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Abstract

We study a novel method for maximum a posteriori (map) estima-
tion of the probability density function of an arbitrary, independent
and identically distributed d-dimensional data set. We give an in-
terpretation of the map algorithm in terms of regularised maximum
likelihood. We also present numerical experiments using a sparse grid
combination technique and the ‘opticom’ method. The numerical re-
sults demonstrate the viability of parallelisation for the combination
technique.
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1 Introduction

The estimation of the probability density function (pdf) from a given data
sample has always been important in statistical studies and applications [12].
In recent years, the maximum a posteriori (map) algorithm was developed
for multi-dimensional probability density estimation [7]. The technique
was further analysed from a theoretical point of view [4]. However, multi-
dimensionality poses severe computational challenges. With these challenges
in mind, the sparse grid combination technique was successfully employed in
tackling multi-dimensional problems [3].

We study the map algorithm and explore the applicability of the combination
technique to pdf estimation. In the following section we explore the connec-
tion between regularised maximum likelihood and the map algorithm. After
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a short introduction to the sparse grid combination technique, we present our
numerical results. Finally, we draw conclusions and discuss potential research
directions.

We assume familiarity with the exponential family of distributions, including
its natural parameters c, sufficient statistics φ and log partition term A(c) [10].
We make use of the two identities

∂A

∂cj

∣∣∣∣
c
= Ec{φj} ,

∂2A

∂ci∂cj

∣∣∣∣
c
= covc{φi ,φj}.

where cj is the jth natural parameter and φj is the corresponding sufficient
statistic. The maps Ec and covc are the expectation and covariance operators,
respectively, corresponding to the pdf parameterised by c.

2 The MAP algorithm for density estimation

Let T := [0, 1]d and C(T) be the space of continuous real valued functions
defined on T . We assume the data points ti ∈ T for i = 1, . . . ,n , are
independent and identically distributed and have an underlying pdf

f(t | u) :=
eu(t)∫

T
eu(t) dµ(t)

,

where u ∈ H ⊂ C(T) and H is a reproducing kernel Hilbert space continuously
embedded in C(T) . In others words, f resembles a member of the exponential
family where the exponent is generalised to include a large class of functions.
The log of the denominator in the above equation is

A(u) := log
∫
T

eu(t) dµ(t) ,
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which is analogous to the log partition term of the exponential family. Unlike
the exponential family we do not assume the exponent to be a finite linear
combination of some known sufficient statistics. However, if we choose a
countable basis set for H, then the basis set is a countable number of sufficient
statistics. This allows flexibility in pdf estimation to deal with situations
where the data do not seem, a priori, to fit any known distribution.

The pdf estimation problem is reduced to minimising

j(u) :=
1

2
‖u‖2H + log

∫
T

eu dµ−
1

n

n∑
k=1

u(tk) ,

for functional j : H → R [4]. The H-norm is implicitly parameterised by
the number of data n and two statistical parameters α and β. In the func-
tional j(u) , ‖u‖2H serves as a penalty term for regularity and well-posedness.
The two remaining terms are analogous to the negative log likelihood func-
tional used in maximum likelihood methods for the exponential family.

We can use a variational Newton–Galerkin algorithm to solve the above
infinite dimensional minimisation problem [4]. However, in practice, one
solves a finite dimensional problem with fixed basis φ1, . . . ,φm . We write
u :=

∑m
i=1 ciφi for some coefficients c1, . . . , cm . Explicitly,

f(t | c) := exp

(
m∑
i=1

ciφi(t) −A(c)

)
.

This has the same form as a member of the exponential family. In this
form, the map pdf estimation problem suggested by Griebel and Hegland [4]
is equivalent to solving a maximum likelihood problem with a regularising
term ‖u‖2H . We interpret the basis functions φi as the sufficient statistics.
This is a statistical interpretation of the algorithm.

