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Abstract 

The principle of Maximum Entropy (ME) provides a consistent method of inference for 

estimating the form of an unknown discrete-state probability distribution, based on information 

expressed in terms of tree expected values. In this tutorial paper entropy maximisation is used 

to characterise product-form approximations and resolution algorithms for arbitrary continuous- 

time and discrete-time Queueing Network Models (QNMs) at equilibrium under Repetitive- 

Service (RS) blocking and Arrivals First (AF) or Departures First (DF) buffer management 

policies. An ME application to the performance modelling of a shared-buffer Asynchronous 

Transfer Mode (ATM) switch architecture is also presented. The ME solutions are 

implemented subject to Generalised Exponential (GE) and Generalised Geometric (GGeo) 

queueing theoretic mean value constraints, as appropriate. In this context, single server GE and 

GGeo type queues in conjunction with associated effective flow streams (departure, splitting, 

merging) are used as building blocks in the solution process. Physical interpretations of the 

results are given and extensions to the quantitative analysis of more complex queueing 

networks are discussed. 

1. Introduction 

Queueing network models (QNMs) are widely recognised as powerful tools for 

representing discrete flow systems (such as computer, communication and flexible 

manufacturing systems) as complex networks of queues and servers and analysing 

their performance. Within this framework the servers represent the active or passive 

resources of the system such as processors, memory and communication devices and 

the customers circulating through the servers stand for the jobs, messages or 

components being processed by and competing for these resources. 

Classical queueing theory provides a conventional framework for formulating and 

solving the QNM. The variability of interarrival and service times of jobs can be 

modelled by continuous-time or discrete-time probability distributions. Exact and 

approximate analytical methods have been proposed in the literature for solving 

equations describing system performance. These techniques lead to efficient 

computational algorithms for analysing QNMs and over the years a vast amount of 
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progress has been made worldwide (e.g., [1-19]). However, despite persistant 

attempts for generalisation some problems still remain without a satisfactory solution. 

In the continuous-time domain the accuracy of analytic approximations for general 

QNMs, particularly those with finite capacity and multiple-job classes, may be 

adversely affected when based on intuitive heuristics, while very often gross 

assumptions are made in order to assure exact numerical solutions (e.g., [1-14]). 

Many theoretical advances on continuous-time queues have been extended to discrete- 

time queues (e.g., [15-19]). However, there are few standard and unique results that 

are known for discrete-time queues due to the inherent difficulties associated with the 

occurrence of simultaneous events at the boundary epochs of a slot including bulk 

arrivals and departures (c.f., [20]). 

Since the mid-60s it has become increasingly evident that classical queueing theory 

cannot easily handle by itself complex queueing systems and networks with many 

interacting elements. As a consequence, alternative ideas and tools, analogous to 

those applied in the field of Statistical Mechanics, have been proposed in the literature 

(e.g., [21-28]). It can be argued that one of the most fundamental requirements in the 

analysis of complex queueing systems is the provision of a convincing interpretation 

for a probability assignment free from arbitrary assumptions. In a more general 

context, this was the motivation behind the principle of Maximum Entropy (ME), 

originally developed and thoroughly discussed by Jaynes [29-31] in Statistical 

Physics. The principle provides a self-consistent method of inference for estimating 

uniquely an unknown but true probability distribution, based on information 

expressed in terms of known true mean value constraints. It is based on the concept 

of the entropy functional introduced earlier in Information Theory by Shannon [32]. 

Over the recent years the principle of ME, subject to queueing theoretic constraints, 

has inspired a new and powerful analytic framework for the approximate analysis of 

complex queueing systems and arbitrary queueing networks (c.f., [22, 25-28, 33-64]). 

This tutorial paper presents ME product-form approximations and resolution 

algorithms for both continuous-time and discrete-time First-Come-First-Served 

(FCFS) QNMs at equilibrium, subject to Repetitive-Service (RS) blocking 

mechanism with either Fixed (RS-FD) or Random (RS-RD) destination and Arrivals 

First (AF) or Departures First (DF) buffer management policies. An ME application 

to the performance analysis of a shared buffer Aynchronous Transfer Mode (ATM) 

switch architecture is also described. The ME solutions are implemented subject to 

queueing theoretic Generalised Exponential (GE) and Generalised Geometric (GGeo) 

mean value constraints. In this context, single server GE and GGeo-type queues in 

conjunction with associated flow streams (departure, splitting, merging) play the role 

of building blocks in the solution process. 
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The principle of ME is introduced in Section 2. The GE and GGeo distributions and 

related formulae for merging of flow streams are described in Section 3. The ME 

analysis of GE and GGeo type queues in conjunction with interdeparture-time flow 

formulae are presented in Section 4. The ME product form approximations and 

resolution algorithms for arbitrary QNMs are reviewed in Section 5. A ME 

application to a shared buffer ATM switch architecture is carded out in Section 6. 

Conclusions are given in the last Section, followed by an annotated bibliography. 

Remarks: RS blocking occurs when a job upon service completion at queue i 

attempts to join a destination queue j whose capacity is full. Consequently, the job is 

rejected by queue j and immediately receives another service at queue i. In the case 

of RS-FD blocking this is repeated until the job completes service at a moment where 

the destination queue j is not full. In the RS-RD case each time the job completes 

service at queue i, a downstream queue is selected independently of the previously 

chosen destination queue j. Moreover, AF and DF policies for discrete-time queues 

stipulate how the buffer is filled or emplied in case of simultaneous arrivals and 

departures at a boundary epoch of a slot (or unit time interval). Under AF arrivals 

take precedence over departures while the reverse takes place under DF (c.f., Fig. 1). 

BULK DEPARTURE 

BULK ARRIVAL 

BULK DEPARTURE 

j I/' I 
BULK ARRIVAL 

Fig. 1. AF and DF buffer management policies per slot 
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2. The Principle of ME 
2.1 Formalism 

Consider a system Q that has a set of possible discrete states S = {So, $I ,  S~ .. . .  } 

which may be finite or countable infinite and state S , n=0,1,2 .... may be specified 
n 

arbitrarily. Suppose the available information about Q places a number of constraints 

on P(Sn), the probability distribution that the system Q is at state S . Without loss of 
n 

generality, it is assumed that these take the form of mean values of several suitable 

functions {f, (Sn), f2(Sn) ..... fm(Sn)}, where m is less than the number of possible 

states. The principle of maximum entropy (ME) [29-31] states that, of all 

distributions satisfying the constraints supplied by the given information, the 

minimally prejudiced distribution P(Sn) is the one that maximises the system's entropy 

function 

H(p) = - S ~ S P(Sn) "~ n{p(Sn)}' (2.1) 
n 

subject to the constraints 

S ~ S P(Sn) = 1, (2.2) 
n 

S ~ S fk(Sn)P(Sn) = <fk >' k=l,2 ..... m, (2.3) 
n 

where { <fk > } are the prescribed mean values defined on the set of functions { fk(Sn)}, 

k=l,2 ..... m. Note that in a stochastic context, for example, these functions may be 

defined on the state space S of a Markov process with states {Sn }' n ~ 0, and P(Sn) can 

be interpreted as the asymptotic probability distribution of state S at equilibrium. 
n 

The maximisation of H(p), subject to constraints (2.2)-(2.3), can be carried out using 

Lagrange's Method of Undetermined Multipliers leading to the solution 

m } 
P(Sn) = -~- exp -k__Z1 13 kfk(Sn) , (2.4) 
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where exp{ I~k}, k=l,2 ..... m are the Lagrangian coefficients determined from the set of 

constraints <fk >, and Z, known in statistical physics as the partition function (or 

normalising constant), is given by 

{m } 
Z=exp{~o} = S ~ S exp -k=~l ~kfk(Sn ) , (2.5) 

n 

where [~0 is a Lagrangian multiplier specified by the normalisation constraint. It can 

be verified that the Lagrangian multipliers { I~k}, k=l,2 ..... m satisfy relations: 

~o  
[~k - <fk>' k=l,2 ..... m, (2.6) 

while the ME functional can be expressed by 

m 

max H(p) = 6o + k~l ~k<fk >" 
P 

(2.7) 

Although it is not generally possible to solve (2.6) for { [3k} explicitly in terms of 

{<fk>}, numerical methods for obtaining approximate solutions are available. When 

system Q has a countable infinite set of states, S, the entropy function H(p) is an 

infinite series having no upper limit, even under the normalisation constraint. 

