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In this work, we investigate a new paradigm for dock-less bike sharing. Recently, it has become essential to accommodate connected 
and free-floating bicycles in modern bike-sharing operations. �is change comes with an increase in the coordination cost, as bicycles 
are no longer checked in and out from bike-sharing stations that are fully equipped to handle the volume of requests; instead, bicycles 
can be checked in and out from virtually anywhere. In this paper, we propose a new framework for combining traditional bike 
stations with locations that can serve as free-floating bike-sharing stations. �e framework we propose here focuses on identifying 
highly centralized �-clubs (i.e., connected subgraphs of restricted diameter). �e restricted diameter reduces coordination costs 
as dock-less bicycles can only be found in specific locations. In addition, we use closeness centrality as this metric allows for quick 
access to dock-less bike sharing while, at the same time, optimizing the reach of service to bikers/customers. For the proposed 
problem, we first derive its computational complexity and show that it is NP-hard (by reduction from the 3-Satisfiability 
problem), and then provide an integer programming formulation. Due to its computational complexity, the problem cannot be 
solved exactly in a large-scale setting, as is such of an urban area. Hence, we provide a greedy heuristic approach that is shown to run 
in reasonable computational time. We also provide the presentation and analysis of a case study in two cities of the state of North 
Dakota: Casselton and Fargo. Our work concludes with the cost-benefit analysis of both models (docked vs. dockless) to suggest 
the potential advantages of the proposed model.

1. Introduction

Bike-sharing systems (BSSs) have become a prominent mode 
of transportation around the world, especially in urban areas. 
BSSs bring a number of advantages to existing transportation 
networks. Among them, we note the increased personal mobil-
ity, reduced transportation costs, reduced traffic congestion, 
decrease in use of and dependence in fossil fuel, increase in 
public transit visibility, enhancement of downtown areas along 
with the economic development that follows, health benefits, 
and increase in environmental awareness [1–3].

Since their introduction in Europe in the 1960s, BSSs have 
undergone a series of developments. �e most recent of these 
developments is referred to as the dock-less or free-floating BSS. 
In a dock-less BSS, residents that are interested in using a 
bicycle can check out and in bicycles throughout an urban 
area using nothing more than their smartphones. �e bicycles 

are equipped with a geographic positioning system (GPS), thus 
enabling users to locate the nearest available bicycle and to 
unlock it with the use of an app. Riders are then allowed to 
drop off (check back in) the bicycle anywhere within a geo-
graphic area (referred to as the geo-fenced area). Within that 
area, bicycles are allowed to be parked legally. �e trip ends 
as soon as the checked out bicycle is parked and securely 
locked anywhere in the geo-fenced area.

As is obvious from the description, dock-less or free-float-
ing bicycles offer enhanced convenience and improved acces-
sibility, which in turn translates to increased personal mobility, 
compared to conventional bike sharing. �e enhanced con-
venience stems from the fact that users no longer have to wait 
for a parking spot to become available in a bicycle dock so as 
to return their bicycle a�er the trip (especially in heavily traf-
ficked areas). However, as with many other technologies, 
dock-less BSSs also present new challenges. �e one we deal 
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with in this work is the fact that bicycles can now be le� unat-
tended in improper positions [4, 5]. Piles of bicycles from 
bike-sharing companies are increasingly becoming a public 
nuisance and they make the aesthetic environment of an urban 
area less enjoyable with clogged sidewalks that are rendered 
no longer walkable. Hence, a dock-less BSS development with-
out proper control and regulation mechnisms can result in 
blocked rights of way, increase in trash, vandalism, and other 
negatives.

�e framework we develop here aims to address this issue 
of control while at the same time advocating for dock-less bike 
sharing. We propose a framework that will both (i) allow users 
the increased benefits of a dock-less system (easy and fast 
access to bicycles, reduced parking space needs) and (ii) 
reduce the coordination costs for controlling the sprawl of the 
dock-less bike-sharing operations by restricting the size of the 
geo-fenced area.

Continuing with our motivation, a critical component to the 
success of every BSS is that users can check out a bicycle within 
convenient walking distances [6]. �is simple, yet powerful, 
principle guides BSSs to offer the right number of bikes in the 
right locations at the right time so as to accommodate daily com-
muting demands. In other words, station location and density 
are key factors in any BSS [7]. In the traditional dock-based sys-
tem, BSS operators are expected to rebalance bike inventory 
between different stations so as to meet (asymmetric) demands. 
As an example of such rebalancing operations, Chiariotti et al. 
proposed a dynamic model to address the fluctuations in 
demands of a BSS in New York City [8]. In a similar note, Wang 
et al. applied a data-driven approach for defining a safe rebal-
ancing range and provide rebalancing operators with the next 
targeted station and the number of bikes to move [9]. Rebalancing 
bicycle inventory imposes extra costs associated with human 
and physical capital on bike-sharing programs. �ese costs can 
grow to be considerable if the system is large. Moreover, the 
rebalancing problem is even more pronounced in dock-less BSSs 
because of unrestrained parking locations [10]. Finding the right 
locations for stations and rebalancing are correlative problems. 
According to the Department of Transportation, a dock-less 
program should be initiated where demand is highest and des-
ignated bike parking areas, referred to as bike hubs, should be 

used to maintain some order. �is policy would help mitigate 
the hodgepodge of problems that can result from adopting a 
dock-less system [11].

As our framework will optimize the reach of dock-less 
bike-sharing operations, while also restricting the size of the 
system, our model will also alleviate some of the problems 
involved with rebalancing. To further elaborate on our model, 
we offer Figure 1. On the right, we present a conventional dock-
based BSS. �e transportation network is presented with nodes 
and edges (representing streets), with the bicycle docks being 
noted with blue rectangular nodes: observe that docks are not 
necessarily located in nodes only, but can also be located along 
the edges of the network. On the other hand, the figure on the 
right shows our proposed framework. We now allow for a geo-
fenced area (represented by the shaded area) where users can 
check out and in bicycles from anywhere. �is allows for more 
people to have fast access to bicycles and reduces the need for 
docks within that area. Due to that, these docks could be moved 
to other areas, further than the geo-fenced area, to enable 
bike-sharing use to other residents. In addition to that, the area 
where bicycles can be dropped off anywhere is significantly 
decreased, making it easier for operators to find and collect 
bicycles so as to rebalance their inventory. Last, we note here 
that the shaded area of the network on the le� forms a 2-club 
(i.e., a subgraph of diameter equal to 2). 

