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ABSTRACT 

 
In this paper, the theoretical framework of maximum a 
posteriori linear regression (MAPLR) based variance 
adaptation for continuous density HMMs is described. In 
our approach, a class of informative prior distribution for 
MAPLR based variance adaptation is identified, from 
which the close form solution of MAPLR based variance 
adaptation is obtained under its EM formulation. Effects 
of the proposed prior distribution in MAPLR based 
variance adaptation are characterized and compared with 
conventional maximum likelihood linear regression 
(MLLR) based variance adaptation. These findings 
provide a consistent Bayesian theoretical framework to 
incorporate prior knowledge in linear regression based 
variance adaptation. Experiments on large vocabulary 
speech recognition tasks were performed. The 
experimental results indicate that significant performance 
gain over the MLLR based variance adaptation can be 
obtained based on the proposed approach. 
 

1. INTRODUCTION 
 
Acoustic model adaptation is critical for speech 
recognition under mismatched or adverse ambient 
conditions. Unlike the regular model training, model 
adaptation is typically based on a small amount of training 
data and efficient adaptation methods often utilizes the 
structure of the model to share the adaptation information 
across similar model units. In particular, the linear 
transformation based model adaptation has become 
increasingly popular. In maximum likelihood linear 
regression (MLLR) based approach [1,2,3], a group of 
linear transformation matrices is estimated based on the 
principle of maximizing the likelihood on the adaptation 
data. 

It is known that maximum likelihood estimation is a 
data driven parameter estimation method. When 
adaptation data is sparse, maximum likelihood estimation 
can lead to biased estimates. This is because the small 
amount of adaptation data may not be a good 

representation of the actual data distribution. Maximum a 
posteriori (MAP) based adaptation is a powerful 
approach. In MAP estimation, an appropriate prior 
distribution is used to incorporate prior knowledge into the 
model parameter estimation process, such that  
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where the prior distribution g(Λ) characterizes the 
distribution  of the model parameter set Λ. The relation 
between ML and MAP estimation is through the Bayes' 
theorem where the posterior distribution 

)()|()|( ΛΛ∝Λ gXfXp , and f ( X | Λ ) is the likelihood 

function. In linear regression based model adaptation, the 
prior distribution g(Λ) is a matrix variate distribution. It 
describes the distribution of the matrix Λ, which is 
assumed to be random.  One of the advances in MAP 
based acoustic model adaptation is the maximum a 
posteriori linear regression (MAPLR) based mean vector 
adaptation [4,5], in which the linear transforms for mean 
vector adaptation are estimated based on the principle of 
MAP.  

Variance adaptation is a challenging problem   when 
the amount of training data is sparse. This is because 
variance is a second order statistics and often exhibits 
large variations . In  [3], the MLLR based adaptation 
framework is extended to variance adaptation of 
continuous density HMMs. Although the use of linear 
regression in variance adaptation leads to an efficient use 
of the available training data, the problem of the biased 
estimation, related to data sparsity in maximum likelihood 
estimation, is even more acute than the situation in mean 
vector adaptation.  This makes the need to incorporate 
prior knowledge in variance adaptation even more 
important. It should be pointed out that MAPLR variance 
adaptation is to estimate values of a special transform 
matrix, which does not even belong to the original HMM 
structure. Second, it is based on a structured parameter 
clustering, and the same transform matrix is used to adapt 
all variance parameters in the cluster.  



In this paper, we develop the MAPLR based variance 
adaptation framework, and show that under a class of 
informative priors, MAPLR based variance adaptation has 
a close form solution under its EM formulation. From this 
close form solution, the effects of prior distribution in 
MAPLR based variance adaptation are characterized.  We 
compare MAPLR based variance adaptation with MLLR 
based approach, and significant performance advantages 
are observed. 
The novel contributions of this paper are: 

• The theoretic framework of MAPLR based variance 
adaptation is developed and a class of informative prior 
distribution is identified.  

