
Maximum Coverage Problem with Group
Budget Constraints and Applications

Chandra Chekuri1 and Amit Kumar2

1 Bell Labs, 600 Mountain Avenue
Murray Hill, NJ 07974

Email : chekuri@research.bell-labs.com
2 Department of Computer Science and Engineering

IIT Delhi, INDIA - 110016
Email : amitk@cse.iitd.ernet.in

Abstract. We study a variant of the maximum coverage problem which
we label the maximum coverage problem with group budget constraints
(MCG). We are given a collection of sets S = {S1, S2, . . . , Sm} where
each set Si is a subset of a given ground set X. In the maximum cov-
erage problem the goal is to pick k sets from S to maximize the cardi-
nality of their union. In the MCG problem S is partitioned into groups
G1, G2, . . . , G`. The goal is to pick k sets from S to maximize the car-
dinality of their union but with the additional restriction that at most
one set be picked from each group. We motivate the study of MCG by
pointing out a variety of applications. We show that the greedy algorithm
gives a 2-approximation algorithm for this problem which is tight in the
oracle model. We also obtain a constant factor approximation algorithm
for the cost version of the problem. We then use MCG to obtain the first
constant factor approximation algorithms for the following problems: (i)
multiple depot k-traveling repairmen problem with covering constraints
and (ii) orienteering problem with time windows when the number of
time windows is a constant.

1 Introduction

In this paper we are interested in a variant of the set cover problem and its
maximization version, the maximum coverage problem. The set cover problem
is the following: we are given a ground set X of n elements and a set of subsets
S = {S1, S2, . . . , Sm} such that for 1 ≤ i ≤ m, Si ⊆ X. The objective is to find a
minimum number of sets from S such that their union is X. In the cost version
of the set cover problem each set Si has a cost c(Si) and we seek a minimum
cost collection of sets to cover all the elements of X. The maximum coverage
problem is a close relative of the set cover problem. We are given a ground set
X and S = {S1, S2, . . . , Sm} of subsets of X. In addition we are given an integer
k and the goal is to pick at most k sets from S such that the size of their union
is maximized. In the profit version of the maximum coverage problem the items
in X have profits and the goal is to maximize the profit of items picked.

Set cover and maximum coverage problems are fundamental algorithmic
problems that arise frequently in a variety of settings. Their importance is partly
due to the fact that many covering problems can be reduced to these problems.
The greedy algorithm that iteratively picks the set that covers the maximum
number of uncovered elements is a (lnn + 1) approximation for the set cover
problem and an e

e−1 approximation 3 for the maximum coverage problem [15].
Feige [12] showed that these ratios are optimal unless NP is contained in quasi-
polynomial time. In a number of applications the set system is implicitly defined
and the number of sets is exponential in the number of elements. However, the
greedy algorithm can still be applied if a polynomial time oracle that returns a
set with good properties is available.

In this paper, motivated by several applications, we study a variant of the
maximum coverage problem that we call the maximum coverage problem with
group budget constraints (MCG). We start with a simple motivating example,
the multiple knapsack problem (MKP), and the analysis of the greedy algorithm
for that problem in [9]. MKP is a generalization of the classical knapsack problem
to several knapsacks: we are given n items, where item i has a size si and a profit
pi; we are also given m knapsacks potentially of different capacities b1, b2, . . . , bm.
The objective is to find a maximum profit subset of items that can be feasibly
packed into the given set of knapsacks. We first consider the case where all the
knapsacks have the same capacity b. For simplicity, in the following discussion,
we assume that we have an exact algorithm to solve the single knapsack problem.
We can apply the following greedy algorithm: pick an unused knapsack and use
the single knapsack algorithm to pack it optimally with a subset of items from the
remaining items. It is easy to show, via standard set cover style arguments, that
this algorithm gives an e

e−1 approximation [9]. That the greedy algorithm gives
this ratio can also be seen via a reduction to the maximum coverage problem as
follows. Let S be the set of all distinct subsets of the items that can be feasibly
packed into a knapsack of size b. The MKP problem can be rephrased as a
maximum coverage problem on this implicit exponential sized set system and
we are required to pick m sets. The greedy algorithm that we described for the
MKP can be seen to be the greedy algorithm for maximum coverage problem
on the implicit set system above where the oracle is the optimal single knapsack
algorithm.

