MAXIMUM DEGREE AND FRACTIONAL MATCHINGS IN UNIFORM HYPERGRAPHS

Zoltán FÜREDI

Mathematical Institute of the Hungarian Academy of Sciences Budapest, Hungary H-1053

Received 11 January 1980

Let \mathscr{H} be a family of r-subsets of a finite set X. Set $D(\mathscr{H}) = \max |\{E: x \in E \in \mathscr{H}\}|$, (maximum

degree). We say that \mathcal{H} is intersecting if for any $H, H' \in \mathcal{H}$ we have $H \cap H' \neq \emptyset$. In this case, obviously, $D(\mathcal{H}) \ge |\mathcal{H}|/r$. According to a well-known conjecture $D(\mathcal{H}) \ge |\mathcal{H}|/(r-1+1/r)$. We prove a slightly stronger result. Let *H* be an r-uniform, intersecting hypergraph. Then either it is a projective plane of order r-1, consequently $D(\mathcal{H}) = |\mathcal{H}|/(r-1+1/r)$, or $D(\mathcal{H}) \ge |\mathcal{H}|/(r-1)$. This is a corollary to a more general theorem on not necessarily intersecting hypergraphs.

1. Introduction, definitions

1.1 Some well-known definitions

We list the basic definitions and notation to be used throughout: hypergraph \mathscr{H} — a finite collection of non-empty finite sets (edges); vertex set of $\mathscr{H} - V(\mathscr{H}) = \bigcup \{E: E \in \mathscr{H}\};\$ rank of $\mathcal{H} - r(\mathcal{H}) = \max\{|E|: E \in \mathcal{H}\},\$ \mathscr{H} is *r*-uniform if the cardinality of every $E \in \mathscr{H}$ is r; degree of a vertex x (in \mathcal{H}) — $d_{\mathcal{H}}(x) = |\{E: x \in E \in \mathcal{H}\}|;$ $D(\mathcal{H}) = \max \{ d_{\mathcal{H}}(x) \colon x \in V(\mathcal{H}) \};$ \mathcal{H} is *D*-regular if the degree of every vertex x is D; partial hypergraph — $\mathcal{H}' \subset \mathcal{H};$ matching — partial hypergraph of H whose edges are pairwise disjoint; $v(\mathcal{H})$ — matching number — maximum number of edges in a matching; intersecting hypergraph — $v(\mathcal{H})=1$; transversal (or cover) — a set $T \subset V(\mathcal{H})$ which meets all the edges; $\tau(\mathcal{H})$ — transversal number — minimum cardinality of a transversal.

AMS subject classification (1980): 05 C 65, 05 C 35; 05 B 25

ZOLTÁN FÜREDI

1.2 Fractional transversals and matchings

A survey with applications on fractional hypergraph theory can be found e.g. in Berge [1] or Lovász [12], [16]. Here we shall define only the most important concepts of this theory which appeared in first papers published on this topic. (Berge and Simonovits [2], Lovász [11].)

A fractional transversal of a hypergraph \mathcal{H} is a weight function $t: V(\mathcal{H}) \rightarrow \mathbb{R}$ satisfying

$$t(x) \ge 0$$
 for every $x \in V(\mathcal{H})$,

and

 $\sum_{x \in E} t(x) \ge 1 \quad \text{for every edge } E \in \mathscr{H}.$

The value of a fractional transversal t is

$$|t| = \sum_{x \in V(\mathscr{H})} t(x).$$

The minimum of |t| when t ranges over all fractional transversals is called the *fractional transversal number* and is denoted by

 $\tau^*(\mathscr{H}) = \min \{ |t| : t \text{ is a fractional transversal of } \mathscr{H} \}.$

Similarly the *fractional matching number* is the maximum value of the fractional matchings of \mathcal{H} , i.e.

$$v^*(\mathscr{H}) = \max\left\{\sum_{E \in \mathscr{H}} w(E) \mid w: \mathscr{H} \to \mathbf{R}, w(E) \ge 0, \forall x \in V(\mathscr{H}) \text{ we have } \sum_{E \ni x} w(E)\right\} \le 1.$$

