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Let 3f be a family of r-subsets of a finite set X. Set D(/ { ):max| { E: xQE€lf,} | , (maximum

degree). We say that 3/ f, is intersecting if for any H, H,€;( .we I tave _H ) E, # 0. In this case, ob-

uiő".rí , ottj= tcfÍ h. According to a well-known conjec1ule D9r)= | ű.| l(r-| * 1lr). We
proveí sügií tií strönger result .Let / f, beanr-uniform, intersecting hypergraph. Then either it is a pro.
jective pla]ne ór oroú  r-1, consaquently D(/ f,): | af,| l.?_1* 1lr), ot. D(/ f)= l/ (| l(r-1)' This

i. a co.ölla'y to a more general theórem on nó|  necessarily intersecting hypergraphs.

1. Introductí on, ilefinitions

l.l Some well-known definitions

We list the basic definitions and notation to be used throughout:

hypergraph ff - a finite collection of non-empty finite sets (edges);

u.eitni sé t of t - Vvr):U { E: E€tr} ;
rank of t - r(/ f):max { | E| :  E€/ f),
ff is r.unifurnl if the caÍ dinality of every E(#  is r;
degree of a vertex x (in # ) - dx7(x): | { E: xeE€,t)| ;
D (t) :max { d*  (* ) :  x(Y (t)\  ;

t is D-regular if the degree of every vertex x is D;
partial hypergraph - df,'clf,;
matchtng - paitiat hypergraph of lf whose edges are pairwise disjoint;

v(t) - maiching numbeí  - maximum number of edges in a matching;

intersecting hypergraph - v(/ f,):1'
transuersal (or cover) - a set TcV@f) which meets all the edges;

r(af,\  - transuersal number -- minimUm cardinality of a transversal.
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1.2 Fractional transuersals and matchings

A survey with applications on fractional hypergraph theory can be found
e.g. in Berge [ 1]  or Lovász [ 12] ' [ 16] . Here we shall define only the most important
concepts of this theory which appeared in first papers published on this topic.
(Berge and Simonovits [ 2] , Lovász [ ll] .)

A fractional transuersal of a hypergraph tr is a weight function t:  V(lf,)* p
satisfying

r(x) 
=  

0 for every x(V(tr),
and

) t(x)>  1

x €.E

The ualue of a fractional transversal

for every edge E(t.

lrl-
l,I  -

lis
t

x €Y(* )
t(x)-

The minimum of | l|  wherr Í  ranges over all fractional transversals is called the
fractional transuersal number and is denoted by

r* (/ f):srin { lll:  I  is a fractional transversal of # \ .

Similarly the fractional matching number is the maximum value of the fractional
matchings of # ,i.e.

v,(tr): Í láX { _z,(ts| w:3/ ,* R' w(6)> 0, Vx€V(t) wehave ) w(E)}  <  l.-ECt 
r'1*

Clearly, to determine the fractional transversal number and the fractional matching
number is a problem of linear programming. This is a dual pair so by the duality
principle of linear programming we have t* (tr1:y* 13t7) for every hypergraph
/ / " Thus

l< v= y+ :T* < t= rv.
ln view of the fact that w(E): llD and l(x):17-in lEl arc a fractional matching
resp. fractional transversal we have

(1)
t./ ?t lv(t)l1"" |  <  -'( y"\  

=  
---D(# ) - - \ "", - min { | E| :  E€;r).

1.3 An important example

r-uniform then (1) yields

l,t llD :  lY@flllr :  r*  (tr).

For r >  3 write 3 , for the hypergraph consisting of the lines of the r-uní form finite
projective plane (if there exists) further let / , consist of the 2-tuples of a 3-element
set (i.e. 3, rs a triangle) and let I , be the hypergraph having only 1 point. I t is
wcll-known that ?, exists provided r:P* 1, where P is a prime power.

I t is evident that every line of the projective plane ?, is a minimal trans-
versal of ? , . For r :  l, 2, 3 there is no other minimal transversal. For the projective

I f tr is D-regular and

(2)
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p| ane 3, with r> 3, J. Pelikán [ 18]  proved that the only transversals of cardinality
r are the edges, and
(3) all other transuersal sets haue size > r* 2.

Summing q.:_1.9,1: lY(9,)l: r2-r* 1, e, is r-uniform and r-regular, v(?,):1,
r (3,):  r, r*  (3,1:y - |  + 11r.