Now we consider instances of MKP in which the knapsack sizes could be
different. In this case too we can define a greedy algorithm, however since the
knapsacks are not identical, it is not a priori clear in which order to consider
them. In [9] it is shown that irrespective of the ordering, the greedy algorithm
results in a 2-approximation. Once again it is instructive to understand the
implicit set system. Let Si be set of distinct subsets of items that can be feasibly
packed into a knapsack of size bi and let S = ∪iSi. It is clear that if the knapsacks
are not identical, we no longer have a maximum coverage problem although
the greedy algorithm still gives a constant factor approximation algorithm. The

3 In this paper approximation ratios for both minimization and maximization problems
will be greater than or equal to 1.

problem we have is the following: we are required to choose at most one set
from each of the Si and cover as many elements as possible by the union of sets
picked.

Motivated by MKP and other problems that we consider later in this pa-
per, we define a variant of the maximum coverage problem that provides an
abstraction for covering problems that have groups of sets.

Maximum Coverage with Group Budgets (MCG): We are given subsets
S1, S2, . . . , Sm of a ground set X. We are also given sets G1, . . . , G`, each Gi
being a subset of {S1, . . . , Sm}. We call Gi a group. By making copies of sets, if
necessary, we can assume that the groups Gi are disjoint from each other. We
define two versions of the problem, the cardinality version and the cost version.

In the cardinality version, we are given an integer k, and an integer bound ki
for each group Gi. A solution is a subset H ⊆ {S1, . . . , Sm} such that |H| ≤ k
and |H ∩Gi| ≤ ki for 1 ≤ i ≤ `. The objective is to find a solution such that the
number of elements of X covered by the sets in H is maximized. In fact, we can
assume without loss of generality that all ki are equal to 1. Otherwise, we can
make ki copies of each group Gi.

In the cost version, we associate a cost c(Sj) with each set Sj . Further, we
are given a budget Bi for group Gi, 1 ≤ i ≤ `, and an overall budget B. A
solution is a subset H ⊆ {S1, S2, . . . , Sm} such that the total cost of the sets in
H is at most B. Further for any group Gi, the total cost of the sets in H ∩ Gi
can be at most Bi. The objective is to find such a subset H to maximize the size
of the union of sets in H.

In many applications, m, the number of given subsets of X, is exponential
in n and the sets are defined implicitly. In such cases we require a polynomial
time oracle with some desirable properties. We now make this more precise.
In the cardinality version, we assume there exists an oracle A that takes as
input, a subset X ′ of X, and an index i. A(X ′, i) outputs a set Sj ∈ Gi such
that |Sj ∩X ′| is maximized over all sets in Gi. We also work with approximate
oracles. A is an α-approximate oracle if A(X ′, i) outputs a set Sj ∈ Gi such
that |Sj ∩X ′| ≥ 1

α maxD∈Gi |D ∩X ′|. For the cost version, we shall assume we
are given an oracle B that takes as input a subset X ′ of X and a group index i.
B(X ′, i) outputs a set Sj ∈ Gi such that |Sj∩X

′|
c(Sj)

is maximized – we shall assume
that all sets in Gi have cost at most Bi. As with the cardinality case we also
work with approximate oracles.

We note that the maximum coverage problem is a special case of the car-
dinality case of MCG and the budgeted maximum coverage problem [17] is a
special case of the cost version of MCG.

In this paper we show that a simple greedy algorithm gives a constant fac-
tor approximation for both the cardinality and the cost versions of MCG. The
analysis differs from the usual analysis for the maximum coverage problem and
is based on the analysis for MKP in [9]. For the cardinality version we show that
greedy gives a 2-approximation and our analysis is tight. For the cost version we
obtain a 12-approximation. The greedy algorithm works in the oracle model as

well and in fact this is the main thrust of the paper and leads to the applications
that we mention below.