We can summarize our contributions in the following 
three components:

(i)  First, we use the �-club concept, combined with 
closeness centrality, so as to identify candidate loca-
tions that could be geo-fenced. We also allow for a 
weight at each node of the network: this modification 
enhances the speed of the �-club formation through 
the heuristic algorithm devised.

(ii)  �en, we turn our attention to a real-world applica-
tion. We present an experimental study on the cities 
of Fargo and Casselton. In the study, we analyze the 
exact optimization model and the heuristic devised 
and compare them in computational time and solu-
tion obtained. In each �-club obtained for varying 
values of �, riders (commuters) are able to reach to 

(a) (b)

Figure 1: (a) Without �-club, (b) with �-club.
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any other neighboring sites within a fixed distance 
(controlled by �), implying that the virtual locations 
provide better accessibility to demand points.

(iii)  Last but not least, we present potential strategies for 
operators to further manage the inventory by apply-
ing incentives and making bicycle collection and 
rebalancing more cost-effective.

�e remainder of the paper is organized as follows: the next 
section reviews related literature on BSS design and discusses 
how those relate to the objectives of this work. �en, we provide 
the necessary mathematical background, provide the defini-
tions of all notation used, and derive the computational com-
plexity of the problem studied. �e next section illustrates the 
mathematical formulation that can be solved using a commer-
cial optimization solver and also proposes a greedy heuristic 
to solve it. In the following section, we discuss two computa-
tional experiments that reveal our findings in two real-world 
transportation networks: namely the smaller city of Casselton, 
ND, and the larger city of Fargo, ND. However, due to the size 
of the network in Fargo, we only test and present the results of 
the heuristic approach. �e last section of the paper is devoted 
to our conclusions and a brief overview of future plans.

2. Related Works

�ere is a plethora of studies on bike-sharing systems. �ese 
studies generally fall into three major areas:

(1)  General quantitative analysis;

(2)  Facility location problems;

(3)  Redistribution problems.

�e first body of literature focuses on the quantitative analysis 
of existing BSSs, analyzing their characteristics, and examining 
empirical evidence of usage patterns in cities including Dublin 
[12], Beijing [13], Montreal [14], Brisbane [15], Helsinki [16], 
Paris [17], Switzerland [18], and New York [19]. Nair et al. 
examine several aspects of the Velib BSS in Paris, France [17]. 
�eir findings show that integrating transit and BSS can yield 
higher utilization. Bachand-Marleau et al. surveyed residents 
of Montréal, Quebec, in Canada to determine the factors lead-
ing to use BSS as well as the frequency of use [14]. Campbell 
and Brakewood quantify the impact that BSSs have on bus 
ridership in New York City [19]. �ey conclude that either 
bike-sharing members substitute bike sharing for bus trips or 
the implemented BSS led to travel behavior changes of non-
members. Audikana et al. studied the impact of a BSS in a 
small city (less than 100,000 residents) in Switzerland [18]. 
�ey suggested that BSS network density along with the devel-
oped partnerships play a critical role in its success.

�e second stream of literature focuses on the strategic 
design of BSS where the ultimate goal is to find the locations, 
capacity, and coverage areas of BSSs [20]. �ese studies try to 
determine the number and location of stations, fleet size, and 
network structure of the underlying BSSs. �ey consider various 
objectives, including the maximization of demand coverage, the 
minimization of transportation cost, and the minimization of 

the overall cost. Lin et al. address the strategic design problem 
by formulating it as a hub location inventory model [21]. In their 
work, they consider both total costs (travel cost of users, bike 
inventory costs, facility costs) and service level (bicycle lanes) in 
their model. �e authors then propose a heuristic method to 
find high-quality solutions. In a similar study, Lin and Yang pro-
pose a nonlinear integer method to determine the optimal loca-
tion, bike lanes, and routes [22]. �eir model assumes a penalty 
for uncovered demand but does not consider relocation (rebal-
ancing) of bikes. Martinez et al. present a mixed integer linear 
program to maximize the net revenue by simultaneously opti-
mizing the locations of stations, the fleet size, and bike relocation 
activities for a regular operation day [23]. Nair and Miller-Hooks 
formulate an equilibrium network design model to address the 
same objective as the previous study [24]. �ey propose a meta-
heuristic solution approach to overcome the intractability of the 
exact solution for real-life, large-scale networks. In another study 
Reijsbergen identifies alternative locations with the aid of spatial 
data and simulation techniques: more specifically, a data-driven 
approach to determine how attractive city areas are for station 
placement is presented [25]. �e literature offers other method-
ologies, that are not based on facility location models, to define 
the location of the stations. Garcia-Palomares et al. develop a 
GIS-based model to calculate the spatial distribution of the 
potential demand for trips and find the locations of bike stations 
using the location-allocation modeling approach [26].

