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MAXIMUM ENTROPY AND THE MOMENT PROBLEM 

H. J. LANDAU 

Introduction. The trigonometric moment problem stands at the source of 
several major streams in analysis. From it flow developments in function 
theory, in spectral representation of operators, in probability, in approxima-
tion, and in the study of inverse problems. Here we connect it also with a 
group of questions centering on entropy and prediction. In turn, this will 
suggest a simple approach, by way of orthogonal decomposition, to the 
moment problem itself. 

In statistical estimation, one often wants to guess an unknown probability 
distribution, given certain observations based on it. There are generally in-
finitely many distributions consistent with the data, and the question of which 
of these to select is an important one. The notion of entropy has been proposed 
here as the basis of a principle of salience which has received considerable 
attention. We will show that, in the context of spectral analysis, this idea is 
linked to a certain question of prediction by the trigonometric moment 
problem, and that all three strongly illuminate one another. The phenomena 
we describe are known, but our object is to unify them conceptually and to 
reduce the analytic intricacy of the arguments. To this end, we give a 
completely elementary discussion, virtually free of calculation, which shows 
that all the facts, including those concerning the moment problem, can be 
understood as direct consequences of orthogonal decomposition in a finite-di-
mensional space. We then describe how, in its continuous version, this leads to 
a view of second-order Sturm-Liouville differential equations, and conclude 
with some questions concerning the connection between combinatorial ideas 
and orthogonality in this problem. 

Entropy and statistical inference. Suppose that we are interested in the 
distribution of some quantity, but know only the values of certain averages 
defined by that distribution, which are insufficient to specify it uniquely. For 
example, we might have tossed a six-sided die fifty times, wishing to find how 
often each face appeared, but were able to observe only the average value of 
these faces. What should we select as an appropriate distribution, on the 
strength of the available information? Various criteria have been proposed to 
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guide the choice; we focus on the following argument, which brings into play 
the notion of entropy, prominent in information theory. 

Suppose that an experiment, which can have k different results, is performed 
in a (long) run of N repetitions. If the z'th result occurred nt times in the run, 
we denote by f = nt/N its realized frequency', clearly, f ^ 0, £ ƒ, = 1. A set 
{/J of such numbers is called a distribution ƒ, and the quantity Hf = 
-£f=i ft log/) is termed the entropy of that distribution. 

There are kN distinct possible outcomes for a run of N trials of the 
experiment. Of these, the number which give rise to a particular distribution of 
frequencies f v . . . , fk is W = N\/(Nf1)\ • • • (Nfk)\, whence, for large N, 
Stirling's formula shows (\ogW)/N to be asymptotic to Hf. Thus distributions 
having entropy close to the maximum are realized in the greatest number of 
ways, hence occur most often in the list of all possible outcomes. Suppose now 
that we cannot directly observe the realized frequencies f v . . . , fk in a run, but 
that some process of measurement has fixed the values of certain functions of 
the {ƒ)}. If, correspondingly, we restrict consideration to only those runs in 
which the frequencies satisfy these prescribed constraints, the same counting 
argument again shows that the vast majority have frequency distributions for 
which the entropy is close to the maximum attainable under the constraints. 

In its limiting asymptotic form, this phenomenon was known already to 
Laplace. For constraints that are linear in the { ƒ,}, a more precise quantitative 
description, as a function of N and of the number of constraints, has been 
given by E. T. Jaynes in the entropy concentration theorem [20]. This result 
allows an accurate estimate of how sharply the entropy is concentrated, and 
shows that distributions whose entropy is close to the maximum predominate 
among all the possible outcomes even for relatively small values of N. Thus the 
frequency distribution having greatest entropy, subject to the constraints, can 
be viewed as the most representative of the class of candidates, and therefore a 
good guess for the unknown frequencies underlying the observed data. 

One can also express this in the language of information theory where, 
intuitively, the information associated with an outcome measures how surpris-
ing its occurrence is among the various possible outcomes. In these terms, as 
the entropy-maximizing distribution is encountered most often in the ensem-
ble, it is the least informative, for a different one would exclude the bulk of 
possibilities and thereby convey more information—indeed, the argument 
goes, more than the data warrant. 

In sum, the distribution with largest entropy, which fits the observations, is 
recommended as the most typical of the possibilities or, equivalently, as the 
most appropriate to the available information. The formulation here is de-
liberately combinatorial, so as to yield clear-cut conclusions, free of the 
complications attendant on interpreting probability as frequency. Nevertheless, 
it seems sensible—albeit with less precise justification—to use this distribution 
also to represent the probabilities in a probabilistic model of the experiment. 