We note that for the cardinality version, an e
e−1 -approximation is achievable

if the input is given in an explicit form. This ratio is achieved by rounding an
LP relaxation either by the pipage rounding technique of Ageev and Sviridenko
[1] or the probabilistic rounding technique of Srinivasan [18].

Set Cover with Group Budgets (SCG): We define the set cover problem
with group constraints. We only consider the cardinality version in this paper,
it is easy to extend it to the cost case. We are given a ground set X of n
items and a set S = {S1, S2, . . . , Sm} of subsets of X. The set S is partitioned
into groups G1, G2, . . . , G`. The objective is to find a subset H of S such that
all elements of X are covered by sets in H and max`i=1 |H ∩ Gi| is minimized.
Note that if we have a single group containing all sets then the problem is the
same as the set cover problem. Elkin and Kortsarz [10] seem to be the first to
consider this problem for its applications and they call it the multiple set cover
problem. They present an O(log n) approximation using a randomized rounding
of a natural linear programming relaxation. Kortsarz [16] asked if there is a
combinatorial algorithm for this problem. From the 2-approximation bound on
Greedy we obtain a simple combinatorial (log n+ 1) algorithm for SCG. It also
has the advantage of working in the oracle model.

We consider two problems for which we design the first constant factor ap-
proximation algorithms by using reductions to instances of MCG in the oracle
model. We describe them next.

Multiple Depot k-Traveling Repairmen Problem: The k-traveling repair-
men problem was considered by Fakcharoenphol, Harrelson, and Rao [11]. Their
problem is the following. We are given a finite metric space on a set of nodes
V induced by an edge weighted undirected graph G, and k not necessarily dis-
tinct vertices s1, s2, . . . , sk from V . A feasible solution to the problem is a set of k
tours T1, . . . , Tk, with tour Ti starting at si such that every vertex in V is visited
by one of the tours. Given a feasible solution, we define the latency of a vertex
as the time at which it gets visited by one of these tours. The objective is to
minimize the sum of the latencies of the vertices in V . The problem models the
case where k-repairmen are available at the k locations (depots) and we need to
visit all the sites that have repairs. The goal is to minimize the average waiting
time of the sites. If k = 1, the problem is the same as the the minimum latency
problem for which a constant factor approximation was first given by Blum et
al. [5]. The current best approximation ratio for the minimum latency problem
is 3.59 [8]. In [11] a constant factor approximation algorithm is presented for the
k-traveling repairmen problem when all the repairmen start at the same vertex
s, that is s1 = s2 = . . . = sk = s. In the same paper [11], the generalization
of the k-traveling repairmen problem to the case with multiple sources (depots)
is left as an open problem. We obtain a constant factor approximation for this
problem. We also obtain constant factor approximation algorithms for several
generalizations as well.

Orienteering (or TSP) with Time Windows: The orienteering problem is
defined as follows. We are given a metric space on a set of vertices V , a starting
vertex s and a budget B. A feasible solution is a tour starting at s and having
length at most B. The objective is to maximize the number of vertices covered by
this tour. Blum et al. [7] gave the first constant factor approximation algorithm
for this problem in general graphs, they obtained a ratio of 5 which has recently
been improved to 3 in [6]. Previously, a 2 + ε-approximation was known for the
case when the metric was induced by points in the Euclidean plane [2].

In this paper we consider the more general problem where we associate a
window [rv, dv] with each vertex v. A vertex v can be visited only in the time
interval [rv, dv]. We shall say that rv is the release time of v and dv is the deadline
of v. The objective, again, is to find a path that starts at s and maximizes the
number of vertices visited, however we can only visit a vertex within its time
window. This problem models a variety of situations when technicians or robots
have to visit a number of different locations in a time period. The problem is
referred to by different names in the literature including prize collecting traveling
salesman problem with time windows and TSP with deadlines. Tsitsikilis [19]
showed that this problem is strongly NP-complete even when the metric space is
a line. Bar-Yehuda et al. [4] gave an O(log n) approximation when the vertices lie
on a line. Recently Bansal et al. [6] gave an O(log2 n) for the general problem. In
this paper we consider the case when the number of distinct time windows, k, is a
fixed constant independent of the input. We give a constant factor approximation
algorithm for this problem using a reduction to MCG and using the algorithm
in [7, 6] as an oracle.