Clearly, to determine the fractional transversal number and the fractional matching number is a problem of linear programming. This is a dual pair so by the duality principle of linear programming we have $\tau^*(\mathcal{H}) = v^*(\mathcal{H})$ for every hypergraph \mathcal{H} . Thus

$$1 \leq v \leq v^* = \tau^* \leq \tau \leq rv.$$

In view of the fact that $w(E) \equiv 1/D$ and $t(x) \equiv 1/\min |E|$ are a fractional matching resp. fractional transversal we have

(1)
$$\frac{|\mathscr{H}|}{D(\mathscr{H})} \leq \tau^*(\mathscr{H}) \leq \frac{|V(\mathscr{H})|}{\min\{|E|: E \in \mathscr{H}\}}.$$

1.3 An important example

If \mathcal{H} is *D*-regular and *r*-uniform then (1) yields

(2)
$$|\mathcal{H}|/D = |V(\mathcal{H})|/r = \tau^*(\mathcal{H}).$$

For $r \ge 3$ write \mathscr{P}_r for the hypergraph consisting of the lines of the *r*-uniform finite projective plane (if there exists) further let \mathscr{P}_2 consist of the 2-tuples of a 3-element set (i.e. \mathscr{P}_2 is a triangle) and let \mathscr{P}_1 be the hypergraph having only 1 point. It is well-known that \mathscr{P}_r exists provided r=P+1, where P is a prime power.

It is evident that every line of the projective plane \mathcal{P}_r is a minimal transversal of \mathcal{P}_r . For r=1, 2, 3 there is no other minimal transversal. For the projective

(3) all other transversal sets have size
$$\geq r+2$$
.

Summing up: $|\mathcal{P}_r| = |V(\mathcal{P}_r)| = r^2 - r + 1$, \mathcal{P}_r is r-uniform and r-regular, $v(\mathcal{P}_r) = 1$, $\tau(\mathcal{P}_r) = r$, $\tau^*(\mathcal{P}_r) = r - 1 + 1/r$.

2. Results

Considering all the r-tuples of an underlying set with rv+r-1 elements it can be seen that the inequality $\tau \leq rv$ cannot be improved in general. Nevertheless, as L. Lovász observed, the inequality $\tau^* \leq rv$ is not sharp. He showed (see [14], [15]), that, for any hypergraph $\mathscr{H}, \tau^*(\mathscr{H}) < r(\mathscr{H})v(\mathscr{H})$, furthermore

$$\tau^*(r, v) = \sup \left\{ \tau^*(\mathscr{H}) \colon r(\mathscr{H}) \leq r, \ v(\mathscr{H}) \leq v \right\} < rv.$$

For v=1 he proved that $\tau^*(r, 1) \le r-1+2/(r+1)$ and he conjectured that $\tau^*(r, 1) \le r-1+1/r$. In this paper we shall prove a bit more.

Theorem. Let \mathscr{H} be a hypergraph of rank $r \ge 3$, $v(\mathscr{H}) = v$. Suppose further that \mathscr{H} does not contain a partial hypergraph which consists of p+1 copies of pairwise disjoint r-uniform projective planes. Then

$$\tau^*(\mathscr{H}) \leq (r-1)v + p/r.$$

(The proof of the Theorem is in § 5.) We mention that the inequality of the Theorem is sharp. To see this consider the hypergraph \mathscr{P}'_r which we get from \mathscr{P}_r by omitting a line. $(\tau^*(\mathscr{P}'_r)=r-1.)$

The case r=1 is of no importance. For r=2 the Theorem does not hold true, because for the odd circuits C_{2n+1} one has $\nu(C_{2n+1})=n$, p=0 but $\tau^*(C_{2n+1})=n+1/2$. L. Lovász [13] proved that for an ordinary graph G

$$\tau^*(G) \leq \frac{1}{2}(\tau+\nu) \leq \frac{3}{2}\nu.$$

The following corollaries are true even if r < 3.