The reasonableness of entropy maximization as a selection mechanism is 
independently supported by the axiomatic analysis of J. E. Shore and R. W. 
Johnson [36], which establishes that criterion as the only method of inference 
satisfying certain consistency conditions. Moreover, the principle that nature 
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favors the states of largest entropy was introduced with striking success by 
Maxwell, Boltzmann, and Gibbs into statistical mechanics, where it continues 
to play an important role. The observation [38] that all of the probability 
distributions commonly encountered in statistics maximize the entropy, under 
suitable choice of linear constraints, further buttresses these ideas. 

Finally, we note that, when generalized in the form of Kullback-Leibler 
information, entropy is connected with other statistical problems as well, For 
example, it can guide the updating of a prior guess of an unknown distribution 
in the Ught of new evidence [37]. It also enters into the analysis of the 
interesting EM algorithm, often used to find the maximum likelihood estimate, 
namely, that probability distribution in a given family which is most likely to 
have generated the observed data [13,12,39]. 

Stationary time series. A particular estimation problem of the preceding 
type, which occurs often and in various contexts, concerns a time series: that 
is, a sequence { Xk } of random variables characterized by a family of distribu-
tions that specify probabilities for the joint occurrence of values of finite 
subsets of the variables. These probability distributions define expected value, 
denoted by $( • ), for functions of the random variables. Interpreting the index 
k as time, such a sequence is termed stationary if each of these distributions is 
independent of the choice of time-origin, that is, if 

P r o b ^ - i ^ ^ , \Xi2- v2\< e29...,\Xim- vm\< em] 

is unchanged when il9..., im are shifted to ix 4- j , i2 + j , . . . , im + j , for any 
choice of j , m, ik9 vk, and ek, 1 < k < m; it is called stationary in the wide 
sense if merely the expectation of quadratic functions, #(Xi+JXk+j), is inde-
pendent of y, for all i and k. 

Stationary time series are used successfully to model a wide range of 
fluctuating phenomena, from samples of speech to geophysical measurements 
to economic variables. Typically, what is known in such applications, or can be 
estimated from observation by averaging, consists of autocorrelation coefficients 
ck = S(XtXi+k) = S(XQXk\ for a finite set of values k = 0 , . . . , N, and the 
question is how to select an appropriate probabilistic description of the process 
on the basis of this information. 

In a remarkable, incisive analysis [6, 9], J. P. Burg introduced the criterion of 
maximum entropy into this problem and solved it explicitly: the entropy-maxi-
mizing distribution corresponds to the Gauss-Markov (autoregressive) process 
of minimal order (these terms to be defined later) having the given correla-
tions. He also noted that his process produced the poorest prediction from the 
past; this gives a different sense in which it is least informative. Much has been 
written about this method, and several proofs are available [10, 11, 18, 20, 34, 
and references therein]. 

Here we will draw on basic considerations connected with the trigonometric 
moment problem to show, from first principles, that a natural finite-dimen-
sional orthogonal decomposition underlies all of the results in this area, 
including those associated with the moment problem itself. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



50 H. J. LANDAU 

The trigonometric moment problem. The trigonometric moment problem 
asks when a given sequence 1 = c0, cl9... of complex numbers can be 
represented in the form 

ck = j-(2,,e>k°dt(0), k>0, (1) 

with some positive measure d\i(6)9 generally assumed to have an infinite 
number of points of increase. This representation illuminates an extraordinary 
range of subjects, including analytic and harmonic functions, the spectral 
theory of operators, prediction theory, and approximation; as M. G. Krein has 
pointed out, it also constitutes an archetypal inverse problem [27,14]. Defining 
c-k = Ck> clearly a necessary condition for (1) is that 

£ I ctjakcj_k > 0, (2) 

for any choice of a finite number of nonzero {cij}9 since by (1) this quadratic 
form equals (l/27r)/o

2*|Ltf£e'^|2<ijti(0). Requirement (2) turns out also to be 
sufficient. The classical proofs exploit the positivity in (2) mainly by means of 
convexity. To summarize broadly the lucid exposition of [1], one such interpre-
tation, rich in connections with function theory, was introduced by 
Carathéodory, Toeplitz, Herglotz, and F. Riesz, who showed that, on associat-
ing {ck} with f(z) = c0/2 + Lf^ickz

k
9 sequences satisfying (2) correspond 

to analytic functions in \z\ < 1 with positive real part; an integral representa-
tion of this convex family based on the Poisson formula then yields the 
desired form (1) for the coefficients. The related function g(z) = 
{f(z)-f(0)}/{f(z) + /(O)} maps the unit disk into itself. By repeatedly 
applying Schwarz's lemma and a linear fractional transformation to g(z), 
Schur derived an explicit characterization of such maps g, which in turn 
generates all moment sequences. It is interesting that this algorithm now 
figures in simulating certain physical systems, and in signal processing [21, 23]. 
Alternatively, an elegant argument due to M. Riesz begins with convexity of 
polynomials having the form \Lakz