Finally, a third group of the literature is associated with the 
relocation of bicycles in a BSS. �e problem arises from demand 
imbalance leading to accumulation of bicycles at some stations 
(and consequently, limited bicycle availability in other stations). 
Vogel and Mettfeld apply a system dynamic method to model 
the effect of dynamic repositioning on the service level [27]. Shu 
et al. develop a stochastic network flow model with proportion-
ality constraints to determine bike flow in a bike-sharing net-
work. �ey also present a numerical analysis on the Singapore 
BSS and find that period distribution is the most effective for 
system performance [28]. Forma et al. develop a 3-step heuristic 
and mixed integer linear programming model for repositioning 
[29]. �e first step involves clustering the stations based on geo-
graphic location and inventory levels using a heuristic method. 
In the second and third steps, they employ a mixed integer linear 
program to find the best routes for repositioning vehicles. 
Alvarez-Valdes et al. address the static repositioning problem 
using simulation techniques in two stages [30]. In the first stage, 
they estimate the levels of unsatisfied demand for a set of stations 
in a given period. In the second stage, they use the estimation as 
an input to their redistribution algorithm. Schuijbroek et al. 
combine service level requirements and vehicle routes to rebal-
ance the inventory [31]. �ey propose a “cluster-first route- 
second” heuristic considering the service level feasibility and 
approximate routing costs simultaneously. Yan et al. develop four 
planning models for leisure-based BSSs given deterministic and 
stochastic demands [32]. �ey apply nonlinear time-space net-
work models to integrate bike repositioning and vehicle routing 
with user dissatisfaction estimations. In a recent study, Celebi et 
al. propose a hybrid approach jointly considering location deci-
sions and capacity allocation [33]. �eir goal is to find the opti-
mal configurations of a BSS by combining set-covering and 
queuing models to determine service levels.
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Most of the previous work that addresses physical bike station 
location problems illustrates problems including station 
capacity decisions and demand predictions, among others. To 
the best of our knowledge, this paper is the first to suggest a 
solution to problems that have arisen from the emergence of 
dock-less bike-sharing systems with the aid of a �-club. �e 
ultimate goal is to locate potential hubs in a city, referred to 
as �-clubs, by geo-fencing a suitably small area of a city.

3. Definitions and Notation

Let �퐺(�푉, �퐸) be an undirected network, with � symbolizing the 
vertices (intersections of the transportation/biking network) 
and � the edges (streets in the transportation/biking network). 
Every node is assumed to be assigned a nonnegative parameter, 
�푤� ≥ 0, referred to as the weight at this specific location. �is 
weight parameter can be used to capture different aspects of 
the problem at hand, depending on the application. For exam-
ple, the weight of a node could capture socio-economic attrib-
utes like population, points of interests in the vicinity, number 
of jobs, etc. Another possible way to model and use the weight 
parameter is through the interactions between different pairs 
of origin and destination, like traffic flows (outgoing traffic 
from an origin node, incoming traffic to a destination node, 
or simply a summation of outgoing and incoming traffic to a 
specific node). In either way, we assume a distinct, nonnegative 
number explaining the level of attraction for that node.

We say that (�푖, �푗) ∈ �퐸 if there exists an edge starting from 
node � and ending in node �, in which case we write that �푎�� = 1.  
We also denote with �푁(�푖) = {�푗 ∈ �푉 : �푎�� = 1} the open neigh-
borhood of node �. We write that the diameter of graph � is 
� if the maximum shortest path distance between two nodes 
in the graph is �. Clearly, all pairs of nodes in the graph will 
be located at a distance ℓ from one another with 0 ≤ ℓ ≤ �퐷. 
Let ��� be the distance between two nodes � and �, and 
�푑�푆�푗 = min�푖∈�푆{�푑�푖�푗} as the distance of a node � to a set of nodes 
�. �en, for any set of nodes �푆 ⊆ �푉, we define a function 
�푓 : �푉 �㨃→ R, as

Last, we use P� to denote all paths of length less than or equal 
to �. Similarly, P��� is the set of all paths of length at most � 
connecting two nodes � and � (�푖 ̸= �푗). Clearly, we have that 
P
�푘 = ⋃�푖,�푗∈�푉:�푖 ̸=�푗P�푘�푖�푗.

�e decision version of the problem we are trying to solve 
is provided in Definition 2. Before that, we need to provide 
the definition of a �-club.

Definition 1. A set of nodes �푆 ⊆ �푉 is said to form a �-club if 
the subgraph induced by �, �퐺[�푆], has a diameter �퐷 ≤ �푘.

Definition 2. Given a graph �퐺(�푉, �퐸) with a nonnegative 
weight w : �푉 �㨃→ R assigned to every node, an integer number 
�, and a real number ℓ, does there exist a �-club �푆 ⊆ �푉 such 
that �푓(�푆) ≤ ℓ?

Detecting a �-club of maximum cardinality is a well-
known NP-hard problem [34, 43]. Hence, it is expected that 

(1)�푓(�푆) = ∑
�푖∈�푉
�푤�푖�푑�푆�푖.

One of the gaps in the current state-of-the-art is that most 
focus only on either user accessibility or rebalancing strategies 
to manage supply and demand within an urban area. As 
described in the Introduction section, our contribution is to 
fill exactly that gap and propose a framework that allows for 
both high accessibility for the users and reliable and cost effec-
tive rebalancing and coordination for BSS operators. Our 
proposed model relies on the definition of a �-club from graph 
theory, whose definition and related literature is offered in the 
next paragraphs.

Given a simple undirected graph, a �-club is a subset of 
vertices inducing a subgraph of diameter at most �. �ese 
structures represent cohesive subgroups in social network 
analysis with common applications in network-based data 
mining and clustering. Several authors have discussed math-
ematical formulations for identifying �-clubs of maximum 
cardinality, as well as various methods to locate �-clubs within 
a network [34–36]. In addition to using �-clubs, our work also 
focuses on the centrality of a group of a specific structure. 
Group centrality, introduced by Everett and Borgatti, aims to 
identify groups or classes of high centrality [37]. Centrality 
measures the aim to characterize the importance of an element 
in a network. �ey typically fall into three main classes [38], 
referred to as degree (i.e., the number of connections of a 
specific element in the network), closeness (i.e., how close an 
element is to every other element in the network), and 
betweenness centrality (i.e., how important an element is in 
the communications between any two other elements in the 
network, assuming all such communications take place using 
the shortest path between the elements).

More recently, researchers have focused on highest between-
ness groups [39]. Finally, another extension of identifying highly 
centralized groups has to do with the added restriction that the 
group induces a subgraph “motif ”, such as being a complete 
subgraph/clique [40, 41], or inducing a star [42].