The thrust of this paper is the definition of MCG and its applications. In this
extended abstract we have not attempted to optimize the constants that can be
achieved for the problems we consider. We defer this to the final version of the
paper.

2 Greedy Algorithm for MCG

In this section we show that simple greedy algorithms give constant factor ap-
proximation ratios for MCG. First we consider the cardinality version of the
problem.

2.1 Cardinality Version

We can assume without loss of generality that the number of groups ` ≥ k. We
work in the oracle model and assume that we have an α-approximate oracle. The
greedy algorithm we consider is a natural generalization of the greedy algorithm
for the maximum coverage problem. It iteratively picks sets that cover the max-
imum number of uncovered elements, however it considers sets only from those
groups that have not already had a set picked from them. The precise algorithm
is stated below.

Algorithm Greedy
H ← ∅, X ′ ← X.
For j = 1, 2, . . . , k do

For i = 1, . . . , ` do
If a set from Gi has not been added to H then Ai ← A(Gi, X ′)
Else Ai ← ∅

EndFor
r ← argmaxi|Ai|
H ← H ∪ {Ar}, X ′ ← X ′ −Ar

EndFor
Output H.

By renumbering the groups, we can assume that Greedy picks a set from
group Gj in the jth iteration. Let opt denote some fixed optimal solution and
let i1 < i2 < . . . < ik be the indices of the groups that opt picks sets from. We set
up a bijection π from {1, 2, . . . , k} to {i1, i2, . . . , ik} as follows. For 1 ≤ h ≤ k,
if h ∈ {i1, i2, . . . , ik} then we require that π(h) = h. We choose π to be any
bijection that respects this constraint.

Let Cj be the set that Greedy picks from Gj , and let Oj be the set that
opt picks from Gπ(j). We let A′j = Aj −∪j−1

h=1Ah denote the set of new elements
that Greedy adds in the jth iteration. Let C = ∪jAj and O = ∪jOj denote the
number of elements that Greedy and opt pick.

Lemma 1. For 1 ≤ j ≤ k, |A′j | ≥ 1
α |Oj − C|.

Proof. If Oj −C = ∅ there is nothing to prove. When Greedy picked Aj , the set
Oj was available to be picked. Greedy did not pick Oj because |A′j | was at least
1
α |Oj − ∪

j−1
h=1Ah|. Since ∪j−1

h=1Ah ⊆ C, the lemma follows. ut

Theorem 1. Greedy is an (α + 1)-approximation algorithm for the cardinality
MCG with an α-approximate oracle.

Proof. From Lemma 1, we have that

|C| =
∑
j

|A′j | ≥
∑
j

1
α
|Oj − C| ≥

1
α

(| ∪j Oj | − |C|) ≥
1
α

(|O| − |C|).

Hence |C| ≥ 1
α+1 |O|. ut

Corollary 1. If k = `, Greedy is an (α+ 1)-approximation algorithm even if it
is forced to pick sets from an adversarially chosen ordering of the groups.

Proof. If k = `, the permutation π is the identity permutation. In this case
Lemma 1 holds again. ut

Easy examples show that our analysis of the Greedy algorithm is tight. In
fact, in the oracle model, the ratio of 2 cannot be improved. When the set system

is available as part of the input, the problem is hard to approximate to within
a factor of e

e−1 via a reduction from the maximum coverage problem. As we
mentioned earlier, a matching ratio can be obtained via linear programming [1,
18].
A log n + 1 approximation for SCG: We observe that the 2-approximation
bound for MCG can be used to obtain a logn + 1 approximation for SCG as
follows. We simply guess the optimal value λ∗, that is there is an optimal cover
H∗ such that maxi |H∗∩Gi| ≤ λ∗. We then create an instance of MCG by having
a budget of λ∗ on each group Gi. Greedy covers at least 1/2 the elements in X.
Iterating Greedy log n+ 1 times results in a solution that covers all elements. In
each iteration the number of sets added from any given group is upper bounded
by λ∗. Hence, when all elements are covered, the number of sets added from any
group is at most (logn+ 1)λ∗.