k\2
9 uses (2) to define a positive linear 

functional on such polynomials, and extends this functional with its positivity 
preserved to the manifold of step functions, where it is given by a measure. 
Finally, the beautiful memoir of M. G. Krein [26], interpreting (2) to mean that 
the point (l9Recl9lmcl9...,Rtck,lmck) in (2k + l)-dimensional space hes 
in the convex hull of the curve generated by (1, cos 0, sin0, . . . , cos k09 sin kd\ 
0 < 0 < 2TT, obtains (1) by a representation of points in convex bodies, and 
develops this idea into the far-reaching generalization of Tchebycheff spaces 
[25]. 

Here we suggest a différent approach: we use (2) to define a scalar product 
for polynomials of degree n9 and systematically apply orthogonal decomposi-
tion. The various features—orthogonal polynomials, recursions, reflection 
coefficients, quadrature formulas, prediction—of the problem, and their inter-
relationship, emerge naturally from this geometric setting. 

A scalar product. Since the quadratic form (2) is positive definite, let us think 
of it as defining a scalar product on the linear space of finite sequences 
(a09al9...9ak) or, equivalently, on polynomials. Specifically, for n > 0, let 
1 = c 0 , . . . , cn be given and satisfy (2). Let C„ denote the (n 4- 1) X (n + 1) 
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matrix [cj_k]9 j , k = 0 , . . . , w, with c_k = ck\ this is a Toeplitz matrix—that is, 
one whose entries are constant along each diagonal—and is Hermitian. Let 
a = (a0,..., an) and b = (b0,...,b„) represent (n + l)-dimensional vectors, 
with (0, ^) = Ea /6 /; and associate to such a vector a the (trigonometric) 
polynomial of degree n 

A - Î a*'»- t akz\ | z | = l , 

denoting by II„ the (n + l)-dimensional space of these polynomials. Then in 
view of (2) we can introduce a scalar product in II„ by setting, for B = Eg bkz \ 

[A,B] = (a,C„b) = (Cna,b) = TB7A] (3a) 

•II«M-*' (3b) 
\\A\\2*[A,Al 

The reason for applying this scalar product to polynomials, rather than to the 
vectors themselves, is that the Toeplitz nature of Cn is now succinctly ex-
pressed by 

[zA,zB] = [A9B], (4) 

for A, B e II„„^ As a matter of notation, we will write both column and row 
vectors in row form, refer to a as the coefficient vector of A, to an as the 
leading coefficient of A, and will say that A and B are orthogonal whenever 
[A9B] = 0. 

A basis: orthogonal polynomials. As progressively more coefficients of the 
sequence (c0, cv... ) are given, the corresponding matrices Cn define the scalar 
product on the increasing family of subspaces {IIW} without altering it where 
previously specified. Thus it is natural, in choosing an orthogonal basis for II„, 
to select the coordinate elements so as to span subspaces of polynomials of 
successively increasing degree. This can be done by the Gram-Schmidt process 
applied to 1, z , . . . , zn. Specifically, suppose Pk(z) e n ^ has coefficient vector 
rk9 with leading coefficient tk, such that 

C f c T t - ( 0 , . . . , 0 , l ) . (5) 

Then by (3a), [Sk_vPk] = 0 for each Sk_l G Uk_v hence Pk is a scalar 
multiple of the desired A:th basis element. To normalize it, we note that, again 
by (3) and (5), 

0 < | | ^ | | 2 = ( T „ C , T , ) = ^ , (6) 

so that Pk{z)/ y ^ , which has degree k and leading coefficient ]JTk~, is the kth 
unit element of the basis—that is, the kth (normalized) orthogonal poly-
nomial. We remark that this orthogonality can also explain the frequent 
occurrence of the vectors rk of (5) in methods for inverting Toeplitz matrices, a 
topic we consider later. 

PROPOSITION 1. All the zeros ofPk(z) lie in \z\ < 1. 
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PROOF. This seemingly analytic fact depends only on orthogonality (and on 
the fundamental theorem of algebra). For suppose y to be a zero of Pk, so that 
Pk(z) = (z-y)Sk_1(zloT 

Pfc(z) + y V i ( ^ ) = 4 - i ( 4 (7) 
with some Sk_l e Tlk_l. Then, since Pk is orthogonal to I I ^ . ^ on taking 
norms in (7) and using (4) we find 

ll^f + lyl'llVJI^II^-ill^ll^-ill2, 
whence 1 - |y|2 = | | / y Vll^-i l l2 > 0> as required. 