In this paper, we propose an integer programming formu-
lation and a heuristic algorithm to find the most centralized 
�-club in a transportation network based on closeness central-
ity. �e resultant �-club consists of a set of nodes in which the 
maximum traversing distance is � hops (by definition), and 
the total weighted by population distance to a node in the �-
club is minimized (as it will be the �-club with maximum 
closeness centrality). Based on this result, a BSS operator could 
then enable the area covered by the �-club as the geo-fenced 
area where dock-less bike-sharing is allowed and satisfy the 
following objectives:

(1)  Maximize demand coverage (as the area obtained 
is the most centralized, with respect to closeness 
centrality);

(2)  Minimize distances traversed for rebalancing 
operations (as the geo-fenced area is of restricted 
diameter);

(3)  Offer a large, convenient geographical area for check-
ing in/out the available bikes without need for physi-
cal stations. As the success of a BSS heavily depends 
on the network of bike paths and bike stations in the 
community, this is an important objective facilitated 
by our framework.
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node corresponding to its complement), one chain can have 
at most �̄푘 ≤ �푘 − 1 nodes in � and the remaining chains can 
have at most �푘 − �̄푘, where 1 ≤ �̄푘 ≤ ⌈�푘/2⌉. Now, at best, this 
literal can satisfy at most �푚 − 1 clauses (since by assumption 
there exists no satisfiable assignment) whereas the literal that 
satisfies the remaining clause is located within a distance of 
�푘 − �̄푘 from �. Hence, we have:

�is contradicts the assumption that � is a �-club with 
�푓(�푆) ≤ �푚 ⋅ �푀.

Case 2.   Let �푢� ∈ �푉� be the clause-node in �. Since we have a 
3sat instance, �� has exactly 3 chains around it, and contains 
at most �̄푘 ≤ �푘 nodes from one chain with the remaining 
chains having at most �푘 − �̄푘 nodes in �. �e three literal-
nodes connected through the chains to clause-node �� can 
satisfy at most �푚 − 2 other clauses (apart from �). Hence, at 
best, we have:

By assumption, though, we have that �푓(�푆) ≤ �푚 ⋅ �푀, which, 
combined with inequality (3), leads to:

which is a contradiction.

Case 3.   A similar contradiction to Case 2 is obtained when 
�-club � consists only of nodes in ��푐×ℓ. Let the �-club be at 
a distance of �̄푘 from the clause-node �� and at a distance of 
�푀− �푘 − �̄푘 from the literal-node �ℓ of that chain. We then 
have one clause at a distance of �̄푘, at most �푚 − 2 clauses (as, 
otherwise, literal ℓ satisfies all clauses, a contradiction) at a 
distance of �푀− �푘 − �̄푘 +�푀, and at least 1 clause at a distance 
of, at best, �푀− �푘 − �̄푘 + �푘 +�푀, leading to:

�is leads to the same contradiction as in Case 2.

Case 4.   Finally, in the last case, the �-club � is built so as to 
contain a series of nodes corresponding to literals. At best, 
those literals satisfy �푚 − 1 clauses (as, again, the 3sat instance 
is assumed to be without a solution). Hence, we have that:

�is last contradiction finishes the proof. ☐

(2)�푓(�푆) ≥ (�푚 − 1) ⋅ �푀 +�푀 + �̄푘 = �푚 ⋅ �푀 + �̄푘 > �푚 ⋅ �푀.

(3)

�푓(�푆) ≥ (�푚 − 2) ⋅ (�푀 − �푘 +�푀) + (�푀 − �푘 + �푘 +�푀)
≥ (�푚 − 2) ⋅ (�푀 − �푘 +�푀) + (�푀 − �푘 + �푘 +�푀)
= (�푚 − 2) ⋅ 2 ⋅ �푀 + 2 ⋅ �푀
= 2(�푚 − 1)�푀.

(�푀 >> �푘)

(4)2(�푚 − 1)�푀 ≤ �푚 ⋅ �푀 ⇒ �푚 ≤ 2,

(5)

�푓(�푆) ≥ �푘 + (�푚 − 2) ⋅ (�푀 − �푘 − �푘 +�푀)
+(�푀 − �푘 − �푘 + �푘 +�푀)
= (�푚 − 2) ⋅ (2 ⋅ �푀 − �푘 − �푘) + 2 ⋅ �푀
= (�푚 − 2) ⋅ 2 ⋅ �푀 + 2 ⋅ �푀
= 2(�푚 − 1)�푀.

(�푀 >> �푘)

(6)�푓(�푆) ≥ (�푚 − 1) ⋅ �푀 + (�푀 + �푘) = �푚 ⋅ �푀 + �푘 > �푚 ⋅ �푀.

our problem, as described in Definition 2 will also be shown 
to be NP-complete, rendering the optimization version  
NP-hard. �is is exactly what we show in �eorem 1. Before 
we do that, we define 3-Satisfiability(3sat), a famous  
NP-complete problem.

Definition 3 [3sat]. Given �푚 > 2 clauses �퐶1, �퐶2, . . . , �퐶�푚 
and � literals and their complements �푥1, �푥2, . . . , �푥�푛 and  
�̄푥1, �̄푥2, . . . , �̄푥�푛, does there exist an assignment such that a 
formula �퐶1 ∧ �퐶2 ∧ . . . ∧ �퐶�푚 in conjunctive normal form is 
true, when every clause consists of exactly 3 literals?

Theorem 1. �e decision version of our problem, as described 
in Definition 2, is NP-complete.

Proof. �e problem can be shown to be in NP, as both 
verifying that a subset � forms a �-club and that �푓(�푆) ≤ ℓ can 
be done in polynomial time.

Now consider an instance of 3sat with � clauses on � lit-
erals. We will reduce it to a version of our problem using the 
following gadget/transformation. First, create two nodes for 
every literal and its complement (�ℓ); we connect every node 
by a chain of �푘 − 1 nodes (�ℓ×ℓ) to every other node, but its 
complement (this forms edge set �ℓ). Moreover, create one node 
for every clause (��); connect each node in �� by a chain of 
�푀− 1 nodes (��×ℓ) to the literals that the corresponding clause 
consists of (��), where �푀 >> �푘. Finally, assume that all nodes 
in �� have a weight of 1, while all other nodes in �푉 \ �푉� have a 
weight of 0. We will show that the 3sat instance has a feasible 
assignment if and only if the constructed graph �퐺(�푉, �퐸) with 
�푉 = �푉ℓ ∪ �푉ℓ×ℓ ∪ �푉� ∪ �푉�×ℓ and �퐸 = �퐸ℓ ∪ �퐸� has a �-club �푆 ⊆ �푉 
such that �푓(�푆) ≤ �푚 ⋅ �푀. �e gadget is also shown in Figure 2.