• A close form solution of MAPLR for variance 
adaptation under the proposed prior is derived from its 
EM formulation.  It is the real root of a special 4-th 
order equation, and the existence of such a real root 
solution is proved. 

• Efficient prior distribution estimation methods are 
described based on the structured prior evolution under 
the empirical Bayes framework. 

• The effects of prior distribution in MAPLR are 
characterized and compared with the conventional 
MLLR solution. Experimental results are given, which 
indicate that significant performance gain can be 
obtained comparing to MLLR based variance 
adaptation. 

The organization of this paper is as follows. In section 
2, the MAPLR based variance adaptation is formulated 
and the close form solution to this problem is presented. 
Section 3 is on prior parameter estimation. Experimental 
results and comparison to MLLR are given in section 4, 
and a summary is given in section 5. 

 
2. MAPLR BASED VARIANCE ADAPTATION 

 
In continuous density HMMs with mixture Gaussian 
densities, the Gaussian component is characterized by its 
mean and covariance matrix and denoted generically as 
N(µn , Σn). The covariance matrix Σn is a positive definite 
matrix that can be represented in the following form 
(Choleski factorization): 
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In order to apply the linear regression in variance 
adaptation, a transformation matrix Hn is introduced and 
the adapted covariance matrix 

nΣ̂  is represented as 

follows: 
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T
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where Hn is the transformation matrix to be estimated from 
the adaptation data. In the special case where no 
adaptation is made, Hn is just an identity matrix. Normally, 
in order to maintain the diagonal positive definiteness of 
Σn, Hn is assumed to be a diagonal matrix with positive 
elements along the diagonal. Due to the sparseness of the 
adaptation data, Hn is often tied to a cluster of Gaussian 
components, and the same transform Hn will be applied to 
all Gaussian components in the cluster during the process 
of linear regression based variance adaptation. 

In MLLR based approach, for a Gaussian component 
cluster m, a linear transform matrix Hm is estimated based 
on the maximum likelihood principle [3], such that 
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where Om
k (k=1,…) are data frames aligned to the cluster 

m and λm is the set of model parameters associated to the 
cluster m. In the MAPLR based variance adaptation, the 
transformation matrix is estimated according to 
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where p(H) is the prior distribution of H. The use of prior 
distribution p(H) allows incorporating prior knowledge 
into the variance adaptation process through a consistent 
Bayesian statistical framework. The estimated 
transformation matrix Hm is a combination of the 
information derived from the data and the prior knowledge 
about the distribution of Hm. The use of prior makes the 
parameter estimation problem more complex. This is 
because MAP solution is strongly dependent on the form 
of prior distributions being used. Therefore, finding a class 
of informative and yet solvable prior distributions for 
MAPLR becomes crucial. 

In speech recognition, the covariance Σ of a  Gaussian 
component is typically a diagonal matrix of the form Σ = 
diag[σ1

2,…,σD
2], where B = diag[σ1,…,σD]. As in [3], in 

order to make the transformed variance Σ diagonal, we 
consider the linear regression matrix for MAPLR variance 
adaptation is of the form  Hm = diag[h1

2,…,hD
2], whose 

prior distribution is denoted by p(h), where h=[ h1,…,hD]T. 
Note  Hm is an artificial hyper-structure in MAPLR based 
variance adaptation, and it does not belong to  the original 
HMM structure. In our approach,  Hm is parameterized as 
the  square of another diagonal matrix diag[h1,…,hD], and 
the MAP estimation is performed on the transformed 
parameter space describing diag[h1,…,hD]. Otherwise, the 
prior distribution is only on the positive values that H can 
take (e.g. chi-square, etc.), and a close form solution 
becomes difficult. 