Corollary 1. If \mathcal{H} is the union of v pairwise disjoint copies of \mathcal{P}_r , then $\tau^*(\mathcal{H}) = = (r-1+1/r)v$ otherwise $\tau^*(\mathcal{H}) \leq (r-1+1/r)v - 1/r$.

Proof. The inequality $\tau^*(\mathscr{H}) > (r-1+1/r)v-1/r$ implies that \mathscr{H} has a partial hypergraph \mathscr{H}_v which is the disjoint union of v copies of \mathscr{P}_r . That is $\mathscr{H}_v \subset \mathscr{H}$. Then it follows from (3) that $\mathscr{H}_v \equiv \mathscr{H}$. (The case r=2 is left to the reader).

Corollary 2. Let r be a positive integer for which \mathcal{P}_r does exist. Then $\tau^*(r, v) = = (r-1+1/r)v$. If \mathcal{P}_r does not exist then $\tau^*(r, v) \leq (r-1)v$.

I think that for the time being the determination of the exact value of $\tau^*(r, v)$ for other r's is hopelessly difficult, because to solve this problem one probably has to decide whether or not the projective plane \mathcal{P}_r does exist for a given r.

ZOLTÁN FÜREDI

3. Applications

3.1 The maximum degree of hypergraphs

Let us consider an intersecting, *r*-uniform hypergraph \mathscr{H} . Obviously $D(\mathscr{H}) \cong |\mathscr{H}|/r$. It is a well-known conjecture [6, 7] that $D \cong |\mathscr{H}|/(r-1+1/r)$. From the Theorem and from (1) a slightly stronger result follows.

Corollary 3. Let \mathscr{H} be an r-uniform, intersecting hypergraph. Then either it is a projective plane of order r-1 and consequently $D(\mathscr{H}) = |\mathscr{H}|/(r-1+1/r)$ or $D(\mathscr{H}) \ge |\mathscr{H}|/(r-1)$.

In general $D(\mathcal{H}) \ge |\mathcal{H}|/(r-1+1/r)v$. This was proved for r=2 by B. Bollobás [4] in a slightly different form. This Corollary is sharp because $D(\mathcal{P}'_r) = |\mathcal{P}'_r|/(r-1)$.

3.2 The number of vertices of regular hypergraphs

Using his result $(\tau^*(r, 1) \le r - 1 + 2(r+1))$ mentioned above L. Lovász [14], [15] proved the following conjecture of P. Erdős [6] and B. Bollobás [4]:

If \mathscr{H} is an intersecting, r-uniform and regular hypergraph, then $|V(\mathscr{H})| \leq r^2 - r + 1$.

By the Theorem and (2) we generalize this result as follows. (For r=2 see Bollobás—Eldridge [5]).

Corollary 4. If \mathscr{H} is r-uniform and regular then $|V(\mathscr{H})| \leq (r^2 - r + 1)v$. Moreover equality holds if and only if \mathscr{H} is the disjoint union of projective planes or order r-1. Furthermore if there is no such r-uniform plane then $|V(\mathscr{H})| \leq (r^2 - r)v$.

By omitting from \mathscr{P}_r a point together with all the lines containing it we get the hypergraph \mathscr{P}''_r which is (r-1)-regular, *r*-uniform and intersecting. It has $r^2 - r$ points. This example shows that Corollary 4 is sharp, too.

3.3 Fractional transversal number of r-partite hypergraphs

The hypergraph \mathscr{H} is said to be *r*-partite if $V(\mathscr{H})$ is the disjoint union of X_1, \ldots, X_r , and for each $E \in \mathscr{H} : |E \cap X_i| = 1$ holds $(i=1, 2, \ldots, r)$.

A well-known conjecture of H. J. Ryser states that for an *r*-partite hypergraph $\tau \leq (r-1)\nu$. (In particular for r=2 this is simply König's Theorem (see [12]). For some small values of *r* and ν this conjecture has recently been proved by Zs. Tuza [19]). A. Gyárfás [10] proved an easier version of Ryser's conjecture. His result follows from our Theorem because \mathscr{P}_r is not *r*-partite $(r \geq 2)$.