2.2 Cost Version

We now consider the cost version of MCG. We give a greedy algorithm for this
problem which is similar in spirit to the one for the cardinality case but differs
in some technical details. The algorithm that we describe below may violate the
cost bounds for the groups or the overall cost bound B. We will later show how to
modify the output to respect these bounds. We work in the oracle model again.
Recall that the oracle A, given a set of elements X ′ and an index i returns a set
S ∈ Gi that approximately minimizes the ratio maxD∈Gi

|D∩X′|
c(D) . The algorithm

is described in more detail below. We assume without loss of generality that
B ≤

∑`
i=1Bi.

Algorithm CostGreedy
H ← ∅, X ′ ← X.
Repeat

For i = 1, 2, . . . , n do
If c(H ∩Gi) < Bi then Ai ← A(X ′, Gi).
Else Ai ← ∅.

EndFor
r ← argmaxi

|Ai|
c(Ai)

H ← H ∪ {Ar}, X ′ ← X ′ −Ar.
Until (c(H) ≥ B).
Output H.

Note that H need not obey the budget requirements. Define Hi = H ∩ Gi.
For a set S chosen by the algorithm, define X(S) as the extra set of elements in
X that are covered at the time S is added to H. Define X(Hi) = ∪S∈HiX(S).
Similarly, X(H) is the set of elements covered by the algorithm. Let opt be some
fixed optimal solution to the given problem instance. Let O be the set of sets
chosen by opt. Define Yi = O ∩Gi. We call an index i good if c(H ∩Gi) ≤ Bi,
that is the algorithm did not exceed the budget for Gi. Otherwise we call i bad.
We omit proofs of the following lemmas in this version.

Lemma 2. If i is bad, then |X(Hi)| ≥ 1
α

∑
A∈Yi |A−X(H)|.

Corollary 2. |X(H)| ≥ 1
α+1 | ∪i:i bad ∪A∈YiA|.

Lemma 3. |X(H)| ≥ 1
α+1 | ∪i: i good ∪A∈YiA|.

From Corollary 2 and Lemma 3, it follows that X(H) ≥ 1
2(α+1)opt. But H

does not respect all the budget constraints. We partition H into three subsets
H1,H2,H3. H3 is the last set picked by our algorithm. H2 contains those sets S
which when added to H caused the budget of some group Gi to be violated –
however we do not include the set in H3. H1 contains all the remaining sets in
H. It is easy to see that H1,H2 and H3 do not violate the budget constraints.
Further, one of these three sets must be covering at least 1/3 the number of
elements covered by H. Thus we get the following theorem.

Theorem 2. The algorithm CostGreedy is a 6(α + 1)-approximation algo-
rithm for the cost version of MCG.

3 Applications of MCG

3.1 The k-Traveling Repairmen Problem

Recall from Section 1 that in the k−traveling repairmen problem we are given a
metric space on a set of nodes V induced by an edge weighted undirected graph
G. We are given a set of k source vertices in V , call them s1, s2, . . . , sk. A feasible
solution to the problem is a set of k tours, one tour starting at each source si,
such that every vertex in V is visited by one of the tours. Given a feasible
solution, we define the latency of a vertex as the time at which it gets visited by
one of these tours. The objective is to minimize the sum of the latencies of the
vertices in V .

We give the first constant factor approximation algorithm for the multiple
depot k-traveling repairmen problem. We define a related problem, which we
call the budgeted cover problem, as follows. The input to the problem is a subset
V ′ of V and a positive integer B. A solution is a set of k tours, one tour starting
at each source si, such that no tour has length more than B. The objective is
to maximize the number of vertices of V ′ covered by these tours. We can view
this problem in the framework of MCG as follows. The ground set is the set of
vertices in V ′. For each source si, we have a collection of sets Si1, . . . , S

i
`i

: each
set corresponds to a distinct tour of length at most B beginning at si. There are
k groups, one group for each source vertex si. The group Gi corresponding to
si is {Si1, . . . , Si`i}. Clearly, the cardinality version of MCG for this set system is
the same as the budgeted cover problem for the original graph. From Section 2
we will get a constant factor approximation algorithm for the budgeted cover
problem provided we have the following oracle A.