Since we are minimising over Rm, we apply standard minimisation techniques.
We find that using Newton’s method recovers the same algorithm as the map
algorithm.
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2.1 Solving the finite dimensional problem

Consider a finite dimensional subspace Vh ⊂ H with basis functionsφ1, . . . ,φm .
Finding argmin j(v) on Vh is rephrased as finding c1, . . . , cm such that
j (
∑m

i=1 ciφi) is minimal. The minimum uh = argminv∈Vh j(v) is uniquely
characterised by a zero derivative on Vh [4].

Proposition 1. If φ1, . . . ,φm are basis functions of Vh and if ucn :=
∑m

i=1 ciφi ,
then the coefficients c1, . . . , cm which minimise

j(ucn) :=
1

2
‖ucn‖2H + log

∫
eu

c
n dµ−

1

n

n∑
j=1

ucn(tj)

are the solutions of
m∑
j=1

cj(φj,φi)H + Ec{φi}−
1

n

n∑
j=1

φi(tj) = 0 for all i = 1, . . . ,m . (1)

Proof: We define J : Rm → R by

J(c1, . . . , cm) := j

(
m∑
i=1

ciφi

)
,

and differentiate J with respect to ci to obtain ∇J(c) . We then set ∇J(c) = 0
for equation (1). The derivative is straightforward except for the log partition
term. For this we use the identity

∂A

∂ci

∣∣∣∣
c
= Ec{φi} .

♠

To find the roots of equation (1) we apply Newton’s method. In applying
Newton’s method we rely on the following proposition.
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Proposition 2. Fix φ1, . . . ,φm and c. Denote ucn =
∑m

i=1 ciφi . The Jaco-
bian matrix of the m-vector function F : Rm → Rm with entries

Fi(c) := (ucn,φi)H + Ec{φi}−
1

n

n∑
k=1

φi(tk) i = 1, . . . ,

is DF(c) with elements

DFi,j(c) := (φi,φj)H + covc{φi,φj} .

Proof: The derivative is straightforward. For the second term we apply the
identity

∂2A

∂ci∂cj

∣∣∣∣
c
=

∂

∂cj
Ec{φi} = covc{φi,φj} .

The third term vanishes since it does not depend on cj. This yields the
Jacobian DF(c). ♠

The algorithm starts with an initial vector c, determines a Newton step ∆c
using

DF(c)∆c = −F(c) ,

and updates c with
cupdate := c + λc∆c ,

for some λc . The scaling λc is the step size control which ensures convergence.
It is computed using the Armijo criterion described by Kelley [9].

The above discussion yields the algorithm needed to find u = argmin j(v) in
the space Vh . Using

f(t | u) =
eu∫
eu dµ

,

cov{v,w} = E{vw}− E{v}E{w} ,
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it is readily seen that our equations are identical to those derived through
abstract analysis by Griebel and Hegland [4]. Our results give an alternative
interpretation of their algorithm—it is simply solving a regularised maximum
likelihood problem using Newton’s method.

3 Numerical experience with the combination
technique

In this section we are concerned with the ability of the sparse grid combination
technique to improve computational performance of the map algorithm,
compared to a direct full grid discretisation. The sparse grid discretisation
and its combination technique were introduced to deal with multi-dimensional
problems [13, 5]. After a brief overview of the technique, we discuss our
experience. More detailed discussions are available elsewhere [3, 5].

3.1 The sparse grid combination technique

Let (l1, . . . , ld) denote the resolution levels of a uniform grid so, for exam-
ple, (2, 4) denotes a 22 × 24 grid with (22 + 1)× (24 + 1) nodes. In solving a
numerical problem, we can only approximate the true (infinite dimensional)
solution u ∈ H using finite dimensional discretisation. The finer one dis-
cretises, the more satisfactorily one may be able to approximate the true
solution. In this context one would prefer, say, the solution on a grid defined
by resolutions (6, 6) rather than (5, 3) . This reasoning breaks down in high
dimensional situations. Computing the solution on the grid (8, 8, 8, 8, 8) may
no longer be as desirable as on, say, (2, 3, 3, 2, 1) , because the computational
resources needed to handle the finer grid becomes exorbitant. As a rule, we
are limited to solving problems on grids such as (2, 3, 3, 2, 1) and other low
resolution grids such as (2, 6, 1, 1, 1) .
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Can we construct a better approximation through a linear combination of
lower resolution solutions? That is, for a desired resolution level n in all
dimensions, can we find lower resolution solutions u1, . . . ,um and combine
them to obtain a new solution ucn :=

∑m
i=1 ciui ?