Corollary 5. If the hypergraph \mathcal{H} is r-partite then $\tau^*(\mathcal{H}) \leq (r-1)\nu(\mathcal{H})$.

This Corollary is sharp for \mathscr{P}'_r is *r*-partite and $\tau^*(\mathscr{P}'_r) = r-1$.

3.4 Some further applications of this Theorem to extremal graphs and to extremal set-systems can be found in J. Pach-L. Surányi [17], Z. Füredi [9] and P. Frankl-Z. Füredi [8], respectively.

4. The reduction lemma

We denote by $(\mathbf{a}_i, b_i, \mathbf{c}, I)$ the following linear program with minimum value M. 2

(4)
$$\begin{cases} \mathbf{x} \ge \mathbf{0} \\ \mathbf{a}_i \mathbf{x} \ge b_i \quad \text{for all } i \in I. \\ \min \mathbf{c} \mathbf{x} = M(\mathbf{a}_i, b_i, \mathbf{c}, I) \end{cases}$$

Here \mathbf{a}_i , \mathbf{x} and \mathbf{c} are *n*-dimensional vectors, b_i 's are real numbers and |I| is the number of conditions of the program $(|I| < \infty)$.

The following Proposition is well known in the theory of linear programming. For the sake of completness we give its short proof in the Appendix.

Proposition. If the linear program $(\mathbf{a}_i, b_i, \mathbf{c}, I)$ with n variables has a finite optimum, then there exists a $J \subset I$ such that $M(\mathbf{a}_i, b_i, \mathbf{c}, I) = M(\mathbf{a}_i, b_i, \mathbf{c}, J)$ and $|J| \leq n$.

In other words this Proposition states that the number of conditions of a linear program can be reduced to n without changing the optimum value.

The proof of the Theorem is based on the following Lemma which may help to determine τ^* in some other cases as well.

Lemma. For any hypergraph \mathcal{H} there exists a partial hypergraph $\mathcal{H}' \subset \mathcal{H}$ such that $\tau^*(\mathscr{H}') = \tau^*(\mathscr{H}) \text{ and } |\mathscr{H}'| \leq |V(\mathscr{H}')|.$

Proof. To determine τ^* one has to solve a linear program of dimension $|V(\mathcal{H})|$, with index set I, where $|I| = |\mathcal{H}|$. Of course, this program always has a finite optimum. So by applying the Proposition (possibly several times) one can find a suitable $\mathscr{H}' \subset \mathscr{H}$.

5. Proof of the Theorem

Let \mathscr{H} be an r-uniform hypergraph which does not contain p+1 disjoint copies of the projective plane \mathcal{P}_r and $v(\mathcal{H}) = v$. Suppose $r \ge 3$. (Our proof can be applied for r=2, too, but the details are left to the reader.)

It is sufficient to give a suitable fractional transversal t of \mathcal{H} . We shall give it by induction on v, while r is fixed. The proof in the case v=1 is similar to that one for v > 1 and that is why we do not separate them, but sometimes we mention the differences.

For $\mathscr{H}=\emptyset$ put $\tau^*(\mathscr{H})=0$. By the Lemma we may suppose that $|\mathscr{H}|$ $\leq |V(\mathcal{H})|$. Consequently,

(5)
$$\min_{x \in V(\mathscr{H})} d(x) \leq \frac{\sum \left\{ d(x) \colon x \in V(\mathscr{H}) \right\}}{|V(\mathscr{H})|} = \frac{r|\mathscr{H}|}{|V(\mathscr{H})|} \leq r.$$

Case 1. There exists $x_0 \in V(\mathcal{H})$ with $d_{\mathcal{H}}(x_0) = k < r$. Put $\mathcal{H}_0 = \{E \in \mathcal{H} : x_0 \in E\}$ = $\{E_1, ..., E_k\}$, and $\mathcal{H}_i = \{E \in \mathcal{H} : E \cap E_i = \emptyset\}$ for $1 \le i \le k$. For the hypergraph \mathcal{H}_i the induction hypothesis can be applied, because

 $v(\mathcal{H}_i) \leq v-1$ and of course \mathcal{H}_i does not contain more than p disjoint \mathcal{P}_r as partial

hypergraphs. Hence there exists a fractional transversal $t_i: V(\mathcal{H}_i) \rightarrow \mathbf{R}$ of \mathcal{H}_i , such that $|t_i| \leq (r-1)(\nu-1) + p/r$. (If here $\nu=1$ then $\mathcal{H}_i = \emptyset, t_i \equiv 0$.)