In order to solve Eq. (5), we consider the prior 
distribution p(h) is from the family of vector normal 
distribution with mean vector µh = [ µh(1),…,µh(D)]T and 
the variance Σh = [σh

2(1),…,σh
2(D)]T. Ignoring terms 



which are irrelevant to maximization, the EM equation for 
(5) has the following form: 
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where γt(n,m) is the probability of observing ot in state n 
and mixture m. By expanding (6) according to the feature 
vector dimension, we have 
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Multiplying both sides of (8) by –hi
3 and rearranging 

terms, it reduces to a 4-th order equation about hi of the 
following form: 
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Since A > 0 and D > 0, the left part of (9) will tend to 
positive infinity when hi → ∞, and tend to –D < 0 when hi 
→ 0. Therefore, (9) must have at least one positive real 
root, which is the close form solution of the MAPLR 
based variance adaptation under the EM formulation. It 
should be pointed out that although the general root 
formula does exist, the roots of a 4-th order equation can 
have two complex conjugate root pairs. The close form 
solution to the  MAPLR based variance adaptation hinges 
on whether there is always a real root. By proving that 
there must be a real root to (9), the close form solution to 
the MAPLR based variance adaptation is therefore 
established. 

It is noteworthy that, when a very loose prior 
distribution is applied so that σh

2(i) is very large, or data 
amount is very large so that C >> A, (9) will give a similar 
result as in maximum likelihood based approach; and on 
the other hand, when data amount is very small, or a very 
peaky prior distribution is selected, the root of (9) is tend 
to be around the prior mean µh(i). 

 
3. PRIOR HYPERPARAMETER ESTIMATION 

 
In MAPLR based approach, additional parameters are 

needed to describe the prior distribution. These additional 
parameters are called hyperparameters. In a strict Bayes 
approach, hyperparameters in the prior density is assumed 
known based on a common or subjective knowledge about 
the stochastic process. But in most cases, these 
hyperparameters cannot be derived from the subjective 
knowledge and alternative approaches are needed. One 
popular solution to adopt is based on empirical Bayes 
(EB) approach in which the prior parameters are also 
estimated from the data. However in EB approach, 
additional data points are often required.  

The prior estimation methods used in our approach for 
variance adaptation are based on combinations of the 
structural information of the model and the EB based 
estimation process. In MAPLR based variance adaptation, 
adaptation transforms are shared according to a tree 
structure, which is derived from the model units based on 
certain similarity measures.  This tree structure is used in 
our approach so that the prior estimation can be evolved 
from the tree. Prior evolution is an efficient prior 
estimation method. In this approach, the mode of the prior 
distribution at each tree node is taken to be the MAPLR 
solution of its predecessor node [5].  

We studied two methods of prior estimation for 
MAPLR based variance adaptation. The first method 
estimates a global transformation as the global prior mean 
and uses EB approach to estimate the variance vector of 
the prior distribution at each tree node using a lower 
sample count cut-offs. The second method is based on the 
prior evolution approach so that the mean vector of the 
prior distribution is evolved from the root of the tree to its 
leaves [5]. This is in addition to the EB based estimation 
of the variance vector of the prior distribution.  
 

4. EXPERIMENTS 
 
The speech recognition experiments were performed on 
the Wall Street Journal (WSJ) speaker adaptation task 
using the official 1993 Spoke 3 non-native speaker 
adaptation and evaluation data (ET_S3). The standard 5k-
trigram language model specified for the evaluation was 
used. The speech feature vector  is MFCC based with 
standard 39 dimensions (c, ∆c, ∆∆c, e,  ∆e, ∆∆e). There 
are 10 speakers in the database, with 40 adaptation 
sentences and 40~43 testing sentences for each speaker. 
The speaker independent model was trained on the 
standard speaker independent WSJ SI-84 portion of the 
training corpus. Crossword triphones were used and the 
baseline speaker independent model was obtained by using 
decision tree based state tying. In adaptation, the silence 
model was not adapted.  