Assume that the 3sat instance has a feasible assignment 
�. �en, it is easy to see that by construction, the nodes cor-
responding to the literals in � form a �-club (let them be �). 
Moreover, � satisfies all clauses, hence there exists at least one 
node in � that is at a distance of � from each node in ��. 
Hence, we have that �푓(�푆) ≤ �푚 ⋅ �푀.

For the other direction of the proof, assume there exists a 
�-club �푆 ⊆ �푉 such that �푓(�푆) ≤ �푚 ⋅ �푀; yet, there exists no fea-
sible assignment of literals to satisfy the 3sat instance. We 
distinguish between four cases:

(1)  � consists of exactly one node �푢ℓ ∈ �푉ℓ and nodes in 
�ℓ×ℓ in as many as all 2�푛 − 1 chains connecting them 
to all other literals (but its complement).

(2)  � consists of exactly one node �푢� ∈ �푉� and nodes in 
��×ℓ in as many as 3 chains connecting �� to the literals 
clause � contains.

(3)  � consists of only nodes in ��×ℓ in exactly one chain 
connecting a literal-node �푢ℓ ∈ �푉ℓ to a clause-node 
�푢� ∈ �푉�.

(4)  � consists of several nodes in �ℓ, along with the nodes 
in �ℓ×ℓ in all chains necessary to connect them within 
� hops.

Case 1.   Let �푢ℓ ∈ �푉ℓ be the literal-node in �. From the nodes 
in the chains connecting �ℓ to the other literals (but the 
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4.1. Formulation. We begin this section with the definition of 
our variables. We will use two sets of binary variables, defined 
as follows.

(7)

�푥ℓ� = { 1, if node �푖 ∈ �푉 is at a distance of 0 ≤ ℓ ≤ �퐷 from the �푘 − club,
0, otherwise.

�푦� = { 1, if path�푝 ∈ P� is within the �푘 − club,
0, otherwise.

4. Mathematical Formulation

In this section, we present our mathematical formulation 
and a greedy heuristic algorithm to solve larger scale 
instances. We also present some computational results on 
generated and real-life instances for smaller �-clubs  
(�푘 = 2, 3).
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Figure 2: An example of the gadget used to reduce an instance of 3sat to our problem to an instance of our problem with �푘 = 3. For simplicity, 
we only show one clause, �퐶1 = �푥1 ∨ �̄푥2 ∨ �̄푥4. �e other clauses would be similarly connected to the nodes-literals of �ℓ through a chain of 
�푀− 1 nodes.
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where �� and �� are the weight parameters (or, importance) of 
the origin and destination locations and ��� is (as defined ear-
lier) the distance between the origin � and destination �. In this 
work, we slightly change the interaction term in the numerator 
given in (9). Starting from some origin �, we are searching all 
adjacent (nearby) locations �푗 ∈ �푁(�푖) so as to add it to the �-club 
being built. Since the term w� is the same for all considered 
locations � (as (�푖, �푗) ∈ �퐸), we drop it from consideration and 
hence are le� with a ratio of the importance of candidate loca-
tion � (given in the weight parameter ��) versus the distance.

�e algorithm is initialized with all nodes in the nodeset 
� being in the candidate list, I , and the starting �-club, �, is 
empty. �en, for every node in the candidate list, we “add” it 
in � and calculate the shortest paths �� from every node � to 
any node inside �. �en, the ratio becomes the summation of 
fractions w�/2��. �e node with maximum ratio is indeed added 
in �, and the candidate list is updated with only neighboring 
nodes that satisfy the �-club criterion. A pictorial example, and 
its calculations are provided in Example 1.

Example 1. Assume that we have the graph of Figure 3 with 
weights �푤1 = �푤2 = �푤6 = �푤7 = 5, �푤3 = �푤4 = �푤5 = 10, and we 
are looking for a 2-club. Initially, I  contains all 7 nodes and 
� is empty.  

Starting from node 1, we see that it is located at a distance 
of 0 from itself, a distance of 1 from nodes 2 and 3, a distance 
of 2 from node 4, a distance of 3 from node 5, and a distance 
of 4 from nodes 6 and 7. Hence, we have that �푟1 = 5/20+
5/21 + 10/21 + 10/22 + 10/23 + 5/24 + 5/24 = 16.875. In the 
example, it is easy to see that exactly the same is true for nodes 
2, 6, and 7.

Similarly, for nodes 3 and 5, we have �푟3 = �푟5 = 10/20+
10/21 + 5/21 + 5/21 + 10/22 + 5/23 + 5/23 = 23.75. Finally, for 

We can now proceed to describe the mathematical formula-
tion, shown in (7). It is based on the maximum �-club chain 
formulation presented in [34]. Newer formulations for iden-
tifying �-clubs (as in, e.g., [44]) can also be employed, but are 
not explored here.

�e objective function in (8a) aims to minimize the total 
weighted distance every node outside the �-club needs to trav-
erse until it accesses a node in the �-club. �e constraint family 
in (8b) restricts that a path can only be within the �-club if 
every node that belongs to it belongs in the �-club. Constraints 
(8c) enforce that every node in the graph is at a distance 
0 ≤ �푑 ≤ �퐷 from a node in the �-club. �e following constraints, 
shown in (8d), recursively enforce that a node can be at a 
distance of ℓ + 1 from the �-club if it is neighboring a node 
that is located at a distance of ℓ itself. �e constraint family in 
(8e) restricts that two nodes can not both belong in the �-club 
unless there exists at least one path connecting them within � 
hops or less that is in the �-club. Finally, the binary nature of 
all variables involved is enforced with (8f) and (8g).

4.2. Greedy Heuristic. �e above formulation is difficult to 
solve, as the underlying problem was shown to be NP-hard 
(with a decision version being NP-complete per �eorem 1). 
Hence, along with solving the formulation using a commercial 
solver, we also devise a practical heuristic. In our case, we 
opted for a greedy heuristic that always chooses to increase the 
�-club at hand by choosing a node with a maximum weight-to-
distance ratio: that is, if a node is located near many nodes with 
big weights, it is more prone to being selected. �is approach 
is shown in Algorithm 1.