2. Results

considering all the r-tuples of an underlying set with rv* r-l elements it
can be seen that the inequality Í < ry cannot be improved in general. Nevertheless,
as L. I  ovász observed, the inequality ,c* + rv is not sharp. He showed (see I l4] , [ l5] )'
that, for any hypergraph / (,f (t()= r(.f)r(tr), furthermore

t*  (r, v) :  sup b*  (tr):  r(.# ) <  r, v(tr) =  v) - ry.

F-ol l: l he proved that r* (r,1)< r-1+ 2lQ+ I ) and he conjectured that
r* (r,I )< r-l+ llr. In this paper we shall prove a bit more.

Theorem. Let tr be a hypergraph of rank r> 3,,v(ff\ : r. Suppose further that
.ff does not contain a partial hypergraph which consists of p* l copiei of pairwise
disjoint r-uniform pro.jectiue planes. Then

Í * (# ) 
=  

(r_ l)v* plr.

(The proof of the Theorem is in $ 5.) We mention that the í nequality of the Theorem
is sharg. To see this consider the hypergraph?i which we get frome,by omitting
a line. (r.(3i): r-1.\

The case r:1 is of no importance. For r:2 the Theorem does not hold
true, because for the odd circuits C,nn, one has v(C,"* 1):n, p:O but Í * (C2"+ J
:71| 112. L. Lovász [ 13]  proved that for an ordinary graph G

í * (G)= * ("* n)= * ".

The following corollaries ur" ,rir""u"n if i= : .
Corollary t. I í  lf is the union of v pairwise disjoint copies of 3,, then r* 17r1:: (r-1 * 1lr)v otherwise r*  (2f,1= Q -t + I lr)v-I lr.
Proof. The inequality r* (,/ í ,): -(r-L-| 1lr)v-| lr implies that sf, has a partial
hVpergra-ph / / ', which is the disjoint union of v copies of ?,. That is .t,c/ f .

Then it follows from (3) that o?,: tr. I
(The case r:2 is left to the reader).

corollary 2. Let r be a positiue integer for which ?, does exist. Then r* (r,v):: (r-l* llr)v. I f?, does not exist then f(r,v)< (r-i)v. I
I  think that for the t ime being the determination of the exact value of r*  (r, v)

forother r's is hopelessly difficult, because to solve this problem one probably.haí
to decide whether or not the projective plane ?, does exist for a given r.
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3. Applications

3.1 The maximum degree of hypergraphs

Letusconsider an intersecting, r-uniform hypergraph tr. Obviously D(tr)

= | tllr. I t is a well-known conjecture 16,11that D> l# llQ-l+ llr). From the

Theorem and from (1) a slightly stronger result follows.

Corollary 3. Let ff be an r-unifurm, intersecting hypergraph. Then etther it is a

projectiue plane of order r-l and consequently D(tr\ : llf ! l@-1,+ llr) or D(tr)
> l/ { ll@-!. I
In general D(tr)= | tr| lU-| * | lr)v. This was proved Í or r:2 by B. Bollobás [ 4]

in á slightly different form. This Corollary is sharp because D(gi): | gi| l?_t),

3.2 The number of uertices of regular hypergraphs

Using his result (r* (r, I )= ,_| 12(r* 1)) mentioned above L. Lovász fI4] ,

[ 15]proved the following conjecture of P. Erdős [ 6]  and B. Bollobás [ 4] :- 
I Í  lf, is an intersecting, r-uniform and regular hypergraph, then | V(t)|

= rz -r * 1.
By the Theorem and Q) we generalize this result as follows. (For r:2 see

Bollobás-Eldridge [ 5] ).

Corollary 4. I Í  lf is r.uniform and regular then | V(tr)| = (r,-r* 1)v. Moreouer
equality holds if and only if #  is the disioint union of projectiue planes or order r-1.
Furthei:rmore if there is no such r-uniform plane then lV(t)l< { rz-r)v. I

By omitting from9, a point together with all the lines containing it we get

the hypergraph gi which is (r - l) 'regular, r-uniform and intersecting. I t has rz - r
points. This example shows that Corollary 4 is sharp, too.

3.3 Fractional transuersal number of r-partite hypergraphs

The hypergraph lt í s said to be r-partite iÍ  V(lf,) is the disjoint union of
X,, ..., X,, and for each E€,fr:  | E.Xl: l holds (i:L,2, .'., r).
A well-known conjecture of H. J. Ryser states that for an r-partite hypergraph
t= (r_l)v. (In particular for r:2 this is simply König'1 Theorem (see [12] ). For
some small values of r and v this conjecture has recently been proved by Zs. Ttza
t19] )' A, Gyárfás [ l0]  proved an easier version of Ryser's conjecture. His result

follóws from our Theorem because 3, is not r.partite (,= -2).