However, the added expected values {<fk > } of (2.3) introduce the upper bound (2.7) 

and the ME solution {P(Sn) } exists. 

The characterisation of a closed-form ME solution requires the priori estimation of 
<.c the above multipliers in terms of constraints { ._k>}. Note that these constraints may 

not all be known a priori; but it may be known that these constraints exist. This 

information, therefore, can be incorporated into the ME formalism in order to 

characterise the form of the state probability (2.4). As a result, the mean value 

constraints may become explicit parameters of the ME solution. The analytic 

implementation of this solution, however, clearly requires the priori calculation of 

these constraints via queueing theoretic (or even operational) exact of approximate 

formulae expressed in terms of basic system parameters. 



250 

2.2 Justification of ME Principle 

The principle of ME has its roots in Bernoulli's principle of Insufficient Reason (IR) 

implying that the outcomes of an event should be considered initially equally 

probable unless there is evidence to make us think otherwise. The entropy functional 

H(p) may be informally interpreted as the expected amount of uncertainty that exists 

prior to the system occupying anyone of its states. For a finite set of states {S }, H(p) 
n 

reaches its maximum (2.7) when all outcomes of an event are equally probable (i.e., 

prior to the execution of an experiment one is faced with maximum uncertainty on 

which outcome will be realised). To this end, one should initially start with the 

distribution of IF (i.e., a uniform type distribution) and then adjust this distribution to 

maximise the entropy if prior constraint information is known. In this context, the 

principle of ME may be stated as Given the propositions of an event and any 

information relating to them, the best estimate for the corresponding probabilities is 

the distribution that maximised the entropy subject to the available information. 

In an information theoretic context [29], the ME solution corresponds to the 

maximum disorder to system states, and thus is considered to be the least biased 

distribution estimate of all solutions that satisfy the system's constraints. In sampling 

terms, Jaynes [30] has shown that, given the imposed constraints, the ME solution can 

be experimentally realised in overwhelmingly more ways than any other distribution. 

Major discrepancies between the ME distribution and the experimentally observed 

distribution indicate that important physical constraints have been overlooked. 

Conversely, experimental agreement with the ME solution represents evidence that 

the constraints of the system have been properly identified. 

More details on the principle of ME can be found in Tribus [65]. A generalisation to 

the principle of Minimum Relative Entropy (MRE) - requiring, in addition, a prior 

estimate of the unknown distribution - can be seen in Shore and Johnson [66]. 

2.3 ME Analysis in Systems Modelling 

In the field of systems modelling expected values of various performance 

distributions of interest, such as the number of jobs in each resource queue concerned, 

are often known, or may be explicitly derived, in terms of moments of interarrival and 

service time distributions. Note that the determination of the distributions 

themselves, via classical queueing theory, may prove an infeasible task even for 

systems of queues with moderate complexity. Hence, the methodology of entropy 

maximisation may be applied to characterise useful information theoretic 

approximations of performance distributions of queueing systems and networks. 



251 

Focusing on a general QNM, the ME solution (2.4) may be interpreted as a product- 

form approximation, subject to the set of mean values {<fk>}, k=l,2 ..... m, viewed as 

marginal type constraints per queue. Thus, for an open QNM, entropy maximisation 

suggests a decomposition into individual queues with revised interarrival and service 

times. The marginal ME solutions of these queues, in conjunction with related 

formulae for the first two moments of the effective flow, can play the role of building 

blocks towards the computation of the performance metrics (c.f., [27]). For a closed 

QNM, the implementation of ME solution (2.4) clearly requires the a priori estimation 

of the Lagrangian coefficients exp{[~k}, k=l,2 ..... m. To this end, a modified 

algorithm of an open network satisfying the principles of flow and population 

conservation (pseudo open network) may be used in conjunction with a convolution 

type procedure for the estimation of the performance metrics (c.f., [28]). 

3. The GE and GGeo Distributional Models 

3.1 The GE Distribution 

The GE distribution is of the form 

-ot 
F(t) =P(W_< t) = 1 - x e , t > - 0 ,  (3.1) 

where 

x = 2/(C 2 + 1), (3.2) 

o = xv , (3.3) 

W is a mixed-time random variable (rv) of the interevent-time, while 1/v is the mean 

and C 2 is the squared coefficient of variation (SCV) of rv W(c.f., Fig 2). 

C 2 - 1 
1 - x - - -  

C 2 + 1  

y 

2 

2 v  

C :  +1  

Fig. 2. The GE distribution with parameters x and o. 
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For C ~ > 1, the GE model (3.1) is a mixed-time probability distribution and it can be 

interpreted as either 

(i) an extremal case of  the family of  two-phase exponential distributions (e.g., 

Hyperexponential-2 (H 2)) having the same v and C 2 , where one of  the two 

phases has zero service time; or 

(ii) a bulk type distribution with an underlying counting process equivalent to a 

Compound Poisson Process (CPP) with parameter 2v/C 2 + 1) and 

geometrically destributed bulk sizes with mean = (C 2 + 1)/2 and SCV = (C:  - 

1)/(C ~ + 1)) given by 

i I 1 o -~ n - 1  "ci(1-x) n-i, if n -> l", 

P ( N c p = n ) =  i_ ~1 ~ e i 1 (3.4) 

e , i f n =  0, 

where N is a Compound Poisson (CP) rv of  the number of  events per unit time 
cp 

corresponding to a stationary GE-type intervent rv. 

By using the bulk interpretation of the GE-type distribution and applying the Law of  

Total Probability it can be shown that merging M GE-type streams with parameters 

(v i, C ; ) ,  i=1,2 ..... M results in a GE-type overall stream. This stream, however, 

generally corresponds to a non-renewal CPP process (with non-geometric bulk sizes) - 

unless all C. 2 's are equal - with parameters (x, C 2 ) determined by [27, 28]. 1 

M 

v = i E= 1 v.1 ' (3.5) 

I M v. 1 1 

C 2 =-1  + i ~ l  ~ (C'21 + 1)-1 

-1 

(3.6) 

3.2 The GGeo Distribution 

The GGeo distribution is of  the form 

I 1 - x , i f n = 0 ,  

f = P (Y = n) = (3.7) 
"co(1 - ~)n-1,  i f n  >- 1 , 

n 
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where 

x=2 / ( C  2 + l + v ) ,  

t~ = "I;V , 

Y is a discrete-time rv of the interevent-time, while 1/v and C ~ 

SCV of rv Y (c.f., Fig. 3). 

(3.8) 
(3.9) 

are the mean and 

C 2 - l + v  

C 2 + l + v  

lb 

2 

C 2 + l + v  @ 
2v  

( I -  

C 2 + l + v  

Fig. 3. The GGeo distribution with parameters x and o. 

For C 2 -> I 1 - v I, the GGeo model (3.7) is a discrete-time probability distribution 

implying a bulk intervent pattern according to a Bulk Bernoulli Process (BBP) with a 

rate o, while the number of events (e.g, arrivals or departures) at the boundary epochs 

of a slot is geometrically distributed with parameter ~. Thus, the GGeo distribution is 

generated by a sequence of bulk Bernoulli independent and identically distributed non- 

negative integer valued rv.'s {Yk}, where Yk is the number of events in a slot, with a 

probability distribution given by 

f P(Yk = 0 ) = 1  - o ,  if I = 0 ,  

gi = x)l_ 1 
P(Yk = ~ ) = ~  - , i f  I ~ 1 .  

(3.10) 

It can be verified via the Law of Total Probability that merging M GGeo-type streams 

C ~), i=1,2 ..... M, the corresponding overall parameters (v, C 2 ) are with parameters (v i, i 

given by (3.5) and 
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I M v. ] 
1 -1 -1 

C 2 = - l - v +  i ~ l  ~ ( C . ; + v . + l ) l  ' (3.11) 

respectively [60, 64]. Note, however, that the resulting distribution is not of GGeo- 

type. 