Evaluation polynomials. If the moment problem has a solution, then on 
substituting (1) into (3b) we obtain a representation of [S, T] in the form 

[S,T] = ±fo
2,TS(e«)T(?t)dli(6); (8) 

conversely, if such a representation exists with some dp > 0, then by (3b) the 
choice S = zy, T = zk shows the moment problem to have a solution. Thus we 
can view that problem as asking for the relationship between the scalar 
product of polynomials and their values. To pursue this matter, we focus on 
the operation which assigns to Sn(z) its value at a specific point z = f. As this 
is a bounded linear functional defined in IIn , it can be represented by 

SH(S)-[S„E<], (9) 

with Eji(z) a unique element of I1M, which we call the evaluation polynomial 
for f ; Ej; is sometimes also referred to as the reproducing kernel. 

PROPOSITION 2. 

£j(M)-£?ft) and E^)=H\\2; (10a) 

ERz) = t TJS)Pk(z)/tk; (10b) 

te*r-wteii2- doc) 
PROOF. From the defining property (9), 

Efo) = [El ES] = JË^ÊÏÏ = Wn> 

m2-[E!,Et]-E<U). 

If E J; = Y,k=0akPk is the decomposition of E* in the orthogonal basis formed 
by {Pk}> then, as in any orthogonal expansion, by forming the scalar product 
of both sides with Pj we find, from (6), (3b), and (9), 

Finally, if 1 = Sn(£) = [Sn, E*] then by Schwarz's inequahty 1 = \[Sn, Ej>]\2 < 
l|SJ|2 | |£il|2, a n d equahty is attained only if Sn is proportional to E*, i.e. for 
Sn(z) = E<(z)/EHX). 
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We now single out E®(z% the evaluation polynomial at z = 0, which has a 
special connection to Pn(z). For since S(0) is the constant term of S, (9) and 
(3a) show that the coefficient vector en of E%(z) must satisfy 

C„e„ = ( l , 0 , . . . , 0 ) . (11a) 

Since Cn is Toeplitz and Hermitian, we see on comparing with (5) that to 
obtain en we need only write the components of rn in reverse order. Thus 
Pn(z) determines E®(z), and conversely. We can express this compactly by the 
equivalent formulae 

£»(*)-*"?„(}), 

P„(z) = z»£„°(i). ( l ib) 

By construction, (10a), and (6), we have 

| |£0 | |2 = £„°(0) = /„= | |PJ | 2
) (12a) 

and either from (lib) or from an explicit expansion, 

| £ „ V < ) | 2 = | P „ ( e « ) | 2 . (12b) 

Of course, E®(z) has been singled out in previous discussions of the subject; it 
is often denoted by P*(z). The advantage of our treatment is that we have 
characterized it by its action in the scalar product, rather than by its analytic 
form. 

We conclude by showing that the map from (c0 , . . . ,c„) to E%(z) is 
one-to-one. 

PROPOSITION 3. E%(z) determines ( c 0 , . . . , c„). 

PROOF. We have seen in (lib) that E%(z) determines Pn(z\ and so also 
E°(z) - P„(0)Pn(z)/tn = E^x(z) by (10b). Continuing in this way, we see 
that E%{z) determines all the Pk(z)9 k < n. As the leading coefficient of every 
Pk is nonzero, this in turn defines, for each . / '<«, the coefficients in the 
expansion zj — £{-of ly,*^(z)» ^ r o m w r i i c r i cj i s determined by cy = [z\ 1] = 
[LajykPk,P0] = ajfi. 

Spectral estimation. Suppose that / 4- 1 autocorrelation coefficients 1 — 
c 0 , . . . , Cj of a stationary process {X^™^ (or, time series) are given. From the 
definition of ck we see that 

E afltPj-k = I ajâkê{XjXk) = *[\Z akxS\ > 0; 
y,A: = 0 j,k~0 \ 'A: = 0 ' / 

hence such coefficients always generate a sequence satisfying (2). Moreover, 
from (3b) 

[Aj,Bj]~Ai akXk f bmXm\ (13a) 
\k = 0 m = 0 / 
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so that the associated scalar product of two polynomials now finds a concrete 
interpretation as the correlation between the corresponding linear combina-
tions of successive elements of the time series. In this identification, orthogonal 
polynomials represent uncorrelated random variables. 