Corollary 5. I Í  the hypergraph ff is r.parttte then t* (a?)= (._ Í )v(t). l
This Corollary is sharp for ?i is r-partite and r* (3i): r-1.

3.4 Some further applications of this Theorem to extremal graphs and

to extremal set-systems can be found in J. Pach-L. Surányi U7), Z. Füredi [ 9]

and P. Ftank| -Z. Füredi [ 8] , respectively.
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We denote
Ya1!e M.

(4)

4. The reduction lemrna

by (a,, bi,c,D the following linear program with minimum

x> 0
a'x 

=  
b' for all i€1.

mincx: M(ai,br,c, I )

Here a;, x and c are n-dimensional vectors , bi's are real numbers and l1l is the number

of conditions of the program (l1l=  -)'
The following rropositión is weli known in the theory of linear programming. For
the sake of óompÍ etness we give its short proof in the Appendix.

Proposition. I f the linear program (a,, br, c, I ) with n uariables -has 
a finite optiryum,

thei there exists a JcI  iuch that M(ai,bi,c,I ):M(ai,bi,c,J) and lJl= n'

In other words this Proposition states that the number of conditions of a linear

program can be reduced to n without changing the 
-optimum -value'

The proof of the Theorem is based on the following Lemma which may

help to determine t*  in some other cases as well.

Lemma. For any hypergraph Af, there exists apartial hypergraph ff'c#  such that

t*  (/ f,'1:  x*  1af,) and | .tr' l= lv(# ')| .

Proof. To determine t*  one has to solve a linear program of dimension lv@f)| ,
with index set 1, where vl: l# 1. of course, this program always has a finite op-

timum. So by applying thé  i'roposition (possibly several times) one can find a suitable

.ff'clf,. I

5. Proof of the Theorem

Let af be an r-uniform hypergraph which does not contain l* 1 disjoint

copies of the projective p| ane 3, ánd v(/ f): l.- Suppose r= 3.. (our proof can

be-applied for r:2, too, but the details are left to the reader')

I t is sufficient to give a suitable fractional transversal t of df,. We shall give

it by induction on y, while r is fixed. The proof in the case v: l is similar to that

one for v> l and that is why we do not separate them, bUt sometimes we mention

the differences.
For ff:g put f 1/ f1:g- By the Lemma ws may suppose that l# l

= lv(f)| . Consequently,

(s) .?il* ,d(x)= Z+ r# gf : ffi= ,.

Case l, There exists xo€V(# ) with dg(xo):k< r. Put lf o:{ EQr: xo4-E}

: { Er,...,E0} , and / { r: { Ecaf,:  !).\  .0\  for l= i= k.. ..Foi 
t ií é  trypergraph.,tri the induction hypothesis can'be applied, because

v(af )= l-t anábr óou?.. ff.i does not contain more than p disjoint 3, as partial
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hypergraphs. Hence there exists a fractional transversal t i:  V(sf,r)* fu of # i,
such that V,l= @ - 1)(v- l) + plr. (I f here y: I  then ffi:0,1i:0.)

Put

where do(x) is the degree of x in the hypergraph # r.We claim that this is a frac-
t ional transversal of tr,.Indeed, r(x)> 0, and for aty E€tr, we have

[ 0 if x:  xo

/ (x):  
i*  [ ',o, +  !,s) if x€V(tr)_{ x,\ ,

Z t{ r1= -11
x€E ru

Z 4(x)) =  +  (,- r) =  l.
x ( -E- { xo}  K

I f E(/ { _yí o then

Finally

Iu,(* ):  i(3,do(x)+  lf 3,,,ra!

= + ( á 1+  z') : '.
EnÉ ,í # g EClE,:6

l( L \t* (,tr\= lrl: ; l Z do@)+ Zl 2r,(")ll,\  \ x€V('()_| Xo) i: t x€v(Í ) ,

:  + (,'- Dk+  i 1r,1) =  1r- r)v* plr.

(For v: l we get f(/ f,)= r-1.)

Case 2. min d* (x)= r.
x (tlt8)

Then, by (5), #  is r-regular, so l4{ l: lv(t)| . We shall show that ltrl
= (rz-r)vlp from here, by (2), the Theorem follows.