Remarks: The GE and GGeo distributions are versatile, possessing pseudo- 

memoryless properties which make the solution of many queueing systems and 

networks analytically tractable. The GE and GGeo cannot be physically interpreted 

as stochastic models outside the ranges C ~ ~ 1 and C 2 >_ I 1 - v I, respectively. 

However, they can be meaningfully considered as pseudo-distributions of flow model 

appro• of stochastic models, in which negative branching pseudo- 

probabilities (or weights) are permitted. The utility of other pseudo-distributions in 

systems modelling has been pointed out in [67, 68]. 

4. The ME Building Blocks: GE and GGeo Type Single Server 

Queues 

This Section determines the form of ME solutions for stable GIG/1 and G/G/1/N 

queues, subject to queueing theoretic GE and GGeo type constraints. Moreover, it 

presents closed-form expressions for the SCV of the interdeparture-time distribution 

of the GE/GE/1 and GGeo/GGeo/1 queues at equilibrium. 

4.1 A Stable ME GIG/1 Queue 

Consider a stable FCFS G/G/1 queue with infinite capacity where jobs belong to a 

single class and arrive according to an arbitrary interarrival-time distribution with 

mean 1/3. and SCV, Ca 2 . Moreover, they are served by a single server having a 

general service-time distribution with mean 1/g and SCV, Cs 5. Let at any given time 

the state of the system be described by the number of jobs present (waiting or 

receiving service) and p(n) be the steady-state probability that the G/G/1 queue is at 

state n, n=0,1,2 ..... 

The form of a universal ME solution, p(n), for either a continuous-time or discrete- 

time G/G/1 queue at equilibrium can be obtained by maximising the entropy 

functional, H(p), subject to the following constraints: 

(a) Normalisation 

n~O p(n)= 1 . 
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(b) Server utilisation (UTIL), p(0 < p = L/p < 1), 

o o  

n ~ l  h(n) p(n) = p ,  

where h(n) = O, if n = O, or 1, if n -> 1. 

(c) Mean Queue Length (MQL), L(p < L < + oo), 

o o  

n ~ l  n p(n) = L .  

The maximisation of H(p), subject to constraints (a)-(c), can be obtained via 

Langrange's Method of Undetermined Mulitipliers leading to the following solution: 

f l - p ,  if n = 0 ,  
p(n) = (4.1/ 

( 1 - p ) g x  n if n-~ 1 

where g and x are the Lagrangian coefficients corresponding to constraints p and L, 

respectively, and are given by 

(1 - x )  p p2 
- (4 .2 )  

g -  (1-  p) x (L-  p) (1- p) ' 

and 

L -  p 
x = (4.3) 

L 

The ME solution (4.1) can be rewritten, via (4.2), as a GGeo state probability 

distribution with parameters p and 1 - x, namely 

f 1 - p  , if n = 0 ,  

p(n) = n-1 
p ( 1 -  x)x , if n~ 1. 

(4.4) 

The implementation of the ME solution (4.4) depends on the analytic determination 

of the MQL, L. This is achieved in the next Section by focusing on the GE/G/1 and 

GGeo/G/1 queues at equilibrium. 
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4.1.1 The GE and GGeo Type Information Constraints 

Consider GE/G/1 and GGeo/G/1 queues at equilibrium. By applying the generalised 

Laplace and z-transform equations, respectively, it can be shown [39, 60] that for 

either queue the random observer's MQL is given by the same formula, namely 

P [ Ca2 + P  Cs2 J 

L = - ~ -  1+ l ' - p  (4.5) 

where for L e p it follows that p >- (1 - Ca~)/(1 + Cs2). It is, therefore, implied that 

the ME solution of a G/G/1 queue is insensitive with respect to GE and GGeo 

interarrival-time distributions. Moreover, it can be established, via the generalised 

embedded Markov chain approach for continuous-time and discrete-time queues, 

that the ME solution, p(n)n=0,1,2 .... becomes exact if the underlying service 

time distributions of the GE/G/1 and GGeo/G/1 queues at equilibrium are also 

of GE(~t, Cs 2 ) and GGeo(~t, Cs 2 ) types, respectively (c.f., [39, 60]). 

In the next Section closed-form expressions for the SCV of the interdeparture-time 

process are established. 

4.1.2 The GE and GGeo Type Parameters of the Interdeparture Process 

Consider the GE/GE/1 and GGeo/GGeo/1 queues at equilibrium. By applying the 

Laplace transform and z-transform equations of the interdeparture-time distribution 

(within continuous-time and discrete-time domains), respectively, it can be shown 

that the mean departure rate is given by ~,, while the SCV, Cd 2, is determined by 

(i) Cd 2 = p(1 - p) + (1 - p) Ca 2 + p2 Cs  2 , (4.6) 

for a stable GE/GE/1 queue [27] and 

(ii) Cd 2=p~(Cs  2 + ~ t - 1 ) - p ( C a  2 + ~ - l ) + C a  ~, (4.7) 

for a stable GGeo/GGeo/1 queue under both AF and DF buffer management policies 

[60]. 

4.2 A Stable ME G/G/1/N Queue 

Consider a single class FCFS G/G/1/N censored queue at equilibrium with finite 

capacity, N and general interarrival and service time distributions with known first 

two moments. The notation of Section 4.1 applies, as appropriate. It is assumed that 
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the arrival process is censored, i.e., arriving jobs are turned away when the buffer is 

full. 

The form of  a universal ME solution p(n), n=0,1,2 ..... N, applicable to either a 

continuous-time or discrete-time G/G/1/N queue at equilibrium, can be established, 

subject to the constraints of  

(a) Normalisation 

N 

n=~0 p(n) = 1 

(b) UTIL, ~) (0 < ~) < 1),  

N 

n ~ l  h(n) p(n) = t) ,  

(c) MQL, f~(x) <_s 

N 

n= ~ 1 n p(n) = s 

(d) Full buffer state probability, (p = p(N) (0 < (p < 1), 

N 

n ~ 0  f(n) p(n) = (p, 

where f(n) = 0 , if 0 <- n ~ N-1 , or 1, if n = N, satisfying the flow-balance 

condition 

X(1 - n )  = ~t ~ ) ,  ( 4 . 8 )  

where rr is the blocking probability that a tagged job within an arriving bulk will 

find a full buffer. 

By applying the Method of Lagrange's Undetermined Mulitipliers the ME solution, 

p(n), subject to constraints (a)-(d), is expressed by 
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f l /Z ,  if n=0 , 
n 

p(n)= ( l / Z ) g x  , if n=l ,2  ..... N - l ,  

n 
( 1/Z)g x y, if n=N, 

(4.9) 

where Z is the normalising constant given by 

N-1 
1 - x  N 

Z = l + g x  1 - x  + g y x  , (4.10) 

and {g, x, y} are the Lagrangian coefficients corresponding to constraints ~), f~ and q0, 

respectively. By making asymptotic connections to infinite capacity G/G/1 queues at 

equilibrium as N --, + ~, the Lagrangian coefficients g and x are assumed invariant 

with respect to N and are given by (4.2) and (4.3), respectively, while f~ reduces to L 

and is given by (4.5). The determination of Lagrangian coefficient y, however, 

depends on the blocking probability of a tagged job, n and the probability of an 

arriving bulk to find a n jobs in the system, Pa(n), n=l,2 ..... N. These probabilities are 

determined in the next Section by considering GE/GE/1/N and GGeo/GGeo/1/N 

queues at equilibrium. 