The oracle A should be able to solve the budget-MST problem. In this prob-
lem, we are given a graph G = (V,E), a source s ∈ V and a budget B. A solution

is a tour starting at s and having cost at most B. The objective is to maximize
the number of vertices covered by the tour. Unfortunately the budget-MST prob-
lem is NP-hard. However, by using the algorithm for the i-MST problem [13,
3], we can obtain a polynomial time algorithm, A, which covers opt vertices
and costs at most β · B. Here β > 1 is the approximation ratio for the i-MST
problem. Hence, if we are willing to violate the budget constraint by a factor of
β we can cover as many vertices as the optimal solution.

It follows from Theorem 1 that we can get a polynomial time algorithm for
the budgeted cover problem which covers at least half as many vertices as the
optimum, and constructs k tours, each tour of length at most βB. We call this
algorithm C.

We can now describe our algorithm for the traveling k-traveling repairmen
problem. Our algorithm works in phases. We assume without loss of generality
that all distances are at least 1. Let Vj be the set of uncovered vertices at the
beginning of phase j (so V0 = V). In phase j, we cover as many vertices as
possible so that the budget of each tour is about 2j . More precisely, we do the
following

Algorithm Visit(j) :
For p = 1, 2 do

Run C on the budget cover problem instance with inputs Vj and 2j .
Remove from Vj the covered vertices.

This describes phase j. We invoke the subroutine Visit(j) with increasing
values of j until all vertices are covered. Given a source si, we have constructed
several tours starting from si. We just stitch them together starting in the order
these tours were found by the algorithm. Clearly, our algorithm produces a
feasible solution. It remains to prove that it is a constant factor approximation
algorithm.

We begin with some notation. Fix an optimal solution opt. Let Oj denote
the set of nodes in opt’s solution which have latency at most 2j . Let Cj be the
set of nodes visited by our algorithm by the end of phase j.

Lemma 4. Visit(j) covers at least 3
4 |Oj − Cj−1| vertices.

Proof. Let Rj denote Oj−Cj−1. Let Aj be the set of nodes covered by Visit(j)
when p = 1. Theorem 1 implies that |Aj | ≥ 1

2 |Rj |. One more application of this
theorem when p = 2 gives the desired result. ut

The rest of the proof goes along the same lines as in [11]. Let nj be the set
of nodes in opt whose latency is more than 2j . Let n′j be the set of nodes in our
tour which do not get visited by the end of phase j.

Lemma 5. n′j ≤ 1
4n
′
j−1 + 3

4nj.

Proof. From Lemma 4 it is easy to see that n′j ≤ n′j−1−3/4|Oj−Vj−1|. Clearly,
|Oj | = n− nj and |Vj−1| = n− n′j−1. Combining these proves the lemma. ut

The total latency of the tours obtained by our algorithm is upper bounded
by
∑
j 4β2jn′j and that produced by the tours in the optimal solution is lower

bounded by
∑
j 2j−1nj . From Lemma 5 we obtain that

∑
j

2jn′j ≤
1
2

∑
j

2j−1n′j−1 +
3
4

∑
j

2jnj

which implies that ∑
j

2jn′j ≤ 3
∑
j

2j−1nj .

This proves that our algorithm yields a 12β approximation. We can improve
the ratio by using ideas from [14, 11, 8]; we defer the details to the final version.
We can also obtain constant factor approximations for each of the following
generalizations: (i) each vertex v can be serviced only by a given subset Sv of
repairmen, (ii) each vertex v has a service time pv that the repairmen needs to
spend at the vertex, and (iii) each vertex v has a weight wv and the objective is
to minimize the sum of the weighted latencies.