We call any nonnegative measure d{i{6) for which 

c * - T-f2"eik6dn(0)9 ( ) < * < ƒ , 
Lm J0 

a spectrum consistent with the data, and denote by Jt'j the collection of all such 
measures. In other terminology, Jt'j consists of all solutions to the truncated 
moment problem, in which the representation (1) holds only for c 0 , . . . , Cj. 

Important for us will be that each measure of Jt'j expresses the scalar 
product in TLj by the formula (8), and, conversely, each positive measure so 
doing is a member of Jt j . 

In the stochastic context, one frequently aims to describe the process at hand 
so as to clarify its character, behavior, or provenance. To this end, one 
generally tries, insofar as is practicable, to extract from it components that can 
be viewed as predictable, or coherent, leaving as remainder an uncorrelated 
part that is considered noise. There are no fixed rules. One can proceed in the 
time domain, by examining the interrelationships among the variables Xk for 
different instants kv...9km\ here, if merely c0,...,Cj are known, such com-
parisons can be made over a span no wider than / . Alternatively, time-invari-
ance being akin to periodicity, one can apply a suitable Fourier transformation 
to decompose the process as a whole into a sum of random but uncorrelated 
frequency components [2, p. 268]. Again, when only some of the correlations 
are specified this representation is not unique, providing, rather, only a range 
of possibilities consistent with the available information. 

The family Jt'j plays an important role in each of these descriptions. A 
natural gauge for the closeness of Xk to a linear combination of some of the 
other Xm is the expected value of the squared deviation. Using (13a) and (8), 
this is given explicitly by the measures of Jt j as 

s[\xk- E amX^\ = ^ j 2 y - £ amz^d^0), 

(13b) 

hence analysis over time corresponds to approximation in L2(d\i). More 
directly still, when the process is expressed as a sum of uncorrelated frequency 
components, the mass of dfi(d) in an interval also measures the expected 
energy contributed by frequencies in that interval. Thus, as their name sug-
gests, the spectra of Jt j can be viewed as a family of snapshots of permitted 
frequency profiles for the process, often a vital aid to qualitative understand-
ing. For these reasons, spectral estimation seeks information about Jt j . 

Clearly, Jt j is a convex set of measures, and it is not surprising that it 
contains a subfamily, whose members consist of ( / 4- 1) point masses, which 
generates extreme points of Jt'j. These have been called maximum-likelihood 
estimates [33], although that is something of a misnomer; we will describe a 
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construction below. More interesting, however, is that another measure in Jt'3 

is given by 

„,..52!ffl*.__!i*_, (14) 

l*,V)l We") | 
the equahty here stemming from (12). 

PROPOSITION 4. 
(a) dvj e Jtj\ 

(b) Let { sk } 6e f/ie correlation coefficients corresponding to d\y.j9 viz, 

ITT J0 

Then for each n > / , in the scalar product defined by {sk} in (3), 

£„°(z) = E°(z). 

PROOF. TO show (a), we must verify that sk = ck, 0 < k < / . But this 
follows from (b), for if s0,..., Sj and c 0 , . . . , Cj give rise to the same Ej(z% 
they coincide by Proposition 3. To prove (b), we use the equivalent representa-
tion of the scalar product in question, 

[$,,£,«] - ^j2JSn{e">)Ej{^)dvn{6), 

whence, by definition of dvj9 

= J _ , S„(z)E?(0) dz 

2 ^ ; M = 1 Ej°(z) z' 

Now by (11), the zeros of Ej(z) are given by 1/Si9 with ^ the zeros of Pj(z), 
therefore all lie in \z\ > 1 by Proposition 1. Thus the only singularity of the 
integrand is the pole at z = 0, hence by Cauchy's formula [Sn9 E J] = Sn(0) for 
each n, so that E°(z) coincides with Ej(z), as was to be shown. 

We observe that the construction of Pn from E% now shows that Pn(z) = 
zn~JPj(z). Moreover, any polynomial Sk having all its zeros in \z\ < 1 will be 
the kth orthogonal polynomial in some scalar product of the form (3), 
definable explicitly by the measure d6/\Sk(e

w)\2. These facts were noted in 
[17, p. 43]. Finally, we remark that the appeal to the Cauchy formula in the 
preceding argument is the only point at which analysis enters our discussion. 
Even here it is inessential, since the rational integrand above can be decom-
posed into partial fractions and integrated explicitly. 