4.2.1 The Blocking Probability 

Consider a stable GE/GE/1/N queue or a GGEo/GGeo/1/N queue under AF or DF 

buffer management policy. An universal analytic expression for blocking probability 

n can be established in terms of Lagrangian coefficients {x, g, y} by applying 

probabilistic arguments focusing on a tagged job within an arriving bulk. Clearly, the 

blocking probability r[ is conditioned on the position of a tagged job within the bulk 

and the number of jobs a bulk finds on arrival in the system. The following two 

distinct and exhaustive blocking cases are considered: 

(i) The arriving bulk finds the queue empty with probability Pa(0) and the tagged 

job is blocked. This event occurs with probability 

n(Na=0, Nt=N) 

I Xa ( 1 - x j  -1 

= Pa (0) j=~N+I j l 1/Xa 
j-( N+ 1) k j -N-k 

k=2-;O Xs(1-x s) ~ ' 
(4.11) 
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where N , N are rv.'s representing the number of jobs seen in the queue by an 
a t 

arriving bulk and its tagged job, respectively, j ~a(1 - ~a )j-l- is the probability 

that the bulk containing the tagged job has size j, Xs(1 - xs)k is the probability 

that the first k jobs depart through the zero service branch of GE(Xs,Os) or 

GGeo (Xs,Os) distribution and (j-N-k)/j is the probability that the tagged job 

occupies one of the positions N+k+l, N+k+2 ..... j within the bulk (i.e., it is 

blocked). Expression (4.11) can be written simplified to the following compact 

form: 

N (4.12) n(N a=0, .N t = N ) = S p a ( 0 ) ( 1 - x a )  , 

where 8 = Xs/(Zs(1 - z a) + Xa ). 

(ii) An arriving bulk finds on arrival n jobs in the queue, n=l,2 ..... N (including the 

one in the Exponential or Geo service branch of a GE(~s,as) or GGeo (Zs,Os) 

distribution, respectively) and the tagged job is blocked. By applying similar 

arguments to those of case (i), this event takes place with probability 

N 

n ( N  ->I,N t=N)=n__Z1 ( 1 - z ) N - n  a a Pa (n)' (4.13) 

where Pa(n) is the probability that the arriving bulk finds n(-> 1) jobs in the queue. 

Thus, a general form of the blocking probability n of a GE/GE/1/N or 

GGeo/GGeo/1/N queue (under AF or DF policies) can be expressed as the sum of the 

probabilities (4.12) and (4.13), namely, 

N 
N+n__~ 1(1 za)N-n n = g Pa(0) (1 - Xa) - Pa(n). (4.14) 

4.2.2 The Arriver's Probability, Pa(n), n ~ 1 

The arriving bulk of a GE/GE/1/N queue or GGeo/GGeo/1/N queue under AF policy 

has the same steady state probability as that of the random observer's ME solution 



260 

(4.4), i.e., Pa(n) = p(n) Vn (c.f., [20, 54]). However, for a censored GGeo/GGeo/1/N 

queue under DF buffer management policy, the following mutually exclusive events 

are distinguished: 

(i) {Na= O} 

An arriving bulk finds an empty system (with probability Pa(0)). Under DF policy the 

state of the queue before any departure(s) take place (i.e., outside observer's view 

point) can only be in one of the following cases: 

0.1 ) The queue was idle with probability p(0); 

(i~) The queue was in state n (1 _< n -< N) with probability p(n), n = 1,2 ..... N 

and, therefore, all cells of the queue departed at the end of the slot 

together with the one in Geo service. This even occurs with probability 

z n-1 
as(1 - s ) �9 

Thus, 

N 

Pa(O) = p(O) + as n ~ l  (1 - x s)n-1 p(n), (4.15) 

(ii) {N =n-> l}  
a 

An arriving bulk finds n(n = 1,2 ..... N) jobs in the queue. In a similar fashion to case 

(i 2), just before any departure(s) take place (under DF policy) there were k(k ~ n) 

cells in the queue with random observer's probability p(k). Two mutually exclusive 

cases are encountered in this situation: 

(ii,) {k=n} 

The cell in Geo service stays there for another service slot with 

probability 

1 - a  
S 

(ii~) { k> -n+ l}  
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The cell in Geo service departs (with probability as) together with k - 

(n + 1) the cells who leave through the zero service branch of the GGeo 

distribution with probability 

(1 x .k-n-1 
- S ) "C S" 

Combining cases (iil) and (ii 2) - and applying the Law of Total Probability, it 

follows that 

N 

Pa(n) = (1 - a s) p(n) + a s k=n~+l Xs(1 - Xs )k-n-1 p(k). (4.16) 

Substituting (4.15) and (4.16) into (4.14) and after some algebraic manipulation, it 

follows that 

N 
N + (1 p(k) (1 )N-~r 

- ~5 p(0) (1 - "r - as) k ~ l  - Xa 

N 
+ a  5(1 (1 ~ )N-k 

s - ' :a)  k=~l p(k) - a " 
(4.17) 

4.2.3 The Lagrangian Coefficient, y 

The Lagrangian coefficient y corresponding to the full buffer state probability can be 

determined by substituting x into the flow balance condition (4.8) and solving with 

respect y. After some manipulation it can be verified that for a GE/GE/1/N queue and 

GGeo/GGeoI1/N queue under a DF policy, y is given by a universal form, namely, 

1 

Y= 1 - ( 1  -Xs)X " 
(4.18) 

For a GGeo/GGeo/1/N queue under AF policy it can be shown that y is given by 

y =  1-p +(1-Xa) [ p 
1-x 1-x -x a 

1-p p 

- 1 - ' T ~  5 +  1-x---------~ 
a 

(4.19) 
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Remarks: It can be shown that the ME solution (4.9) satisfies the global balance 

equations of the censored GE/GE/1/N and GGeo/GGeo/1/N queues at equilibrium 

(c.f., 53, 54]). Moreover, these ME solutions can be used as building blocks in the 

performance analysis of some multi-buffered ATM switch architectures (e.g., [63]). 

5. Entropy Maximisation and Arbitrary QNMs 
5.1 Open QNMs with RS Blocking 

Consider an arbitrary open queueing network under RS-RD or RS-FD blocking 

mechanisms consisting of M FCFS single server queues with general external 

interarrival and service times. The notation of Section 4 is adopted with the 

incorporation of subscript i. At any given time the state of the network is described 

by a vector n = (ni ,n2 ..... nM), where n.l denotes the number of jobs at queue i, 

i=1,2 ..... M, such that 0 ~ n. -< N.. Let p(n) be the equilibrium probability that the 
1 1 

queueing network is in state n. 

It can be shown that the ME solution, p(_n), subject to normalisation and marginal 

constraints of the type (b)-(d), namely ~., s and tpi (i=1,2 ..... M), is given by the 
1 1 

product-form approximation (c.f., [53, 54, 58]) 

M 

p(n) = i ~ l  Pi(ni ) '  (5.1) 

where Pi(ni) is the marginal ME solution of a censored G/G/1/N.1 queue i, i=1,2 ..... M 

(c.f., Section 4.2). Thus, entropy maximisation suggests a decomposition of the 

original open network into individual censored G/G/1/N. queues with revised 
1 

interarrival-time and service-time distributions. 

Assuming that all flow processes (i.e., merge, split, departure) are renewal and their 

interevent-time distributions being of GE or GGeo type, each queue i, i=1,2 ..... M, can 

be seen as a censored GE/GE/1/N. or GGeo/GGeo/1/N. queue with (a) GE or GGeo 
1 1 

overall interarrival process (including rejected jobs), formed by the merging of 

departing streams towards queue i, generated by queues {j }, 'v'j e A., where A. is the 
1 1 

set of upstream queues of queue i (which may include outside world queue O) and (b) 

an effective service-time distribution reflecting the total time during which a server of 

queue i is occupied by a particular job. 
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The rate and SCV of the effective service-time depend on (a) the type of RS blocking 

mechanism enforced, and (b) all blocking probabilities n.., ir Vj ~ D i (i.e., the 
1j 

probabilities that a completer from queue i is blocked by queue j (;e i)), where D. is 
J 

the set of all downstream queues of queue i. Using the properties of the GE or GGeo 

A 2 
distribution it can be verified that the rate g., and SCV, ~s.,  of the effective service time 

1 1 

are determined for all i=1,2 ..... M by [54]. 