�e backbone of the heuristic method is the spatial inter-
action model known as the gravity model (as it is similar to 
Newton’s law of gravity). Its basic formula is as follows:

(8a)min∑
�푖∈�푉

�퐷
∑
ℓ=0
ℓ ⋅ w�푖 ⋅ �푥ℓ�푖 ,

(8b)�푠.�푡. �푥0�푖 ≤ �푦�푝, ∀�푖 ∈ �푝,∀�푝 ∈ P�푘,

(8c)

�퐷
∑
ℓ=0
�푥ℓ�푖 = 1, ∀�푖 ∈ �푉,

(8d)
�푥ℓ+1�푖 ≤ ∑

�푗∈�푁(�푖)
�푥ℓ�푗 , ∀�푖 ∈ �푉, 0 ≤ ℓ ≤ �퐷 − 1,

(8e)
�푥0�푖 + �푥0�푗 ≤ 1 + ∑

�푝∈P���

�푦�푝, ∀�푖, �푗 ∈ �푉 : �푖 ̸= �푗,

(8f)�푥ℓ� ∈ {0, 1}, ∀�푖 ∈ �푉, 0 ≤ ℓ ≤ �퐷,

(8g)�푦� ∈ {0, 1}, ∀�푝 ∈ P�.

(9)�푇�� =
�푤� ∗ �푤�
2��
,

 1 function Greedy_Central_k-club (k);

   Input : A graph �퐺(�푉, �퐸), weights w : �푉 �㨃→ R

   Output: A k-club

 2 I← �;

 3 �← ⊘;
 4 while |I| > 0 do
 5    forall � ∈ I  do

 6       forall � ∈ � do

 7             ��푗 = min
�푘∈�푆⋃ {�푖}
��푗�푘

 8          end

 9               �푟�푖 = ∑
�푗∈�푉

w�

2��푗;

 10         end

 11         �← arg max
�∈I
{��};

12         �푆 ← �푆⋃{�푖};
 13         I← (�푗 ∈ �푁(�푆) : �푑�� ≤ �푘,∀�푖 ∈ �푆);  
 14 end  

 15 return �

Algorithm 1: Greedy Central k-Club.
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of nodes increases, the growth rate is much slower for the 
heuristic algorithm. �is is verified by Table 1 for identifying 
highly central 2 and 3-clubs. Note that, with the exception of 
the Berlin graph, the heuristic approach shows a speedup that 
is on average 3 and 7 times faster than the exact optimization 
model for �푘 = 2 and �푘 = 3, respectively. �e case of the Berlin 
network is very important. In this transportation network, the 
exact optimization fails to find a solution within reasonable 
computational time, and instead spends hours trying to prove 
optimality. �is happens because the diameter of the graph is 
big, and the number of binary variables in model (6) becomes 
prohibitively large.

6. Case Study

In this section, we investigate two case studies from the state 
of North Dakota, in the cities of Fargo and Casselton. Case 
studies and real-world visualization are necessary to put the 
problem in its related context and understand its implications. 
However, due to the computational complexity of our prob-
lem, reaching a solution within reasonable computing time is 
challenging. Hence, the exact optimization model of (6) was 
only solved on the (smaller) city of Casselton, whereas in the 
(larger) city of Fargo, we only present the results of the heu-
ristic (as in Algorithm 1).

6.1. Data Description. Casselton is a city in the state of North 
Dakota, with a population of 2,329 in the 2010 census. To the 
best our knowledge, there is no bike-sharing program planned 
for deployment in the near future. Figure 4 illustrates the 
overall geography of the city and the population distribution 
in proportionally graduated circles.

�e network for the city of Casselton was built with 
TIGER/Line® road data and block population with ArcGIS 5.0. 
All roads were converted to sets of vertices and edges repre-
senting intersections and road segments, respectively. �ere 
are |�푉| = 400 vertices and |�퐸| = 523 edges in the resulting 
graph. �e block population polygons are turned to point fea-
tures for weighing the graph vertices. According to a National 
Association of City Transportation Officials (NACT) report 
[6], to achieve an increase in ridership as well as in overall 
system utility, bike-sharing kiosks should be located no more 
than 1000 feet apart from one another. �erefore, every single 
vertex has the potential to become a dock-less bike station 
within 1000 feet. �en, each vertex is weighted based on the 
closeness to the population points.

For the city of Fargo, due to its size, only the greedy heu-
ristic of Algorithm 1 was put to the test. �e population in 
Fargo is 105,545. At the moment, a bike-sharing system is in 
place, with 11 stations in the locations shown in Figure 5 with 
a triangle. �e same figure also presents the geography of the 
city and the population in proportional circles. �e network 
for the city of Fargo is obtained in the same way as the one for 
Casselton. �e final graph contains |�푉| = 2989 vertices and 
|�퐸| = 4302 edges, which is indeed large-scale for the exact 
optimization solver.  

All codes for solving the problem, both for the exact opti-
mization model and the greedy heuristic were coded in 

node 4, we have that �푟4 = 10/20 + 10/21 + 10/21 + 5/22+
5/22 + 5/22 + 5/22 = 25. Hence, we update � to include 4 
(�푆 = {4}) and the candidate list to include all nodes in the open 
neighborhood of �, such that their distance to 4 is less than or 
equal to �푘 = 2. (I = {3, 5}). We are now ready to start the 
second iteration.

For node 3 we now have the following distances from � to 
�푆 ∪ {3}: nodes 1 and 2 are located one hop away, nodes 3 and 
4 are zero hops away, node 5 is also one hop away, and nodes 
6 and 7 are two hops away. Hence, we have that 
�푟3 = 10/20 + 10/20 + 5/21 + 5/21 + 10/21 + 5/22 + 5/22 = 32.5. 
�e key realization here is that the distances are no longer 
between the candidate node and every other node in the graph, 
but instead between � including the candidate node and every 
other node in the graph. We also note that node 5 will have 
exactly the same ratio, by construction of the example. Let us 
add node 3 to � (hence, �푆 = {3, 4}), and I = {1, 2, 5}.