The particularly simple form of the spectrum dvj suggests that it ought to 
have some other distinguishing property among the spectra of Jt'j. We can 
describe its special role in terms of prediction. 
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Linear prediction. The problem of linear prediction from the past for a 
stationary time series asks how well the value of the present random variable 
X0 can, on the average, be approximated by some linear combination of the 
previously observed Xk, k < 0. In view of (13b), the equivalent question is to 
approximate 1 by a linear combination of the exponentials {eik0}9 k < 0, in 
the metric of L2{d\i\ with dp the spectrum of the entire process; that is, we 
seek 

U ^ ^ i n f ^ - f l l - E a*M dp(0) 

« i n f - J - / 2 " 1 1 - E a*M\2drtO). 

We interpret I^idp) as measuring how accurately the process can be predicted 
at t = 0 from knowledge of its entire past. 

If we restrict the approximation to only the first J exponentials, defining 

Ij(dp) - inf -L f2' Il - E af"*9? d^O), (15) 

then {Ij} is a decreasing sequence and 1^ = lim/,. Suppose dp eJKj. On 
expanding the integrand of (15) we see that Ij depends only on c0,..., c7, and 
will therefore be unchanged should dp be replaced by any other spectrum of 
Jtj. It is easy to determine Ij for these spectra. For, letting Sj(z) = 1 -
HJ

k=1akz
k, we have Sj e Ily, with S/(0) = 1; conversely, any Sj(z) with 

£,(0) = 1 can be written in this form. Thus (15) becomes 

ƒ,= inf ||S, f, (16) 

hence Ij = 1/Ej(0) by (10c) and (10a). Finally, on applying Cramer's rule to 
(5), and using (12a), we find 

IQ- i l / lc j^HI^II 2 , (17) 
with \Ck\ the determinant of C*, so that by (12a), 

IJ"\CJ\/\CJ^\. (18) 

Suppose now that the correlations c0,..., Cj are given. Each spectrum dp of 
Jt j defines a corresponding I^{dp). By monotonicity of the Ik{dp\ 

0 < I„{dv) < l/üftO) = Ij. 

The extreme measures of Jt'3 given by ( / 4- 1) mass points yield IJ+i(dp) = 0, 
corresponding to perfect predictability. On the other hand, with the measure 
dvj of (14), f or n > J we have by Proposition 4 

In(dpj) = l/£„°(0) = l/£°(0), 

hence also I^dvj) = Ij. Thus dvs enjoys the opposite property: it produces 
the poorest prediction from the past, consistent with the given correlations. 
Stated equivalently, all the extensions of the given c0,..., Cj to a complete 
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sequence of correlation coefficients are produced by the measures of M J9 and 
it is dvj which yields that extension for which the process is least predictable 
from its past. This happens because, by Proposition 4b, the spectrum dvj 
produces a Markovian process: that is, one in which the entire past influences 
the present through only the preceding / lags. 

Maximum entropy. So far in the discussion entropy has played no role, nor 
have logarithms even made an appearance. They enter from the information-
theoretic formulation which, for a stochastic process F = {Xk}f=s_00 with 
marginal probability densities p(x_n,..., xn), defines 

h2n+i(F) = " ƒ • ' • j P(x_n9...9xn)\o%p{x_n9...9xn)dx_n ••• dxn9 

and seeks to maximize the entropy rate 

H(F)= limsup hn(F)/n, 
n-* oo 

subject to prescribed values of the / 4- 1 consecutive autocorrelation coeffi-
cients 

ck^é,(XjXj+k)= ƒ . . • ƒ XjXJ+kp(x_H9...9xn)dx_H ••• dxn, 

0 < k < J9 0 < j . 

Here, as the penetrating discussion by B. S. Choi and T. M. Cover [11] makes 
clear, it is assumed that #(XjXJ+k) is independent of j for only the first 
J + \ lags, so that the process need not be wide-sense stationary. 

A zero-mean Gaussian process G = {Yi)fL_00 is one for which all the joint 
densities are given by 

Po(ym, ym+i, • • •, ym+n) -\K \-l/\2*y^l)/2e-w™»>, (19) 
with y = (ym9..., ym+n)9 Mn the (n + 1) X (n + 1) matrix of corresponding 
correlation coefficients é>(ym+iym+j)9 and |M n | its determinant. G is sta-
tionary if and only if all the matrices M^ are Toeplitz. Gaussian processes play 
a major role in stochastic analysis, by providing an accurate and often 
analytically tractable model for a host of physical phenomena. Here, too, they 
figure centrally, for, as is easy to see, they maximize the entropy integrals hk 

when the correlation coefficients are fixed. Indeed, suppose that G is the 
Gaussian process having the same autocorrelation coefficients as F. Since 
log/?G is quadratic, fpF\ogpGdx depends only on the correlations, so that 
ƒ PG 1°S PG dx = j pF log pG dx9 and the basic property 

f/?Fk>g—<foc<0, 
J pF 

valid for distributions by convexity of the logarithm, now implies that, for each 
*, hk(F) < hk(G). 