A 

gi =- 

gi(1 -nci ) , ifRS-RD, 

'1 , if RS-FD, 
gi j D i 1- nij 

(5.2) 

f n c i  + Csi~ (1-nci  ) I ZD i ifRS-RD, aij (1 + nij) 

Cs i ~ (1 - )2  

~s; = -1 + . . . . . . . .  + �9 nij 2'ifRS-FD' 

c~ij [J~Di aij ] 
j~D i ~ -- n]i) (1- nij ) 

(5.3) 

where n . is the blocking probability that a completer from queue i is blocked under 
e l  

RS-RD blocking mechanism, i.e., nci = j~ ]~D i a..n..,lj lj with {aij }, i=1,2 ..... M (i~j) being 

the associated transition probabilities. Note that only in the case of RS-RD blocking 

the effective service-time is represented exactly by a GE or GGeo distribution with 
A 

parameters gi and ~s'~'l 

The effective arrival stream of jobs at the GE/GE/1/N. or GGeo/GGeo/1/N. queue can 
1 1 

be seen as the result of a two-way splitting of overall merging stream with parameter 
n. (i.e., the blocking probability of either an external arriver or a completer in the 

1 
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network is blocked by queue i). Denoting ~. and ~a. 2 as the parameters of the effective 
1 1 

interarrival process, it follows that the corresponding parameters of the overall 

interarrival process are given by 

~. ~a. ~ - ~. 
1 1 1 

)~.= ~ ,  Ca. 2 - , i=1,2 ..... M.  (5.4) 
1 1 - n .  1 1 - r e .  

1 1 

^ 

Moreover, { ~,i }, i=1,2 ..... M, must satisfy the effective job flow rate equations, i.e., 

M 
A 

__z 
1 Oi+j 1 j1J 

i=1,2 ..... M, (5.5) 

^ ^ 

where ~'0i is the effective external arrival rate and cxii is the effective transition 
J 

probability [58] given by 

aJ i (1 ij~ji) 
(1 - , if RS-RD, 

^ (5.6) 
aji = 

m. , if RS-FD, 
j l  

j=l,2 ..... M, i E D. (n.b., J~t" 0 ~ 0). 
J 

The SCV of the effective interarrival process of each queue i, ~a. 2 , i=1,2 ..... M, can be 
1 

approximated within a continuous-time or a discrete-time domain by applying the 

merging GE-type or GGeo-type flow formulae (3.6) and (3.11), respectively and is 

given by 
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I d0i+xl, 
-1+ V 

A ]-1 

M ~ aji [~dj2 +1]_1 for GE streams, 
+j=~l ~i i ' 

A 2 
Ca. = 

1 

E 1-1 - 1 - ~ . +  0i A 2 A 
1 ~ Cd0i + 1 + k0i 

1 
A A ] ]-1 

M )~. a . .  [ A -1 
+.• J J1 ~d. ~ . + 1 + ~. for GGeo streams, 
J= l  t .  J '  JaJi ' 

1 

(5.7) 

where for i=1,2 ..... M 

~0i = ~'0i (1 - n0i  ) , 

~ 2 
d0i = n0i + (1 - n0i ) Ca0i, 0 e A.I ' 

A A ~ 
d.~.= 1 a..  + a . .  d. ~ - , j e A . ,  

J 1 J1 Jl J 1 

(5.8) 

(5.9) 

(5.10) 

& 2 )~0i and Ca0i are the overall rate and SCV of the external interarrival-times, while tgd. 2 is 
J 

the SCV of the effective interdeparture time of queue j, j=l,2 ..... M, represented by 
either a GE/GE/1/N. or GGeo/GGeo/1/N. queueing models, namely 

J J 

A A A ~ A~ ~s GE/GE/ I/N., 
~d. 2= pj(1 - pj) + ( 1 - p j ) ~ a j  +pj ; ,  for J (5.11) 

j A 2  A 2 A A A 2 A A 2 
pj (Csj + gi- 1)- pj(Caj + g.j - 1) +Caj, for GGeo/GGeo/1/N.,j 

with pj = ~/~j .  Moreover by applying the Law of Total Probability n.l is clearly given 

by 
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n. = ~] ~... n . . / .  ]~ ~... (5.12) 
1 j e  A i ja j1 j e  A i ja '  

A A 

where ~'ji = ~'J ~ji/(1 - nji) 'J ~ Ai- {0}. The behaviour of a single queueing station i 

as a building block within an open QNM can be observed in Fig. 4, while the revised 

GE/GE/1/N. or GGeo/GGeo/1/N. queue i in isolation can be seen in Fig. 5. 
1 1 

Finally, queue 0, 0 e A., and each queue i, i e A., generate an overall arriving stream 
J J 

to queue j, j= l ,2  ..... M, seen as a censored GE/GE/1/N. queue or GGeo/GGeo/1/N. 
J J 

queue under AF or DF policies with rate ~'1 ~ij/(1 -n i j )  and SCV equal to 

Cd. 2 . = (~d. 2 - nij)/(1 - nij), i e A.. Thus, if each of these streams is considered in 
13 l j  j 

isolation to be the only arriving stream to queue j, then nij(J e D. and N. < + ~) can 
1 j 

be determined by an expressions analogous to (4.14) and (4.17), as appropriate. For 

example, for a GE/GE/1/N. queue or GGeo/GGeo/1/N. queue under AF policy, if 
1 1 

clearly follows that 

N .  

n..q = (1 - Xaij) J 

A 

sj 

A 

Xsj(1 - Xaij) + Xaij 

where 

and 

N. N.-n. 

+ ~J1 (1-  J Jpj(nj) 
n. Xaij) ' 
J 

alj 

Cd. 2 . + 1 
1J 

2 

Ca0i + 1 

, i f i r  

, i f i =  0 ,  

A 

sj 

2 

s. + 1  
J 

, j = l , 2  ..... M .  

pj(n? 

i=0,1 ..... M, j=l ,2  ..... M (icj), 

(5.13) 

(5.14) 

(5.15) 
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A similar expression to that of (4.17) holds for a GGeo/GGeo/1/N. queue under DF 
J 

policy. 

The ME approximation algorithm involves the solution of the system of non-linear 

equations for the blocking probabilities {~ij }" It starts with some initial value for ~d'21 

and then an iterative procedure is applied involving all queues until a convergence for 

~d. 2 , i=1,2 ..... R, is achieved. A diagramatic representation of the solution process can 
1 

be seen in Fig. 6. The main steps of a revised ME algorithm (c.f., [58]) are given 

below: 

ME Algorithm 

Begin 

Inputs: M, N., Cs; ,  2 i=1,2 ..... M ,  
1 ~ti' ~0i' Ca0i' 

{co..}, i=1,2 ..... M; j=O,1 ..... M; 
lj 

Step 1: 

Step 2." 

Step 3: 

Step 3./:Calculate: 

A 
{r }, i=1,2 ..... M; j=0,1 ..... M; 

Step 3.2:Compute: 

A 

{~i' ~0i' ~''1 ~a'21 ' ~'''1 Ca'2'l ~ci' ~ti' ~s; }, i--1,2 ..... M; 

Step3.3:Use the Newton-Raphson method to find new values 

{uij }'i=0'l  ..... M;j=I ,2 ..... M; 

Step 3.4:Return to Step 3.1 until convergence of { nij }' V i, j; 

Step 4: Fine new values for {~d; }, i=1,2 ..... M; 

Step 5: Return to Step 3 until convergence of {~d; }, Vi; 

Feedback correction (if t~.. > 0, i=1,2 ..... M); 
U 

Initialisation: ~d. 2, i=1,2 ..... M; 
1 

{~ij }'i=0'l  ..... M ; j = l , 2  ..... M; 

Solve the system of non-linear equations { ~ij }' i=0,1 ..... M; j=l ,2 ..... M; 

for 
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~ t i a l i z e  I 

,~ . . . . . . . . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ 

i . 
I 

' - - -  2"-:- ~ ' 

I 
i I Censo red  Q u e u e  i i 
i I B u i l d i n g  B l o c k  i , 

I 
, { P , ( . , ) )  , 

. . . . . . . . .  ~ . . . . . . . . . . . . . . . .  i 
I ! 

i .............  ii- ............. ! 

Pig.  6 A diagramatic representation o f  the two nested recursive schemes. 
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Step 6: 

Step 7." 

Apply entropy maximisation to evaluate each queue i, 

)/GE(gi,~s i )/1/N i queue or i=1,2 ..... M, as a censored GE(~ i ,Ca;  ^ 

z ^ 
GGeo()~ i, Ca i /GE(g  i, ~s;  )/1/N i queue, ifN. < + ~,, and as corresponding 

1 

infinite capacity queues at equilibrium, if N. -~ + ~; 

Obtain the performance metrics of interest; 

End. 