3.2 The Orienteering Problem with Time Windows

We now consider the orienteering problem with time windows. We assume that
the number of distinct time windows is some fixed constant k. We use, as a
subroutine, the algorithm of Bansal et al. [6] which provides a 3-approximation
for the case when there is a single time window [0, D] for all vertices and the tour
is required to start at a vertex s and end at a vertex t. In the rest of the section
we use β to denote the approximation ratio for the single deadline case. All our
ratios will be expressed as functions of β. Let ∆ be the maximum distance in the
metric space. We begin by describing approximation algorithms for two special
cases: (1) when all release times are zero, and (2) when all deadlines are the
same.

Release Times are Zero: We consider the special case when rv = 0 for all
nodes v. Let d1 < d2 < . . . < dk be the k distinct deadlines. Let Vi denote the
set of vertices whose deadline is di. Let P ∗ be the tour constructed by some
optimal solution. Define v∗0 as the source vertex s. For 1 ≤ i ≤ k, let v∗i as the
last vertex in the tour P ∗ which is visited by the deadline di. It is possible that
v∗i = v∗i′ for two distinct indices i and i′. Suppose v∗i is visited at time t∗i , then
it follows that that t∗i ≤ di.

Our algorithm first guesses the vertices v∗1 , v
∗
2 , . . . , v

∗
k and the time instances

t∗1, t
∗
2, . . . , t

∗
k. Note that t∗i ≤ n∆. Hence the total number of guesses is O(n2k∆k).

Since ∆ need not be polynomially bounded, the number of guesses is not poly-
bounded. We omit details on how to use a polynomial number of guesses. Now,
we define k groups G1, . . . , Gk as follows. Gi is the set of all paths on the vertex
set Vi ∪Vi+1 ∪ · · · ∪Vk which originate at v∗i−1 and end at v∗i with the additional
constraint that the length of the path is at most t∗i − t∗i−1.

Lemma 6. Consider the instance of the MCG with groups defined as above
where we need to pick exactly one set from each group. A γ-approximation al-
gorithm for this problem instance implies the same for the corresponding orien-
teering problem.

Proof. Suppose we are given a solution to the MCG which picks paths P1, . . . , Pk
from the corresponding groups. If we stitch these tours sequentially, it is easy
to see that we get a path which satisfies the deadlines of the vertices visited by
the individual paths. Therefore the number of vertices covered by this tour is
|P1 ∪P2 ∪ · · · ∪Pk|. Further, if we consider the tour P ∗, we can get a solution to
the MCG which covers |P ∗| vertices. This proves the lemma. ut

Thus, it is enough to approximate the MCG induced by the guess of v∗1 , . . . , v
∗
k

and t∗1, . . . , t
∗
k. The oracle needed for this instance is an algorithm for the ori-

enteering problem where the time windows for all the nodes are of the form
[0, D], hence we can use the algorithm of Blum et al. [7] or Bansal et al. [6].
From Corollary 1 we obtain a a (β + 1)-approximation algorithm for the case
of k deadlines. The running time of the algorithm is O(n2k∆kT) where T is the
running time of the approximation algorithm for the single deadline case.
Single Deadline: We now consider the special case when all deadlines are the
same, say D but the release dates can be different. Consider any feasible tour P
which starts at s and ends at a vertex u. Let the length of P be `(P). Suppose we
reverse the tour, i.e., we view the tour as a path P r starting at u and ending at s.
If P visits a vertex v at time t, then P r visits v at time `(P)−t. So rv ≤ t ≤ `(P)
implies that 0 ≤ `(P) − t ≤ `(P) − rv. Thus, we can view this tour as one in
which the release time of a vertex is 0 and the deadline is `(P)−rv. Therefore, if
we could guess the length of the optimal path P ∗ and the last vertex u∗ in this
path, then we could just use the algorithm mentioned in the previous section.
Thus, we can get a (β + 1)-approximation algorithm for this problem as well.
The running time of the algorithm increases by a factor of ∆ from the algorithm
for single release date.
k Time Windows: Now we address the case where there are both release times
and deadlines. Let r1 < r2 < . . . < rk be the k distinct release time and let
d1 < d2 < . . . < dk be the k distinct deadlines. Let P ∗ be the tour constructed
by the optimal solution. As before let v∗i be the last vertex in P ∗ to be visited
before di and let t∗i be the time at which v∗i is visited. Recall that Vi is the
set of vertices with deadline di. We define group Gi to be the set of tours that
start at v∗i−1 at t∗i−1 and end at v∗i by t∗i . The vertices that a tour in Gi can
visit are constrained to be in Vi ∪ Vi+1 ∪ . . . ∪ Vk. Lemma 6 trivially generalizes
to this setting to yield a γ approximation provided we have an oracle for the
MCG instance. Consider a group Gi. The vertices all have a deadline at least as
large as t∗i , hence we have a single deadline. The vertices might have different
release times, however there are at most k distinct release times. Hence the oracle
needed for Gi can be obtained from the algorithm described above for this case
that has an approximation ratio of β+ 1. Thus, once again applying Theorem 1
we can obtain a (β+2)-approximation algorithm for the case of k time windows.