Suppose on the contrary that l# l> (r2-r)v* p+ 1. Let Erbe an arbitrary
edge of tr andptt tr: { EQ# : EaE\ :A} . Applying the induction hypothesis
to af,, and using (1) we get that

l# l:  l{ E:  E)8,+  A} l+ ltrl =  
I+ r(r-l)* r* (# r)D(trr)=  (r2-r)v* ptr.

Here the right side is at most (r2-r)v1p if there is an edge E with V1ELI> 2.
Consequently it is enough to consider the following case.

(6)

(1)

(I f v: l and p:I  then (6) yields a contradiction, because in this case ffr: fi.
Similarly, for v:7,p:0 we have by (6) and (7) that A? is an r-uniform, r-regular,
intersecting system of sets on (r2-ral) points with the same number of edges.

l# l :  lV (tr)l :  v (r2 - r) *  p *  I

I tr -trrl :  12-r* I

lBaBrl:  0 or 1, for any edges E, Et.
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This in turn implies that ff:?, contradicting to p:g From now on we suppose
tÍ lat v> 2.)

Let Er,Er,...,E, any fixed matching. We call an edge E(a? crossing if it
intersects more than one E, (1 < i= v). We count the number of edges of

t-{ E,...E,}  withmultiplicit ies in the poins of Ü 
',.* " 

getvr(r-l). From the
i: l

other hand ] t _ { E,, ..., E,)| :y(r2_r)+ p* Í _v, and so there are atmost y- I_p
crossing edges. This means that there is an edge, say t1, in the matching { 'E1 ....E,}
which intersects at most one crossing edge.

Case 2a. E, is not intersected by a crossing edge.

In other words, the system { Er,...,.E"}  has no common point with edges
intersectingd.Since v(/ { ):y wegetÍ hattr_lf,,isanintersectingfamily'Further
D(t-tr):v, and this together with (6) and (7) implies that of,-ffr:?,.
Moreover, the underlying sets V(tr) and V(tr-/ f) are disjoint. Applying the
induction hypothesis to ff, with parameters y- |  and p- I  we get by (l)

I t* hql =  r* (ff-ffr)r 
=  

(r'-r)(v-1)* (p-l),
contradicting to (6).

Case 2b. There is a unique crossing edge E' intersecting Er.

I t remains true that tr - tr r.- { 2"}  is an intersecting family, ltr - tr ,"- { E'\ l:: r2-t,D(/?-lfr{ E'} l: r. We claim that in this case t-tr.-{ E'\ :gi.
Indeed, by (7)' every edge of tr-,t,-{ É ',}  contains a point of degree r-1. There
are exactly r points of this type, they form a set 7. I t is easy to check that
(t-trr-{ E'\ )U{ 7}  is a finite projective plane. E'* T for E'is crossing. So
there is an edge E"< / f -hft such that E')E":O, and

(8) at least r-I  edges E of tr -"trhaue the property that E)E'+ g and E)8" # b.

Let ffl: { Zet:  E)E':A and E")E:O}  and tz: ff-ffl. Applying the
induction hypothesis to # r with parameters y-2 and p, and using that upper
bound for ltr'zl which follows from (8), we get

|  
#  |  :  I  

trl +  lr rl 
=  

(v - 2) (rz - r) *  p i- 2 (rz - r) +  Z - (r - r).

This again contradicts to (6), provided r> 3. I

6. Appendix:  Proof of the Proposition

Dropping some of the inequalit ies of (4) the minimal value of the program
can only decrease. Hence we have to prove that there is a JcI , l"I l: r such that
M (zi, b i, c, J)>  M (ai, bi, c, I ):  flf.

Suppose, on the contrary, that for every Jc I , lJl:n, we have
M(ai,b,,c,J)< Iu[ . This means that any n of the halfspaces { y:  a,y> b,\  have
a point in common with the open convex polytope { * €R":  cx= M,x> O} . The
system (4) has a solution, hence any n1-I  of the halfspaces { y:  ary--b}  have a point

161
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in common. Now Helly's Theorem in R' implies that the intersection of the

l1l-| 1 convex sets { y:  aiY= bi}  and { x:  cx< M, x> 0}  is not empty, i.e. it contains
apointxo.Thispointxoisfeaiiblefortheprogram(4)and cxo< M:M(ai,bi,c, I ).

This contradictión proves the existence of the appropriate "I . l
Acknowledgment. I  would like to express my thanks to P. Frankl and I . Bárány

for their help.
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