Remarks: The main computational effort of the ME algorithm is at every iteration 

between Steps 3 and 5. The non-linear system of equations {nij}, i=0,1 ..... M, 

j=l ,2 ..... M, can be rewritten in the form n = F(n), where n and F are column vectors 

of dimension qJ, where q' is the cardinality of the set { nij }, i ~ j and N.j < + ~. It can 

be verified that the computational cost of the ME algorithm for open networks is 

o(k~ 3), where k is the number of iterations between steps 3 and 5 and ~3 is the 

number of manipulations for inverting the Jacobian matrix of F with respect to n. 

Notably, the existence and unicity for the solution of the system of non-linear 

equations n = F(n) cannot be proved analytically due to the complexity of the 

expression of the blocking probabilities { nij }. Furthermore, no strict mathematical 

be given for the convergence of {~d; }, i=1,2 ..... M; nevertheless, justification c a n  

numerical instabilities are very rai:ely observed in many experiments that have been 

carried out, even when the probabilities n.. are relatively close to 1. Only in networks 
1j 

with high interarrival-time and service-time variability, in conjunction with high 

server utilisations and feedback streams, the solutions of the non-linear system rt = 

F(n) goes towards the trivial solution of n.. = 1. This can be attributed to the fact that 
Ij 

the effective utilisations {~i/~i ) attain the value 1 and thus the system becomes 

unstable. 

5.2 Closed QNMs with RS Blocking 

Consider an arbitrary closed queueing network under RS-RD or RS-FD blocking 

mechanisms consisting of M FCFS single server queues with finite capacity N., 
1 

i=1,2 ..... M, general service-times and a fixed number of jobs K such that 
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N, + N~ +...+ N M > K. For each queue i, i=1,2 ..... M the notation of the previous 

section apply and, in addition, let ~I. be the virtual capacity of queue i, i.e., ~.  = min 
1 1 

(N i, K), ~c.l be the minimum number of jobs always present, i.e., n.1 = max {0, K - 

. ~ . ^  l:g:J Nj  } and ~I.1 be the rv of the number of jobs in queue i as seen by a random observer. 

By analogy to Sections 4 and 5.1, the form of the ME state probability, 

p(n), _n e S(K, M), where S(K, M) = {_n ; ~.  n. = K, ~c. _< n. ~ ~l., i=1,2 ..... M}, can 
1 1 1 1 1 

be determined subject to constraints of normalisation, active UTIL, ~i(K), i.e., 

~.(K) = P(~I i > Ki), active MQL, f~i(K), i.e., a.(K) = 2; (n. - ~ci) Pi(ni) and full buffer 
1 1 n.> 1<. 1 

1 1 

probability, q~i(K), q~i(K) = Pi(Ni), satisfying the job flow rate equations. 

By applying Lagrange's Method of Undertermined Multipliers, a MEproduct-form 

aproximation is characterised, subject to the above constraints, and is given by 

1 M A n.-~:.a l f(ni) 

p(n) = Z(L, M) i~ 1 gi (ni) xi Yi ' (5.16) 

where Z(L, M) is the normalising constant, 

1 , i f  n i = • . ,  ' 

~i(ni) = 1 
gi '  if ~c. < n . 1  1 -<~' '1  

(5.17) 

f(ni) = max {0, n.1 - ~['1 + 1} , and gi' x i and Yi are the Lagrangian coefficients 

corresponding to constraints ~i(K), f~i(K) and r i=1,2 ..... M respectively. 

The implementation of ME solution (5.16) proceeds in two stages: 

Stage 1: Determine the ME product-form approximation, p(n), for a pseudo open 

network with RS blocking, subject to normalisation and constraints of the type ~)., f~. 
1 1 

and q)i' i=1,2 ..... M (c.f., Section 5.1). Incorporate the conservation of flow rate 

equations (i.e. ~. = ~2. a.. ~., i=1,2 ..... M) and the fixed population mean constraints (i.e., 
1 J Jl J 
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K = ]~. f~.) within the ME algorithm for open QNMs with RS blocking (c.f., Section 
J J 

5.1). Decompose the pseudo open network into individual censored GE/GE/I/~c.;N. 
1 1 

or GGeo/GGeo/I/K.;N. queues, if N. < K or stable GE/GE/I/~c.;+*o or 
1 1 1 1 

GGeolGGeollln.;+o* queues, if N. >- K, with modified arrival and service processes 
1 1 

within a continuous-time or discrete-time domain, respectively (c.f., [53, 54]). (n.b., 

constraint K = Y~. f~.(K) replaces, in a mathematical sense, the unknown external arrival 
J J 

process of the flow balance rate equations.) 

Remarks: Focusing on state ~c., 1 -< ~c. _< K - 1, of GE/GE/1/K.;N. and 
1 1 1 1 

GGeo/GGeo/1/K.;N. censored queues with N.<+oo or N.-,+o% a job on service 
1 1 1 1 

completion is forced to repeat service so that there will always be a minimum number 

of n. jobs present. These queues can be analysed via entropy maximisation in a 
1 

similar fashion to that of Section 4.2 (c.f., [53, 54]). 

Stage 2: Associate the analytic estimates of Lagrangian coefficients gi' xi and Yi' 

i=1,2 ..... M, from Stage 1 with the ME state probability p ~ )  of the original closed 

network (c.f., (5.16)). For the general case {n.>-0 and N.~K}, use an efficient 
1 1 

convolution type technique to compute ME solution iteratively until the job flow rate 

equations as applied to the original closed network, are satisfied. 

The overall computational requirements of the ME algorithm are of 0(7 tit'3) for 

Stage 1 and of o(T~MK) for Stage 2, where "/,, 7~ are the numbers of the 

corresponding iterations at each stage, respectively. Note that the recursive 

calculation of the normalising constant Z(M, K) in Stage 2 can be carded out under 

the most general type of product-form approximation. 

As in the case of open networks (c.f., Section 5.1), no mathematical proof of 

convergence is given due to the complexity of the expressions involved in Stages 1 

and 2. However, numerous experiments have always converged under stability 

conditions (~i/~i)_ < 1, i=1,2 ..... M. 

Remarks: For the case of reversible networks with finite capacity, the ME algorithm 

captures their exact solution (c.f., [8]). However, the ME solutions for these networks 

may be viewed directly as the truncated ME solutions of the corresponding reversible 

networks with infinite capacity, reducing, clearly, to the exact solutions. 
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6. ME Application to a Queueing Model  of  a Shared Buffer A T M  

Switch 

In the field of high speed networks the ATM switch architecture incorporating a 

single memory of fixed size which is shared by all output ports is of particular 

importance. An incoming cell (or packet) is stored in a shared buffer of finite 

capacity while its address is kept in the address buffer. The cells destined for the 

same output port can be linked by an address chain pointer or their addresses can be 

stored into a FCFS buffer which relates to a particular output port. A cell will be lost 

if on arrival it finds either the shared buffer or the address buffer full. An example of 

such a switch architecture is the Prelude architecture proposed by CNET, France [69]. 

Some specific types of queueing models and analytic approximations for a shared 

buffer ATM switch architecture can be seen in [70-72]. 

In this Section the principle of ME is applied to characterise product-form 

approximations for the performance analysis of a general FCFS queueing model of a 

shared buffer ATM switch architecture with bursty arrivals (c.f., Fig. 7). At the 

implementation stage of the ME solution the arrival process at each output port of the 

ATM switch is modelled by a CPP (c.f., continuous-time domain) or a BBP (c.f., 

discrete-time domain) with geometrically distributed bulk sizes. These processes are 

most appropriate to model simultaneous arrivals and departures at the output ports 

generated by different bursty sources under a given buffer management policy (c.f., 

AF or DF). 

Incoming Links Output Ports 

B ~  CAPACITY N 

The S~(G / (3 / 1) / N building block 

Fig. 7 A queueing rnodel of the shared buffer ATM switch 
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6.1 Shared Buffer Model Formulation and Notation 

Consider a general queueing model of a shared buffer switch with bursty arrivals 

depicted in Fig. 7. The queueing model consists of R parallel single server queues, 

where R is the number of the input (or output) ports. Each server represents an output 

port, while each queue stands for the address queue of the shared buffer switch. 