For example, the user specifies a desired level, say n = 3 , and the combination
technique defines a set of component grids and their corresponding coefficients.
For n = 3 in two dimensions, the combination technique specifies levels (3, 1) ,
(2, 2) , (1, 3) , (2, 1) and (1, 2) with coefficients 1, 1, 1,−1,−1 (see Figure 1).
We solve the problem on these grids, obtain solutions u1, . . . ,u5 , and combine
them for a better solution

uc3 := u1 + u2 + u3 − u4 − u5 =

5∑
i=1

ciui .

The combination scheme, illustrated by Figure 1, approximates the more
expensive full grid solution (3, 3), indicated by F in the figure. This is the
classical combination technique.

If ui,j is the solution on the grid (i, j), then the formula for the two dimensional
combined solution with level n is

ucn :=
∑

i+j=n+1

ui,j −
∑
i+j=n

ui,j . (2)

The grid scheme and the coefficients are defined by the inclusion/exclusion
principle [6]. Diagrams illustrating this concept are presented elsewhere [5, 3].

The degrees of freedom of the d-dimensional combined solution are O(nd−12n) ,
compared to O(2nd) for the full grid solution. The component solutions are
calculated independently. Therefore, the combination technique allows a cheap
and fully parallel way of approximating the full grid solution using component
solutions. Although error analysis was derived for some problems [11, 1, 5],
the effectiveness of the technique is not yet fully understood—it often works
but there are times when it does not.
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Figure 1: A combination technique illustrated in the grid of grids—the ijth cell
corresponds to a grid with discretisation (i, j).

3.2 Experimental results

We are interested in the effectiveness of the combination technique in approx-
imating a full grid solution when applied to our pdf estimation algorithm.
For this reason we measure the relative error using

e(ucn) :=
j(ucn) − j(un,n)

j(un,n)
,

where un,n denotes a solution solved on the full grid (n,n) . This measures
how much the combined solution differs from the full grid solution.

For our experiments, we used a desktop computer with two i5 Intel Cores
at 2.5GHz, coupled with 8GB of ram. For the combination technique we
exploit the inherent parallelisms and use all four threads.
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Table 1: Two dimensional bimodal dataset with the combination technique
functional j(u) % error e(u)

level full component combisol component combisol
2 −1.3012 −1.0601 −1.2936 19 0.58
3 −1.3836 −1.3012 −1.3749 6.0 0.62
4 −1.3941 −1.3434 −1.3850 3.6 0.65
5 −1.4026 −1.3836 −1.3953 1.4 0.51
6 −1.4132 −1.3888 −1.4057 1.7 0.52

3.2.1 Two dimensional Gaussian dataset

The first dataset is a two dimensional bimodal dataset. Five thousand
points are sampled from two interposed Gaussians with different means. The
‘component’ column, in Table 1 under ‘functional j(u)’, contains the best
component solution calculated for the combination technique. The ‘combisol’
column contains the combination technique solution, that is, the solution
obtained by combining the component solutions.

From Table 1, we see the combination of the component solutions is between
three and thirty times better than even the best component solution. Moreover,
the combined solution approximates the full grid solution very well. From
Table 2 we see the combination technique led to a huge saving in computational
time which grew exponentially with level. The results speak strongly in favour
of the combination technique. In the next subsection we push the technique
even further.