For the third iteration, we have: �푟1 = �푟2 = 5/20 + 5/21+
10/20 + 10/20 + 10/21 + 5/22 + 5/22 = 35 and �푟5 = 10/20+
10/20 + 10/20 + 5/21 + 5/21 + 5/21 + 5/21 = 40. Hence, 5 is 
added leading to �푆 = {3, 4, 5}. Now, observe that 
�푁(�푆) = {1, 2, 6, 7}, but adding any of those nodes leads to a 
distance of 3 hops within �: hence, I← 0, and Algorithm 1 
terminates with �푆 = {3, 4, 5}.

5. Computational Results

�e developed algorithm and optimization model were imple-
mented in Python and all numerical experiments were con-
ducted on a Lenovo laptop with an Intel 2.50 GHz quad-core 
processor and 8 GB of RAM. To diversify the experiments and 
fully explore the behavior of the proposed algorithm as well 
as the optimization approach, two different sets of instances 
were considered. �e first set of instances consists of Watts–
Strogatz small-world graphs with a varying number of nodes, 
edges, and diameter (stylized as �1–�6). �e second group are 
three cities (Sioux Falls, Eastern Massachusetts/EMA, and 
Berlin) from a networks repository for transportation research 
[45]. In Table 1, we present the computational times as well as 
information for each network (such as the number of nodes, 
the number of edges, and the diameter).

Although the computational time expectedly grows for 
both the commercial solver and the heuristic as the number 
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Figure 3: An example of how our greedy approach of Algorithm 
1 works.



9Journal of Advanced Transportation

(1) Number of nodes selected in the �-club (cardinality);

(2)  Population located in the selected nodes (immediate 
access);

(3)  Distance-weighted cost from all nodes to the �-club 
(general accessibility).

�e number of nodes in the �-club represent the desirable, 
potentially geo-fenced, sites where a rider could check in/out 

Python. For solving the optimization model, we used Gurobi 
7.5 [46]. We are now ready to present our findings in the next 
section.

7. Results

We investigate three measures obtained by both the heuristic 
and the exact optimization:

Table 1: Computational times under heuristic and optimization approach for �푘 = 2, 3.

2-Club 3-Club

Graph |�푉| |�퐸| � Heuristic Optimization Heuristic Optimization

G1 16 32 3 0.12 0.15 0.80 0.27

Sioux falls 24 38 6 0.17 0.29 0.27 0.29

G2 32 64 6 0.18 0.54 0.55 0.98

G3 64 128 6 0.65 1.95 1.11 13.24

EMA 74 129 9 0.87 2.85 1.84 8.77

G4 128 256 6 3.34 12.05 4.98 70.76

G5 256 512 7 21.67 80.77 28.69 561.62

Berlin 397 644 29 88.05 87623.10 106.61 73580.04

G6 512 1024 8 161.28 473.49 243.18 2866.31

Figure 4: �e geography, transportation network, and population of Casselton, ND.
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our optimization model, lower distance-weighted costs are 
preferable.

Table 2 summarizes the results for �푘 ∈ {2, . . . , 9} in 
Casselton. �e population represents the number of residents 
living in the �-club. �e distance-weighted cost is the actual 
objective function of our optimization model. Finally, time 

a bike. �e population measure represents the number of the 
residents within the �-club: they are the ones with immediate 
access to a location with bicycles. Finally, the distance-weighted 
cost describes the total distance a commuter (from any loca-
tion in the network) should walk to reach some node in the �
-club to get access to a bike. �erefore, as was also shown in 

0–28

29–88

89–197

198–450

451–1056

Figure 5: �e geography, transportation network, and population of Fargo, ND. �e locations of the existing eleven bike stations in Fargo 
are shown with a triangle in the map.
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residents living outside the �-club must travel to access to des-
ginated geo-fenced areas. �e optimization model expectedly 
offers better results than the heuristic for all �-clubs obtained. 
Finally, when looking at the computational time, it becomes 
clear that even in a small city like Casselton, the exact optimi-
zation approach is prohibitively expensive, with �푘 = 7 taking 

shows the computational time required to solve the 
problem.

Starting from the population, in the case of exactly opti-
mizing the formulation, it is consistently smaller than the 
population covered by the heuristic approach. On the other 
hand, distance-weighted cost represents the distance that the 

Table 2: Numerical results for Casselton.

Cardinality Population Distance-weighted cost Time (seconds)

� Alg. 1 Opt. Alg. 1 Opt. Alg. 1 Opt. Alg. 1 Opt.

2 5 5 187.31 20.04 27483.24 18387.73 11.42 705.22

3 7 6 226.48 23.02 27392.87 17403.04 12.09 929.13

4 10 12 214.33 61.04 23414.88 16116.41 15.88 1214.09

5 9 13 234.28 64.64 25384.43 15134.70 16.36 6267.38

6 14 23 282.25 128.90 23327.35 13886.10 18.42 10478.39

7 18 25 293.57 134.33 19752.91 12907.99 18.69 35906.98

8 21 38 310.87 222.63 18156.45 11723.64 19.84 59136.11

9 16 42 297.33 266.99 18638.10 11679.81 20.98 104211.74

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6: �e �-clubs obtained from the heuristic for the city of Casselton. �e results are for �푘 = 2, . . . , 9 starting from the top le� (for �푘 = 2)  
and ending in the bottom right (for �푘 = 9).
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chooses the “best” candidate node to add so long as it respects 
the �-club diameter requirement. Because of this, the popula-
tion immediately covered is bigger in the solution from the 
heuristic as opposed to the optimization model. We note 
though that this is not necessarily good, as it might result in 
locations where a high number of residents have immediate 
access to dock-less bike sharing, but other residents have to 
travel very far to access it.