There are R bursty and heterogeneous arrival streams of cells, belonging to a single 

class - one per input port - each of which is generally distributed. A cell upon arrival 

at the input port i joins the queue of the output port j with transition probability ~.., 
1j 

i, j=1,2 ..... R such that ]~. ~.. = 1, i=1,2 ..... R. Assuming that a merging of the arrival 
j 1j 

streams at each output port queue j, j=l ,2 ..... R, has been applied, let 1/~., Ca. ~, 
J J 

j=l ,2  ..... R be, respectively, the mean and SCV of the interarrival process. The 

transmission (or service)-time of a cell at each output port j follows a general 

distribution with mean and SCV 1/g. and Cs), j=l ,2 ..... R, respectively. 
J J 

Remark: For an ATM switch, due to the fixed cell size and the nature of the 

associated outgoing links, the transmission times are assumed to be Deterministic (D) 

(i.e., Cs. ~ = 0, j=l ,2  ..... R). 
J 

The buffer management scheme adopted here is the so-called complete sharing with 

the buffer capacity of each queue, N. being equal to N. In general, the queueing 
l 

model of the shared buffer switch can be denoted by SRxR(G/G/1/)/N such that 

(a) the interarrival and service times at an R x R switch are heterogeneous and 

generally distributed, 

(b) each output port queue has a single server, 

(c) shared buffer capacity of the switch is N. 

Let at any given time the state of the system be represented by a state vector n = 

(nl ,n2 ..... nR), where n.1 is the number of cells at each queue i, i=l,2,..,R. Moreover, 

let sets S(N, R) and A(q, R) be defined by 

R 

S ( N , R ) = { n = ( n , , n 2  ..... nR)/j]~ 1= n.j<_N, 0-<n.j-<N,j=l,2 ..... R}, 
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R 

A(rl, R) = {n = (n~,n2 ..... nR)/j]~ 1= Jn" -< T1, 0 ~ n. -< rl,j=l,2 ..... R}, n=O,1 ..... N. 
J 

Moreover, let {p(n)}, n ~ S(N, R), {p(n)}, rl=0,1 ...... N, and Pi{ni}, i=1,2 ..... R; 

n.=0,1 ..... N, be the joint, aggregate and marginal state probabilities, respectively. 
1 

Finally, let {Pa(n)}, _n ~ S(N, R) and {Pa(n)}, n=0,1 . . . . .  N be the joint and aggregate 

state probabilities of an arriving bulk, respectively. 

6.2 A ME solution for an SRxR(G/G/1)/N Queueing System 

Consider a general SRxR(G/G/1)/N queueing model of a shared buffer switch 

architecture depicted in Fig. 7. Motivated by earlier ME analysis of simpler types of 

queues and networks (c.f., Sections 4 and 5), it is assumed that the following 

constraints about the joint state probabilities {p(n}, n ~ S(N, R)} are known to exist: 

The normalisation, and for all i=1,2 ..... R, the UTIL, Ui(0 < U.1 < 1), MQL, Qi(Ui z Qi 

< N) and conditional state probability of an aggregate full buffer state with n. > 0, ~i 
1 

(0 < ~i < 1). 

The form of the ME solution p(n_), n ~ S(N, R), can be established by maximising the 

entropy function H(p), subject to normalisation, U i, Qi and tpi, i=l,2,..,R, constraints. 

The maximisation of H(p) can be carried out by using Lagrange's Method of 

Undetermined Multipliers leading to the product-form solution 

1 R s.(n) n. f .~)  

p ( n ) = ~ -  j=I-I 1 gj j x. j J J yj , V n ~  S(N,R), (6.1) 

where Z is the normalising constant, 

s.(a) = 1, if n. > 0 or 0, otherwise, 
J 1 

f.(n) = 1, if {]~. n. = N and s.(n)= 1 } or 0, otherwise, 
j 1 1 J 

and {gj, xj, yj} are the Lagrangian coefficients corresponding to constraints 

{Uj, Qj, ; j  }, j=l,2 ..... R, respectively. 
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Suitable formulae for computing the complex sums of Z and U., j=l ,2 ..... R can be 
J 

determined by following the Generating Function Approach (c.f. [73]). By defining 

appropriate z-transforms involving the Lagrangian coefficients, the normalising 

constant can be expressed by 

N - 1  

Z = ~ 0  C, (ri) + C2(N),  (6.2) 
rl 

where {C~ 01), ~1=0,1 ..... N-1 } and C2 (N) are determined via the following recursive 

and refined formulae: 

C1,R(n) ,  k = 1; rl=0,1 ..... N-1,  

Ok(n) = C2,R(N), k = 2; n = N ,  
(6.3) 

where 

Ck,r(rl) -- Ck,r_l('rl) - (1 - 13r) XrCk,r_101 - 1) + x r Ck,  r (11 - 1 ) ,  

rl=l,2,...,N-2 + k; k=l,2; r=2 ..... R, 

with initial condition (for r = 1): 

f 1 , if n=0 ,  

Ck' l (r l )= 13~x~,, i f n = l , 2  ..... N-2+k, 

Ck,r(0 ) = 1, k=l,2; r=2 ..... R, 

where ~r = gr' if k = 1, or gry r, if k = 2. 

Similarly, the utilisation U. can be expressed as 
1 

U .=  1 ( N ' I  
, ~ ~1~1 C! i)(~) 

where 

+ C  ( i ) ( N ) } ,  i=1,2 ..... R ,  

(6.4) 

(6.5) 
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~( i )  
C i)(rl) = (1 - 13i) x i t~ k (~ - 1) + 13 i x i Ck(T I - 1), 

r1=2,3 ..... N-2+k; k=l,2; i=1,2 ..... R, 

(6.6) 

with initial condition (for 1"1 = 1): c~i)(1) = 13 i x..1 

The Lagrangian coefficients {gi' x.,1 i=1,2 ..... R} can be approximated by making 

asymptotic connections to infinite capacity queues. Assuming that x. is invariant with 
1 

respect to the capacity N, as N -* + ~, it can be verified that (c.f., (4.2), (4.3)) 

Pi (1 - xi)  Li - Pi 

g i -  x i ( 1 - P i  ) '  x i -  L. 
1 

- - ,  i=1,2 ..... R ,  (6.7) 

where L.I is the asymptotic MQL of queue i and Pi = 7~i/Ixi" Moreover, the Lagrangian 

coefficients {yi }, i=1,2 ..... R, can be approximated by making use of the flow balance 

condition 

~i(1 - hi) = ~tiU i, i=1,2 ..... R ,  (6.8) 

where n. is the blocking probability (or cell-loss) that an arriving cell destined for 
1 

queue i, i=1,2 ..... R, finds the shared buffer of the switch full (i.e., Z.n. = N). 
1 1 

6.3 Marginal State Probabilities {pi(~ i) , ~ i=0,1,...,N; i=l,2,...,R} 

Let ~l (i) be the rv of  the number of cells seen by a random observer at queue i, 

i= 1,2,..,R. Using ME solution (6.1) and recursive expressions (6.6), it follows that 

Pi(~ i ) = Pi[l~(i) ~- ~ i I - Pi[~l(i) -~ ~. + 11, (6.9) 
1 

with Pi[i~(i) ~ N + 1] = 0, where 
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Pi[~l(i) x ' i  I N  1 c ! i )  1 1 ~ c ! i ) ( r l - g i + l ) +  (N-J~ +1)  
-> ~i ] = -  Z rl=~ i i ' 

(6.10) 

.=1,2 ..... N; i=1,2 ..... R. 
1 

Remarks." Appropriate recursive expressions can also be defined (c.f., [59]) for 

marginal MQLs { Qi' i= 1,2 ..... R } and aggregate state probabilities { p(q), TI=0,1 ..... N }, 

while the aggregate cell-loss probability, ~a' is expressed by ~a = ~i(~'i/~')gi ' where 

)~ = s  
1' 1 

6.4 The GE and GGeo Type Blocking Probabilities 

Analytic expressions for the blocking probabilities {hi}, i=1,2 ..... R, can be 

established within a continuous-time or discrete-time domain by considering the 

SRxR(GE/GE/1)/N or SRxR(GGeo/GGeo/1)/N queueing models, respectively, and 

focusing on a tagged cell of an arriving bulk that is blocked. In this context, the 

blocking probability n. is conditional on the position of a tagged cell within the bulk 
1 

and also on the number of cells that its bulk finds in the system irrespective of its 

destination queue. Without loss of generality, it is assumed that the arriving bulk of 

the tagged cell is destined for output port queue i, i=1,2 ..... R. 