3.2.2 Three dimensional correlated dataset

In the three dimensional case, we sample fifty thousand points from a three
dimensional, highly correlated dataset. The results from the combination
technique are presented in Table 3. In this case, the combination technique is



3 Numerical experience with the combination technique C518

Table 2: Two dimensional bimodal dataset with the combination technique
time (milliseconds)

level full combisol
2 0.92 0.68
3 5.2 1.7
4 32 5.3
5 320 17

6 16000 60

Table 3: Three dimensional dataset using the combination technique
functional j(u) % error e(u)

level full component combisol component combisol
2 −3.1282 −2.7001 −2.7253 14 13

3 −3.9000 −2.9208 −2.9048 25 26

4 −4.1674 −3.1318 −3.4801 25 16

5 −4.2391 −3.4038 −3.6490 20 13

not so successful, especially for the level three case—combining the solutions
actually reduced the accuracy.

3.3 The opticom method

The ‘opticom’ method was proposed to improve the combination technique
by choosing optimal coefficients depending on the problem [8]. It was used
effectively where the combination technique failed [2].

In our context, we choose a combination of component solutions which
minimises j(u) . In other words, after finding component solutions u1, . . . ,um ,
we find argminv∈Vc j(v) where

Vc := span{u1, . . . ,um} .
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Table 4: Three dimensional dataset using opticom
functional j(u) % error e(u)

level full component opticom component opticom
2 −3.1282 −2.7253 −2.8991 13 7.3
3 −3.9000 −2.9048 −3.2974 26 5.5
4 −4.1674 −3.4801 −3.6411 16 13

5 −4.2391 −3.6490 −3.8898 13 8.2

This problem is exactly the same as the finite dimensional minimisation
problem already discussed, only with the basis φi replaced by ui. The
implementation of this problem therefore makes use of much of the existing
code and framework. One uses an object-oriented approach, then the class
structures are almost identical. Moreover, the new system to be solved is
relatively small in size.

3.3.1 Three dimensional dataset with opticom

We now apply opticom to the three dimensional dataset. From Table 4, as
predicted by the theory, opticom always leads to an improvement over the
combined solution. Most significantly, it corrected the level three combined
solution. This is consistent with the existing results for opticom [2]. Moreover,
since we are choosing optimal coefficients to minimise j(u) , opticom is a way
of getting the most out of the combination technique by performing a small
calculation, after calculating all components, to find the best coefficients.

From Table 5 we see that opticom is initially slower than the full grid
discretisation. It grows at a rate similar to the combination technique and for
large levels the time taken for opticom is negligible compared to a full grid
discretisation. The cost of opticom is mostly spent on the quadrature for eu .
Tackling the quadrature is still a subject of research.
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Table 5: Three dimensional dataset using opticom
time (milliseconds)

level full combisol opticom
2 26 9.1 300

3 720 46 1500

4 48000 160 3500

5 3200000 640 12000

4 Conclusion and outlook

We examined the map algorithm for density estimation. We provided a
statistical interpretation of the algorithm in terms of regularised maximum
likelihood for the exponential family. It is a very general method and makes
few assumptions about the underlying distributions. The algorithm is at most
linearly affected by the size of the dataset, making the algorithm feasible for
the huge datasets in modern applications.

Our numerical results suggest the applicability of the combination technique to
the map algorithm. The main advantage of the combination technique is the
saving of computational resources and an added level of parallelism. We were
able to further improve the combination technique by the opticom modification.
Using opticom, we obtained the best combination of the component solutions.
At present, the theoretical conditions for the effectiveness of the combination
technique are not well understood. There is a need to investigate the exact
conditions for the method’s effectiveness.

We were limited to two and three dimensions because the quadrature of eu
becomes unmanageable in higher dimensions. Using the Clenshaw–Curtis rule,
we found that a resolution level of 13 was necessary for a desirable accuracy.
Addressing the quadrature is still a matter open for research. However, we
are optimistic about applying the combination technique and opticom with
the map algorithm for large scale data mining once the quadrature has been
tackled.
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