To compare the adaptation results on variance 
adaptation, we performed two sets of experiments. One is 
the baseline using MLLR based mean adaptation and 
MLLR based variance adaptation. Table 1 tabulates the 



performance of MLLR based adaptation using 20 and 40 
adaptation sentences, respectively. As illustrated in the 
table, the MLLR based mean+variance adaptation only 
provides a slight performance improvement over the 
MLLR based mean adaptation. Its relative error rate 
reduction is around 1.9% ~ 2.0% with 20 and 40 
adaptation sentences.  

Table 2 illustrates the performance of MLLR based 
mean adaptation plus MAPLR based variance adaptation. 
The set of experiments in Table 2 differs from the set of 
experiments in Table 1 only at the variance adaptation 
where MAPLR variance adaptation was applied to replace 
the MLLR based approach. The relative word error rate 
reduction of MLLR based mean adaptation plus MAPLR 
based variance adaptation over MLLR based mean 
adaptation is between 3.0% ~ 4.4%. In all variance 
adaptation experiments, the sample count threshold of 
generating a transform matrix was set to 1000 and lower 
threshold of 200 was used to generate additional data 
points to estimate the variance of the prior distribution. 
However, because the estimated prior variance from the 
low sample count matrices tended to be too large and 

made the prior distribution too loose, a factor of 15
1  was 

multiplied to shrink the estimated prior variance. Prior 
variance was estimated if there are at least 10 lower count 
matrices. Otherwise, the variance of the prior at the parent 
node is used. 

 
TABLE I: WORD ERROR RATES OF MLLR BASED MODEL 
ADAPTATION METHODS (%) 

Adaptation 
Method 

20 adpt. 
utterances 

40 adpt. 
utterances 

MLLR mean   only 16.88 14.74 
MLLR mean + vari 16.55 14.45 

 
TABLE II: WORD ERROR RATES OF MLLR BASED AND 
MAPLR BASED MODEL ADAPTION METHODS (%) 

Adaptation 
Method 

20 adpt. 
utterances 

40 adpt. 
utterances 

MLLR mean   only 16.88 14.74 
MLLR-mean + MAPLR-vari (1) 16.37 14.09 

 

Table 3 tabulates the performance comparison of 
MLLR based mean adaptation plus MAPLR based 
variance adaptation using different prior distribution 
estimation methods described in the previous section. 
Compared with MLLR based variance adaptation, 
MAPLR based variance adaptation is more stable. We 
found experimentally that a global prior mean based prior 
hyperparameter estimation gave a better performance than 
the more data driven prior mean evolution method. This 
can be an indication that variance requires more data to 
estimate than the mean and even the prior evolution can be 
unreliable at the lower tree nodes. 

TABLE III: WORD ERROR RATES OF MLLR/MAPLR BASED 
MODEL ADAPTION WITH DIFFERENT PRIOR 
DISTRIBUTION ESTIMATION METHODS (%) 

Adaptation 
Method 

20 adpt. 
utterances 

40 adpt. 
utterances 

MLLR-mean + MAPLR-vari (1) 16.37 14.09 
MLLR-mean + MAPLR-vari (2) 16.43 14.31 

 
Although the absolute performance gain in variance 

adaptation, as observed by other experiments as well [3], 
is relative small, the proposed MAPLR variance 
adaptation almost doubled the gain of variance adaptation 
introduced by the MLLR approach  (1.9% ~ 2.0% vs. 
3.0% ~ 4.4%) in our experimental study. The close form 
solution derived from the selected priors makes the 
MAPLR based variance adaptation suitable for large 
vocabulary speech recognition tasks. 
 

5. SUMMARY 
 
The theoretical framework of MAPLR based variance 
adaptation for continuous density HMMs was presented. 
We showed that there exists a class of informative prior 
distribution, from which the MAPLR based variance 
adaptation has close form solution under its EM 
formulation. These findings provided a consistent 
Bayesian theoretical framework to incorporate prior  
knowledge in linear regression based variance adaptation. 
Our experimental results indicated that the proposed 
MAPLR based variance adaptation approach is suitable 
for large vocabulary speech recognition tasks, and 
significant performance gain over the MLLR based 
variance adaptation could be obtained.   
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