The following distinct and exhaustive blocking cases of a tagged cell are considered: 

(i) The bulk on arrival finds the system in state {A01, R) and n. = 0}, q=0,1 ..... N-1. 
1 

In this case the size of the arriving bulk must be at least N - ~1 + 1 and the tagged cell 

is one of those members of the bulk that is blocked. By following the same 

probabilistic arguments as those used for a single queue with capacity N - rl (c.f., 

Section 4.2.1), it is implied that 

Prob {A tagged cell is blocked and its bulk on arrival 

finds the system at state [A(rl, R) and n. = 0] } 
1 
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=8 .  
1 ne A ~ I ,  R) 

^ n . = O  
1 

Pa(a) (1 - Zai )N-q , ~1=0,1 ..... N - l ,  (6.11) 

where 
8.1 = Xsi/[Zsi(1 - "~ai ) + "cal "1 ' 

2/(Ca +1) ,  if G E ,  { 2/Cs.2 + 1), 
1 

~al = 2/(Ca'21 + ~''l + 1), if GGeo, and, ~si = 2/( Cs ; + gi 

if GE , 

+ 1), if GGeo. 

(ii) The bulk on arrival finds the system in state {A01, R) and n. > 0}, 11=1,2 ..... N-1 
1 

In this case the bulk finds server i busy and there are in total ~1 cells queueing or being 

transmitted in the entire system. Thus only N - TI buffer places are available and the 

tagged cell occupies any position within its bulk greater or equal to N - 1"1 + 1. It is 

therefore, implied that 

Prob {A tagged cell is blocked and its bulk on arrival 

finds the system at state [A01, R) and n. > 0] } 
1 

neAth, R) Pa (-n) 

^ n . > O  
1 

~ai )N-rl (1- , n=1,2 ..... N-1.  (6.12) 

(iii) The bulk on arrival finds the entire system full with aggregate probability Pa(N). 

Applying the Law of Total Probability it follows that 

N - 1  

x . = 8 .  
1 11"  I 0 

N - 1  

+ T I l l  

n ~ A~rl, R) Pa (n) 

^ n . = O  
1 

I n e A ~ q ,  R) Pa (n) 

^ n i > 0  

(1 - "Cai )N-~ 

(1 - ~ai )N-TI + Pa(N). 

(6.13) 
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To determine a computational formula for re., the following two sets of queueing 
t 

models are considered: 

Case I: SRxR(GE/GE/1)/N and SRxR(GGeo/GGeo/1)/N Queueing Models under 

AF policy. 

In this case, pa(~) = p ~ ) ,  V _n e S(N, R) and pa(rl) = p(TI), TI=0,1 ..... N (c.f., [20, 53, 

54]). Therefore, using z-transforms, ME solution p(n__), a corresponding expression 

for p(al) (c.f., [59, 63]), 11=0,1 ..... N and coefficients C, (rl), rl=0,1 ..... N-l, C 2 (N) and 

C~ - i)(TI), TI=l,2 ..... N-l, it can be verified after some manipulation that 

1 
~'1 = ~ {Fi(N) + C2 (N)} , (6.14) 

where 

N - 1  

Fi(N) = 6i q ~0  C, (rl) (1 - ~ai )N-rl 

N - 1  

+ (1- a i) rl__Z1 C! i)(•) (1- Xai)N-n. (6.15) 

Case H: SRxR(GGeo/GGeo/1)/N Queueing Model under DF policy. 

In this case pa(!l), n e S(N, R) can be determined analytically in a similar fashion to 

that of Section 4 under the assumption (made for mathematical tractability) that only 

simultaneous arrivals and departures relating to the same queue i, i=l,2,...,R, can 

actually take place. 

To this end, the cell-loss probability, n., i=1,2 ..... R can be expressed by [63] 
1 

T: i = ~ + C~ (N) - gi ~ al" ~'1 C(2 i) (N) , (6.16) 

where 
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N-1 

f)i(N) =(1- Osi) 5 i ~oC ' (~)  (1- Zai )N-q 

N-1 } 
+ (1- ~i ) n --I21 C! i)(n) (1- ~ai )N-n 

N- 1 N- 1 11 ]_ 
+~ riCO C' (q)(1-  "~ai )N-rl -'~ai r l~ l  C'( i tq)(1- Xai )N- ] (6.17) 

and o . = ~t.'c .. 
S1 1 S1 

Remark: In the case of R = 1, formulae (6.14) and (6.16) reduce to those of the 
corresponding GE/GE/1/N and GGeo/GGeo/1/N. censored queues of Section 4 (c.f., 

1 

(4.14) and (4.17)). 

6.5 Estimating Lagrangian Coefficients {gi' xi' Yi' i=l,2,...,R} 

The Lagrangian coefficients {gi' xi}' i=1,2 ..... R can be evaluated directly via 

expressions (6.7) by making use of the asymptotic MQL formula (4.5). 

The Lagrangian coefficients {yi}, i=1,2 ..... R, can be determined numerically by 

substituting ~i of (6.14) or (6.16) and equations (6.2) and (6.5) into the flow-balance 

condition (6.8) and solving the resulting system of R non-linear equations with R 
unknowns {Yi' i=1,2 ..... R}, namely 

Case 1: 

c(i)(N) = Pi n~0  C, (rl)- Fi(N) - r i l l  C1 (itn), (6.18) 

Case 2." 

N-1 } N-1 

(1- gi Zai gi Pi ) C(itN) = Pi rl--~0 C, (n)-Fi(N) -rl__~l C, (itn), (6.19) 

i=1,2 ..... RandN->2. 
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Systems (6.18) and (6.19) can be solved by applying the numerical algorithm of 

Newton-Raphson in conjunction with an efficient recursive scheme (c.f., [59]). 

Conclusions 

The principle of ME, subject to queueing theoretic mean value constraints, provides a 

powerful methodology for the analysis of complex queueing systems and networks. 

In this tutorial paper, the ME principle is used to characterise product-form 

approximations and resolution algorithms for arbitrary FCFS continuous-time and 

discrete-time QNMs at equilibrium under RS-RD and RS-FD blocking mechanisms 

and AF or DF buffer management policies. An ME application to the performance 

modelling of a shared-buffer ATM switch architecture with bursty arrivals is also 

presented. The ME solutions are implemented computationally subject to GE and 

GGeo type mean value constraints, as appropriate. In this context, the ME state 

probabilities of the GE/GE/1, GE/GE/1/N, GGeo/GGeo/1 and GGeo/GGeo/1/N 

queues at equilibrium and associated formulae for the first two moments of the 

effective flow streams (departure, splitting, merging) are used as building blocks in 

the solution process. 

The ME algorithms capture the exact solution of reversible QNMs. Moreover, 

extensive validation studies (c.f., [27, 28, 36, 39, 40, 42-64] indicate that the ME 

approximations for arbitrary GE and GGeo type QNMs are generally very 

comparable in accuracy to that obtained by simulation models. Moreover, it has been 

conjectured that typical performance measures (such as MQLs for open QNMs and 

system throughputs and mean response-times for closed QNMs) obtained by GE or 

GGeo type ME approximations, given the first two moments of the external 

interarfival-times and/or service-times, define optimistic or pessimistic performance 

bounds - depending on the parameterisation of the QNM (c.f., [51]) - on the same 

quantities derived from simulation models when representing corresponding 

interevent-times by a family of two-phase distributions, as appropriate (e.g., 

Hyperexponential-2), having the same given first two moments. 

The analytic methodology of entropy maximisation and its generalisations are 

versatile and can be applied within both queue-by-queue decomposition and 

hierarchical multilevel aggregation schemes to study the performance of other types 

of queueing systems and networks, particularly in the discrete-time domain (e.g., 

Banyan interconnection networks with blocking), representing new and more 

complex digitised structures of high speed networks. Work of this kind is the subject 

of current studies. 
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