In the case of Fargo, as shown in Figure 8, we only applied 
the heuristic algorithm to validate our model, as optimizing 
for the values of � that would be meaningful resulted in run-
ning out of memory. Figure 8 illustrates the �-club heuristic 
solutions for Fargo, for �푘 ∈ {10, 11, 12, 20}. �e potential sites 
were located in a highly populated area next to the university 
campus. �e existing 11 bike stations already in operation in 
Fargo are only blocks away from the suggested the 10-club. 
Table 3 summarizes the numerical results. It is intuitive that 
due to the fact Fargo has a larger overall population per block, 
the corresponding numbers in the table are much larger than 
the ones for Casselton.

a little less than 10 hours, and �푘 = 9 requiring more than 
24 hours of computation before it terminates upon reporting 
a suboptimal solution and an optimality gap of 56.8%. �e 
heuristic though is significantly and consistently faster, with 
a small uptick in computational time linear with the value of 
� as it increases.

Figures 6 and 7 present the solutions within the city, and 
show the sets of nodes selected. Both the heuristic and the 
optimization approaches suggest groups of vertices located 
nearby—seeing as the resulting set of nodes forms a �-club. 
However, the heuristic approach starts with the most pop-
ulated points in the city, and expands the set of nodes 
around that same point as the diameter of the set (�) 
increases. On the other hand, the optimization model is 
more dynamic, as it tries to minimize the overall dis-
tance-weighted cost.  

We note that the heuristic is also inconsistent, as there are 
cases (see, e.g., �푘 = 4 vs. �푘 = 5) where a solution worsens as far 
as the distance-weighted cost is concerned as � increases. �is 
happens because the heuristic of Algorithm 1 myopically 

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 7: �e �-clubs obtained from optimizing the model for the city of Casselton. �e results are for �푘 = 2, . . . , 9 starting from the top le� 
(for �푘 = 2) and ending in the bottom right (for �푘 = 9).
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(a) (b)

(c) (d)

Figure 8: �e �-clubs obtained from the heuristic for the city of Fargo. �e results are for � = 10, 11, 12, and 20 in the top le�, top right, 
bottom le�, and bottom right, respectively.
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results in higher re-balancing cost. At the same time, it leads 
to higher customer satisfaction. �e dock-less option would 
at least avoid initial capital investment and pave the way to 
introduce bike-sharing programs to cities, without sacrificing 
customer satisfaction with the program.

9. Conclusions

In this work, we discussed a new paradigm for selecting where 
a dock-less (geo-fenced) bike-sharing system should be ena-
bled within an urban area. �is paradigm tries to solve the 
disadvantage of kiosk-based bike-sharing programs such as 
high equipment costs and costs associated with customer dis-
satisfaction due to lack of bikes/docks at the desired location. 
Also, the proposed model offers a better solution to existing 
dock-less problems.

We modeled our problem as one of detecting a connected 
set of nodes of restricted diameter (that is, where any two 
nodes are reachable within � hops using nodes inside the set), 
or a �-club. �e goal was to find a �-club of maximum close-
ness, so as to make sure that all other nodes in the transpor-
tation network are close enough to the bike-sharing locations. 
We showed that, as expected, the problem is NP-hard, and 
provided an integer programming formulation to solve it. We 
also propose a greedy heuristic, which is computationally inex-
pensive. As � increases for the obtained �-club, we should 
expect the coordination costs to increase along side as greater 
values of � will imply larger geo-fenced areas. From a practical 
perspective, BSS operators would have to trade off the size of 
the geo-fenced area (the larger, the more easily accessible and 
more convenient to users) to the rebalancing costs (the smaller, 
the more easily coordinated and cheaper for BSS operators).

We also used our methods to study the resulting setup in 
two cities of the state of North Dakota, Casselton (of smaller 
population) and Fargo (of bigger population). �e potential 
cost savings in the dock-less approach could decrease initial 
capital investments for introducing a bike-sharing program in 
a city. It also leads to an increase in the number of the virtual 
docks (capacity) without blocking streets or pedestrian walk-
ways. One might say that dock-less bike sharing brings chaos 
to cities, due to the freedom of allowing bike check in/out 
anywhere in a geo-fenced area. �at is why our approach could 
mitigate the described situation and leverage this dock-less 
alternative, by only enabling some areas with this capability. 
�e model at the moment is built based on the population as 
the only location weight.

Future directions for our work include the following. First, 
we could investigate the identification of multiple �-clubs of 
varying sizes within a city. �is would allow BSS operators to 
have multiple smaller geo-fenced areas or fewer larger geo-
fenced areas to cover all bike-sharing demands. As a second 
direction, we should consider more ways to build the weight 
parameter in our framework. For example, we plan to inves-
tigate how �-club formation and how the geo-fenced areas 
change as we consider city points of interest, distance to nearby 
transit points, and origin-destination demands throughout the 
day, among others. Next, another future avenue for our 
research would be to investigate more closely the interactions 

8. Cost-Benefit Analysis

Equipment, installation, and maintenance are three significant 
costs involved in implementing a bike-sharing program. �e 
main drawback to physical bike station systems (known as 
kiosk system) is their high acquisition and operating costs. 
Stations are costly including tens of thousands of dollars to 
manufacture and install along with several thousand dollars 
to acquire customized bikes. Moreover, kiosk systems mandate 
constant bike rebalancing. �is happens because every bike 
needs to be returned to a kiosk: if the kiosk is full, the riders 
must find another location with available spots, resulting in 
higher operational cost and a decrease in customer 
satisfaction.

�e cost of each bike is estimated at $1,234 [47]. Assuming 
a cost of $1000 on average for each bike, the cost for a typical 
kiosk with 11 docks will range from $29,000 to $34,000, exclud-
ing operating costs. Figure 9 shows the relationship between 
the cost and number of docks. �ese figures are even higher 
at the planning stage ($55,000 per station) [48]. �e optimal 
number of docks is another critical factor in a bike-sharing 
program. Increasing the number of docks leads to higher costs, 
and a pile up of bikes in one location, which consequently 

Table 3: Numerical results from the heuristic model for Fargo.

� Cardinality Population Distance-weighted cost

10 19 3695.08 1913079.15

11 21 3984.72 1807995.05

12 27 4808.93 1798887.10

20 71 9966.84 1513123.94
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Figure 9: Equipment and installation cost vs. number of stations.
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Data Availability
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�e dataset is cited at a relevant place within the text as  
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