing computation
of ax(s) and Bi(s) parameters. The total number of clock cycles to perform the operations for the entire Turbo block
of length N is only N clock cycles as compared to 2N cycles for the previous approach.

A new Turbo decoder chip based on the Simplified-Log-MAP algorithm and the proposed hardware architecture
is currently being designed for DSL modems.

4. SIMULATION RESULTS

The BER performance of the Simplified-Log-MAP algorithm is compared to that of the MAP, Log-MAP, and Max-
Log-MAP algorithms. The simulation results are for a Turbo code with 1/2 code rate, N = 1024, m = 3, and the
feedback and feedforward generator polynomials equal to 15,.; and 17, respectively. Three iterations were used for
the simulations and the results in figure 4 and 5 are for QPSK and 64-QAM constellation sizes. As we can see from
the results, the Log-MAP decoding algorithm has similar performance to the MAP algorithm (For QPSK, it is exactly
the same, so we did not plot it). The performance loss for the MAX-Log-MAP compared to the MAP algorithm
is from 0.2 dB. for QPSK up to 0.35 dB. for 64-QAM. The SNR requirement for a given BER is higher at larger
constellation sizes, therefore, the approximation of the logarithm has more significant effect on the BER performance
of the MAX-Log-MAP algorithm. The Simplified Log-MAP has a negligible performance degradation compared
to the MAP algorithm for QPSK constellation, while the performance loss is approximately 0.1 dB. for 64-QAM.
It can be concluded from the above results that Simplified Log-MAP algorithm together with the new hardware
implementation are an appropriate choices for implementing Turbo decoders in practice without any significant loss
in performance. In figure 6, these two techniques are implemented in a Multi-tone Turbo Trellis Coded Modulation
(MTTCM) scheme for an ADSL modem and the results are compared to the recommended 16 states 4 dimensional
Wei code in the ANSI standard [16].

Map decoding algorithms

FLOEE-O o

//

1.0E-02

—a— MAX-Log-MAP

—a— MAP

—eo— Simplified-Log-MAP
1.0E-03

BER

oo NN

1.0E-05 L L L L a i

Figure 4. BER performance of MAP-based decoding algorithms for QPSK constellation.

81

82

1. 501
1.2
o 1TEO3
i
o 1. =049
1. 5065
1. =05

i
T~]
~—

SNR dB2

8082848688909 294

—— Snndified Log
NP

—=— NP

—— NI Log NMAP

—-— Log NMAP

Figure 5. BER performance of MAP-based decoding algorithms for 64QAM constellation.

BER

MTTCM vs. Wei code for different QAM signals

1.00E+0O0

- hndde P SNk I Pt L PP
1. 00E-01 1 - A :': == - & _
1.00E-02 J= - . _’5;' S S ===
S -0 P > -
1.00E-03 P = = - =
1 _0OE-0a e = LI S - - =
- - S = - =
1. 00E-OS — = = = =
1.00E-0O6 = = = =
1.00E-07 . — = . -, .= . =
1 s 7 2 11 13 15

Eb/No, dB

17

REREERREK

Turbo 4aQAMUr=1/2)
W ei, aQAM

Turbo 16QAM((Ir=1/2)
W ei, s8QAM

Turbo 16QAM((Ir=3/4)
W ei, 16QAM

Turbo 64QAM (r=22/3)
W ei, 32QAM

Turbo 256QAM(Ur=3/4)
W ei, 12802AM

Figure 6. BER performance of MTTCM and Wei code for various modulation levles.

10.

11.

12.

13.

14.

15.

16.

REFERENCES

C. Berrou, A. Glavieux, and P. Thitimajshima, ”Near Shannon Limit Error-Correcting Coding and Decoding:
Turbo Codes,” Proceeding of IEEE ICC 93, pp. 1064-1070.

. S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, ”Serially Concatenation of Interleaved Codes: Perfor-

mance Analysis, Design, and Iterative Decoding,” IEEE Trans. on Inf. Theory, vol. IT-44, No.3, pp. 909-926,
May 1998.

. L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, ”Optimum decoding of linear codes for minimizing symbol error

rate,” IEEE Trans. on Inf. Theory, vol. IT-20, pp. 284-287, Mar. 1974.

T.A. Summers and S.G. Wilson, ”SNR Mismatch and Online Estimation in Turbo Decoding,” IEEE Trans. on
Comm. vol. 46, no. 4, pp. 421-424, April 1998.

P. Robertson, P. Hoeher, and E. Villebrun, ”Optimal and Sub-Optimal Mazximum A Posteriori Algorithms
Suitable for Turbo Decoding,” European Trans. on Telecomm. vol. 8, no. 2, pp. 119-126, March-April 1997.

P. Robertson, E. Villebrun, and P. Hoeher, A Comparison of Optimal and Sub-optimal MAP Decoding Al-

gorithms Operating in the Log Domain,” International Conference on Communications, pp. 1009-1013, June
1995.

. S. Benedetto, G. Montorsi, D. Divsalr, and F. Pollara ”Soft-Output Decoding Algorithm in Iterative Decoding of

Turbo Codes,” TDA Progress Report 42-124, pp. 63-87, February 15, 1996.

. J. Hagenauer, and P. Hoeher, A Viterbi Algorithm with Soft-Decision Outputs and Its applications,” Proc. of

GLOBECOM, pp. 1680-1686, November 1989.

J. Hagenauer, Source-Controlled Channel Decoding,” IEEE Transaction on Communications, vol. 43, No. 9, pp.
2449-2457, September 1995.

W.J. Gross and P.G. Gulak, "Simplified MAP algorithm suitables for implementation of turbo decoders,” Elec-
tronics Letters, vol. 34, no. 16, August 6, 1998.

S Dolinar and D. Divsalar, ”Weight Distribution for Turbo codes Using Random and Nonrandom Permutations,”
JPL Progress report 42-122, pp. 56-65, August 15, 1995.

H. Sadjadpour, M. Salehi, N. Sloane, G. Nebe, ”Interleaver Design for Short Block Length Turbo Codes,” to be
published in 1CC2000.

J. Hokfelt, O. Edfors, and T. Maseng, "Turbo Codes: Correlated Extrinsic Information and its Impact on
Iterative Decoding Performance,” Proceeding of IEEE VTC ’99, Houston, Texas.

H. Herzberg, ”Multilevel Turbo Coding with Short Interleavers,” IEEE Journal on selected areas in Communi-
cations, vol.16, no. 2, pp. 303-309, February 1998.

J. Yuan, B. Vucetic, and W. Feng, ”Combined Turbo Codes and Interleaver Design,” IEEE Trans. on Comm.,
vol. 47, no. 4, pp. 484-487, April 1999.

NSI ”Network and Customer Installation Interfaces —- Asymmetric Digital Subscriber Line (ADSL) Metallic
Interface,” American National Standard for Telecomm., vol. T1.413, 1995.

83