Put

$$t(x) = \begin{cases} 0 & \text{if } x = x_0 \\ \frac{1}{k} \left(d_0(x) + \sum_{i=1}^k t_i(x) \right) & \text{if } x \in V(\mathcal{H}) - \{x_0\}, \end{cases}$$

where $d_0(x)$ is the degree of x in the hypergraph \mathscr{H}_0 . We claim that this is a fractional transversal of \mathcal{H} . Indeed, $t(x) \ge 0$, and for any $E \in \mathcal{H}_0$ we have

$$\sum_{x \in E} t(x) \ge \frac{1}{k} \left(\sum_{x \in E - \{x_0\}} d_0(x) \right) \ge \frac{1}{k} (r-1) \ge 1.$$

If $E \in \mathcal{H} - \mathcal{H}_0$ then

$$\sum_{x \in E} t(x) = \frac{1}{k} \left(\sum_{x \in E} d_0(x) + \sum_{i=1}^k \left[\sum_{x \in E} t_i(x) \right] \right)$$
$$\cong \frac{1}{k} \left(\sum_{\substack{i=1 \\ E \cap E_i \neq \emptyset}}^k 1 + \sum_{\substack{i=1 \\ E \cap E_i = \emptyset}}^k 1 \right) = 1.$$

Finally

$$\tau^*(\mathscr{H}) \leq |t| = \frac{1}{k} \left(\sum_{x \in V(\mathscr{H}) - \{x_0\}} d_0(x) + \sum_{i=1}^k \left[\sum_{x \in V(\mathscr{H})} t_i(x) \right] \right)$$
$$= \frac{1}{k} \left((r-1)k + \sum_{i=1}^k |t_i| \right) \leq (r-1)v + p/r.$$

(For v=1 we get $\tau^*(\mathscr{H}) \leq r-1$.)

Case 2. $\min_{x \in V(\mathscr{H})} d_{\mathscr{H}}(x) \ge r$. Then, by (5), \mathscr{H} is *r*-regular, so $|\mathscr{H}| = |V(\mathscr{H})|$. We shall show that $|\mathscr{H}|$ $\leq (r^2 - r)v + p$ from here, by (2), the Theorem follows.

Suppose on the contrary that $|\mathscr{H}| \ge (r^2 - r)v + p + 1$. Let E_1 be an arbitrary edge of \mathscr{H} and put $\mathscr{H}_1 = \{ E \in \mathscr{H} : E \cap E_1 = \emptyset \}$. Applying the induction hypothesis to \mathscr{H}_1 and using (1) we get that

$$|\mathscr{H}| = |\{E: E \cap E_1 \neq \emptyset\}| + |\mathscr{H}_1| \leq 1 + r(r-1) + \tau^*(\mathscr{H}_1)D(\mathscr{H}_1) \leq (r^2 - r)\nu + p + 1.$$

Here the right side is at most $(r^2 - r)v + p$ if there is an edge E with $|E \cap E_1| \ge 2$. Consequently it is enough to consider the following case.

(6)
$$|\mathscr{H}| = |V(\mathscr{H})| = v(r^2 - r) + p + 1$$

(7)
$$\begin{aligned} |\mathcal{H} - \mathcal{H}_1| &= r^2 - r + 1 \\ |E \cap E_1| &= 0 \text{ or } 1, \text{ for any edges } E, E_1. \end{aligned}$$

(If v=1 and p=1 then (6) yields a contradiction, because in this case $\mathscr{H}_1 = \emptyset$. Similarly, for v=1, p=0 we have by (6) and (7) that \mathcal{H} is an r-uniform, r-regular, intersecting system of sets on (r^2-r+1) points with the same number of edges.