It is interesting that at this point there are two distinct paths to follow. On 
the one hand, the elegant argument of [11] uses elementary information-
theoretic inequalities, also based only on convexity of the logarithm, to 
conclude that hn+l(G) < hn+1(Gv)9 with Gv the stationary Gauss-Markov 
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process of minimum order having the prescribed correlations—that is, the 
process whose spectrum is dvs of (14). On the other hand, by a direct 
computation from (19), 

^+1(e)=^iogHc„r+i))> (2°) 
with Cn the matrix of correlation coefficients of F, and on writing 

\C I = 'C"l lC*-il . . . lCil i f I (y\\ 

l c«-ll I Si-2 I IM)I 

we obtain an immediate connection with the approximation problem addressed 
by prediction theory. For suppose, to begin with, that F is wide-sense 
stationary, so that all the matrices C* are Toeplitz. Then from (18) and the 
monotonicity of Ik, 

I C J / I C ^ I * ! } loxk>Jy (22) 

so that |CJ < IJ~J\CJ\ for n > 7, whence by (20) 

hn+1(G)<hn+1(Gv) (23) 

and therefore H(F) < H(G) < H{GV). Moreover, by (21), the same monoton-
icity implies also that lim n _ ^ \Cn |

1/ ( n+1) exists, hence so does lim n _ ^ h n ( G )/n. 
A minor modification suffices when only Ç, is Toeplitz. Here (3) still defines a 
scalar product for polynomials, but now (4) holds only when S = zkSj(z) and 
T = zkTj(z), with Sj and 7} e n ^ and k > 0, for then (3) involves solely the 
Toeplitz submatrix Ç,. From (17), as before, \Ck\/\Ck^\ = \\Pk\\

2, and [Sk, Pk] 
= sk, the leading coefficient of Sk> so that, on applying Schwarz's inequality as 
in the proof of (10c), 

\Ck\/\Ck_1\= min | |SJ 2 . (24) 
Sk monic 

As, in general, \\Pk\\
2 # ||£*||2 for fe > / , the successive minima in (24) are no 

longer necessarily monotonie as k increases. Nevertheless, by considering the 
trial polynomial zk~JPj{z)/tj in (24), we see by (4) that, for k > / , 
|CJ / |Cfc- i l < h> whence (23) follows as earlier, although here 
Yimn_J,o0hn{G)/n need not exist. 

Thus an analytic extremal problem involving the combinatorial notion of 
entropy, and a geometric one concerned with best approximation in a Euclidean 
space, lead to the same solution. Although the corresponding proofs—the first, 
based on convexity of the logarithm; the second, on orthogonal 
projection—appear entirely different, a similar decomposition seems to under-
lie them both. 

Finally, we note that the connection between prediction and entropy is 
usually established by considerably deeper limiting results: the theorem of 
Szegö-Kolmogorov-Krein [19, p. 49] which asserts that 

logU*) = 2 ^ C totS(0)d09 (25) 
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with S(0)dd the absolutely continuous part of d\k\ and Szegö's eigenvalue 
distribution theorem [17, p. 65], which shows that for stationary processes the 
right-hand side of (25) also represents lim„_>00(« + l)_1log|C„|. In our discus-
sion we link these quantities already in finite dimensions. Moreover, in our 
case, where Ij = l/£,°(0) and dv = E?(0)\Ej(ei$)\-2d8, the equality (25) 
follows trivially on applying the mean-value theorem to the harmonic function 

iog(E,
o
(o)iJs,

o
(z)r

2
). 

A recursion for {Pn}\ Schur parameters. The following supplementary 
information stems from only the basic property (4) of the scalar product, and 
is independent of Proposition 4. 

Pk(z)/tk has leading coefficient 1 and is orthogonal to U.k_1; thus HP*//*!! 
= tk

1/2 measures the distance of zk from Tlk-i> and is positive if and only if 
Ck is positive definite. In light of the correspondence (13a), the square of this 
distance is also the residue left by the best linear forward predictor of length k, 
whose coefficients therefore coincide with those of zk - Pk{z)/tk\ analo-
gously, those of 1 - Ek(z)/tk give the best backward predictor. 