Theorem 3. Given a β-approximation algorithm for the orienteering problem
with a single time window for all vertices, there is a (β + 2)-approximation al-
gorithm for the orienteering problem with at most k distinct time windows that
runs in time polynomial in (n∆)k.

Acknowledgments: We thank Moses Charikar for suggesting that we write a
paper about MCG. We thank Chris Harrelson for pointing out a mistake.

References

1. A. Ageev and M. Sviridenko. Pipage Rounding: a New Method of Constructing
Algorithms with Proven Performance Guarantee. To appear in J. of Combinatorial
Optimization.

2. E. Arkin, J. Mitchell, and G. Narasimhan. Resource-constrained geometric network
optimization. In Proceedings of SoCG, 1998.

3. S. Arora and G. Karakostas. A 2 + ε approximation for the k-MST problem. In
Proceedings of SODA, 2000.

4. R. Bar-Yehuda, G. Even, and S. Sahar. On Approximating a Geometric Prize-
Collecting Traveling Salesman Problem with Time Windows. Proc. of ESA, 2003.

5. A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M.
Sudan. The minimum latency problem. In Proceedings of STOC, 1994.

6. N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation Algorithms for
Deadline-TSP and Vehicle Routing with Time-Windows. Proc. of STOC, 2004.

7. A. Blum, S. Chawla, D. Karger, T. Lane, A. Meyerson, and Maria Minkoff. Ap-
proximation Algorithms for Orienteering and Discounted-Reward TSP. Proc. of
FOCS, 2003.

8. K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees and minimum
latency tours. Proc. of FOCS, 2003.

9. C. Chekuri and S. Khanna. A PTAS for the Multiple Knapsack Problem. Proc. of
SODA, 2000.

10. M. Elkin and G. Kortsarz. Approximation Algorithm for the Directed Telephone
Multicast Problem. Proc. of ICALP, 2003.

11. J. Fakcharoenphol, C. Harrelson, and S. Rao. The k-Traveling Repairmen Problem.
In Proceedings of SODA, 2003.

12. U. Feige. A Threshold of ln n for Approximating Set Cover. Journal of the ACM,
45(4), 634–652, July 1998.

13. N. Garg. A 3-approximation for the minimum tree spanning k vertices. In Pro-
ceedings of FOCS, 1996.

14. M. Goemans and J. Kleinberg. An improved approximation ratio for the minimum
latency problem. In Proceedings of SODA, 1996.

15. Approximation Algorithms for NP-Hard Problems. Edited by D. Hochbaum. PWS
Publishing Company, Boston, 1996.

16. G. Kortsarz. Personal communication, July 2003.
17. S. Khuller, A. Moss, and J. Naor. The Budgeted Maximum Coverage Problem.

Information Processing Letters, Vol. 70(1), pp. 39–45, (1999)
18. A. Srinivasan. Distributions on level-sets with Applications to Approximation

Algorithms. Proc. of FOCS, 2001.
19. J. Tsitsikilis. Special Cases of Traveling Salesman Problem and Repairmen Prob-

lems with Time Windows. Networks, 22:263-28, 1992.