160

This in turn implies that $\mathscr{H} \equiv \mathscr{P}_r$ contradicting to p=0 From now on we suppose that $v \ge 2$.)

Let E_1, E_2, \ldots, E_v any fixed matching. We call an edge $E \in \mathscr{H}$ crossing if it intersects more than one E_i $(1 \leq i \leq v)$. We count the number of edges of $\mathscr{H} - \{E_1 \ldots E_v\}$ with multiplicities in the poins of $\bigcup_{i=1}^{v} E_i$. We get vr(r-1). From the other hand $|\mathscr{H} - \{E_1, \ldots, E_v\}| = v(r^2 - r) + p + 1 - v$, and so there are at most v - 1 - pcrossing edges. This means that there is an edge, say E_1 , in the matching $\{E_1 \ldots E_v\}$ which intersects at most one crossing edge.

Case 2a. E_1 is not intersected by a crossing edge.

In other words, the system $\{E_2, \ldots, E_{\nu}\}$ has no common point with edges intersecting E_1 . Since $\nu(\mathcal{H}) = \nu$ we get that $\mathcal{H} - \mathcal{H}_1$ is an intersecting family. Further $D(\mathcal{H} - \mathcal{H}_1) = r$, and this together with (6) and (7) implies that $\mathcal{H} - \mathcal{H}_1 \equiv \mathcal{P}_r$. Moreover, the underlying sets $V(\mathcal{H}_1)$ and $V(\mathcal{H} - \mathcal{H}_1)$ are disjoint. Applying the induction hypothesis to \mathcal{H}_1 with parameters $\nu - 1$ and p - 1 we get by (1)

$$|\mathscr{H} - \mathscr{H}_1| \leq \tau^* (\mathscr{H} - \mathscr{H}_1) r \leq (r^2 - r)(v - 1) + (p - 1),$$

contradicting to (6).

Case 2b. There is a unique crossing edge E' intersecting E_1 .

It remains true that $\mathcal{H} - \mathcal{H}_1 - \{E'\}$ is an intersecting family, $|\mathcal{H} - \mathcal{H}_1 - \{E'\}| = r^2 - r$, $D(\mathcal{H} - \mathcal{H}_1 - \{E'\}| = r$. We claim that in this case $\mathcal{H} - \mathcal{H}_1 - \{E'\} \equiv \mathcal{P}'_r$. Indeed, by (7), every edge of $\mathcal{H} - \mathcal{H}_1 - \{E'\}$ contains a point of degree r-1. There are exactly r points of this type, they form a set T. It is easy to check that $(\mathcal{H} - \mathcal{H}_1 - \{E'\}) \cup \{T\}$ is a finite projective plane. $E' \neq T$ for E' is crossing. So there is an edge $E'' \in \mathcal{H} - \mathcal{H}_1$ such that $E' \cap E'' = \emptyset$, and

(8) at least r-1 edges E of $\mathcal{H} - \mathcal{H}_1$ have the property that $E \cap E' \neq \emptyset$ and $E \cap E'' \neq \emptyset$.

Let $\mathscr{H}^1 = \{E \in \mathscr{H} : E \cap E' = \emptyset \text{ and } E'' \cap E = \emptyset\}$ and $\mathscr{H}^2 = \mathscr{H} - \mathscr{H}^1$. Applying the induction hypothesis to \mathscr{H}^1 with parameters $\nu - 2$ and p, and using that upper bound for $|\mathscr{H}^2|$ which follows from (8), we get

 $|\mathcal{H}| = |\mathcal{H}^1| + |\mathcal{H}^2| \le (v-2)(r^2 - r) + p + 2(r^2 - r) + 2 - (r-1).$

This again contradicts to (6), provided $r \ge 3$.

6. Appendix: Proof of the Proposition

Dropping some of the inequalities of (4) the minimal value of the program can only decrease. Hence we have to prove that there is a $J \subset I$, |J| = n such that $M(\mathbf{a}_i, \mathbf{b}_i, \mathbf{c}, J) \ge M(\mathbf{a}_i, \mathbf{b}_i, \mathbf{c}, I) = M$.

Suppose, on the contrary, that for every $J \subset I$, |J|=n, we have $M(\mathbf{a}_i, b_i, \mathbf{c}, J) < M$. This means that any *n* of the halfspaces $\{\mathbf{y}: \mathbf{a}_i y \ge b_i\}$ have a point in common with the open convex polytope $\{\mathbf{x} \in \mathbb{R}^n: \mathbf{cx} < M, \mathbf{x} \ge 0\}$. The system (4) has a solution, hence any n+1 of the halfspaces $\{\mathbf{y}: \mathbf{a}_i y \ge b_i\}$ have a point

in common. Now Helly's Theorem in \mathbb{R}^n implies that the intersection of the |I|+1 convex sets $\{\mathbf{y}: \mathbf{a}_i \mathbf{y} \ge b_i\}$ and $\{\mathbf{x}: \mathbf{cx} < M, \mathbf{x} \ge 0\}$ is not empty, i.e. it contains a point \mathbf{x}_0 . This point \mathbf{x}_0 is feasible for the program (4) and $\mathbf{cx}_0 < M = M(\mathbf{a}_i, b_i, \mathbf{c}, I)$. This contradiction proves the existence of the appropriate J.

Acknowledgment. I would like to express my thanks to P. Frankl and I. Bárány for their help.

References

- C. BERGE, Packing problems and hypergraph theory: a survey, Annals of Discrete Math. 4. (1979), 3-37.
- [2] C. BERGE and M. SIMONOVITS, The coloring number of the direct product of two hypergraphs, in [3], 21-33.
- [3] C. BERGE and D. K. RAY-CHAUDHURI eds., Hypergraph Seminar 1972, Lecture Notes 411 (Springer-Verlag, Berlin, 1972).
- [4] B. BOLLOBÁS, Disjoint triples in a 3-graph with given maximal degree, Quart, J. Math. Oxford, Sec. Ser. 28 (1977), 81-87.
- [5] B. BOLLOBÁS and S. E. ELDRIDGE, Maximal matchings in graphs with given minimal and maximal degrees, Math. Proc. Cambridge Phil. Soc. 79 (1976), 221-234.
- [6] P. Erdős, private communication.
- [7] P. FRANKL, On intersecting families of finite sets, J. Combinatorial Th. (A) 24 (1978), 146-161.
 [8] P. FRANKL and Z. FÜREDI, Disjoint r-tuples in an r-graph with given maximal degree, sub-
- nitted to Quart, J. Math. Oxford.
- [9] Z. FÜREDI, Erdős-Ko-Rado type theorems with upper bounds on the maximal degree, in: Algebraic Methods in Graph Theory, (Proc. Conf. Szeged 1978, L. Lovász et al. eds.) Coll. Math. Soc. J. Bolyai 25, North-Holland 1981, to appear.
- [10] A. GYÁRFÁS, to appear.
- [11] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972), 253-267.
- [12] L. Lovász, Combinatorial problems and exercises, Akadémiai Kiadó, Budapest—North-Holland, Amsterdam 1979.
- [13] L. Lovász, Minimax theorems for hypergraphs, in [3], 111-126.
- [14] L. Lovász, Doctoral thesis, Szeged 1977.
- [15] L. Lovász, On minimax theorems of combinatorics (in Hungarian) Matematikai Lapok 26 (1975), 209-264.
- [16] L. Lovász, Graph theory and integer programming, Annals of Discrete Math., 2 (1978)
- [17] J. PACH and L. SURÁNYI, Graphs of diameter 2 and linear programming, in Algebraic Methods in Graph Theory, (Proc. Conf. Szeged 1978, L. Lovász et al. eds.) Coll. Math. Soc. J. Bolyai 25, North-Holland 1981, to appear.
- [18] J. PELIKÁN, Properties of balanced incomplete block designs, in: Combinatorial Theory and its Applications (P. Erdős, A. Rényi and V. T. Sós, eds.) Coll. Math. Soc. J. Bolyai 4, North-Holland 1971), 869–890.
- [19] Zs. Tuza, Some special cases of Ryser's conjecture, to appear.