By (4), zPk(z)/tk e Hk+l is already orthogonal to all polynomials of the 
form zSk_l9 so it needs only a one-dimensional adjustment to be orthogonal to 
all of Ilfc, thereby producing Pk+V Specifically, Q(z) = Pk+i(z)/h+i ~ 
zPk(z)/tk G Uk, since the leading terms cancel, and [zSk_vQ] = 0. Thus Q 
and Ek are orthogonal to the same (k - l)-dimensional subspace of ll^, 
hence are proportional, so that 

(26) 

This is the Levinson algorithm for generating {Pk } efficiently, which leads to a 
corresponding computational improvement in the inversion of Toeplitz 
matrices. The mirror symmetry of Pk and Ek here suggests that the subspaces 
we consider should grow, not at one end only, like our polynomials, but 
simultaneously at both ends—a hint we will follow later. 

Evaluating (26) at z = 0 and recalling (12a), 

Y* = 
PM(0) __ Pk+1(0) 

l l ^ x l l 2 lk + l 

P F° 

l-Pfc + lll -Efc + 1 

so that yk is interprétable as the correlation between the normalized forward 
and backward prediction errors of length k 4- 1. Alternatively, forming the 
scalar product of (26) with E%, and recalling that, by (4), \\zPk\\

2 = \\Pk\\ |2 = 

gives 

Y* = 
* * * ( * ) 

E°k 
E°k zPk(z) 

(27) 

so that -yk can likewise be thought of as the correlation between the normal-
ized backward prediction error of length k and the forward prediction error of 
length k, advanced by one step. This formula follows immediately also from 
the fact that, by (26) and the definition of Pk+V \\zPk + yEk\\

2, quadratic in y, 
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must be minimized at y = yk. On applying the transformation (11) between Pk 

and Ek, formula (26) can be written equivalently as 

g*°+i(*) Ei(z) zPk(z) 
— : = — : — + Y / c — : — • (28) 

lk + l lk lk 

Thus (26) and its alternate (28) represent a way of generating the successive 
forward and backward predictors by means of the constants yk. These equa-
tions can also be viewed as modeling wave propagation in a stratified medium, 
in which the wave is partially transmitted and partially reflected at each layer 
boundary. In this interpretation, they have been applied to geophysical ex-
ploration [35] and to inverse scattering [3, 4]. An acoustical version has been 
used to model the vocal tract [16, 31], while an electrical analogue, given by a 
lattice filter network, allows an efficient implementation [22, 23]. 

To investigate the { yk }, let us rewrite (26) in the form 

Pk+l(z) E°k(z) zPk(z) 
t lk f t 9 
lk + l lk lk 

in which the components on the left are orthogonal, by definition of Pk+X. On 
taking norms, and recalling (4) and (12a), we find 

IYJ2 i 
lk + l 

whence 

t2 + t2 t2'' 

2 

tLi-—*—2- (29) 

Suppose now that Ck is positive definite. If Ck+l is likewise positive definite, 
so that Pk+l(z) is well defined, then \yk\ < 1 by (29). Conversely, for each yk 

with \yk\ < 1, we can define tk+l by (29) and Pk+l(z) by (26). Thereupon 
Pk+i is automatically orthogonal to all polynomials of the form zSk_1(z); to 
be orthogonal to all of II k it need only be orthogonal to 1, a condition which 
determines ck+1. With ck+l at this value, the matrix Ck+l will be positive 
definite and will generate Pk+1(z) as the (k + l)-st orthogonal polynomial. 
Thus we see that the choice of {y0,...,yk) with |Y,| < 1 corresponds in a 
one-to-one way to positive definite Toeplitz matrices {Ck+1}. 

This fact, combined with (27), or the equivalent 

7A- V
 J

2 , (30) 

hPk\\ + r a 
forms the basis of Burg's procedure for generating the orthogonal polynomials 
directly from sample data when the autocorrelation coefficients are not availa-
ble and cannot be reliably computed. Here if Yo»---»^-! a r e presumed 
known, Pk and Ek are determined from (26) and (28), and as the scalar 
products defining yk by (30) represent expected values, they are estimated 
directly by averaging over all the consecutive segments of length k + 1 which 
the data contains [7,9]. 
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The numbers {yk} are sometimes referred to as partial correlation coeffi-
cients or, in view of their physical interpretation, as reflection coefficients. They 
are also the Schur parameters, whose fundamental importance has been 
exposed in the far-ranging papers [3, 21, 22, 32]. To see this, we form the 
quotient Bk(z) = Pk(z)/E£(z). We have B0(z) = 1 and, by (26) and (28), 

* * - ( z ) - l + ykzBk(z)> 

or 

B (z) = *k+1(z) - Bk+1(0) 
kV ' z(l-Bk+1(z)Bk+1(0))' 

the Schur algorithm [3, 5]. This relationship is one link between the scalar 
product structure and complex-variable methods. As (26) and (28) are equiva-
lent, it is curious that the simple expedient of considering them jointly, in the 
form of Bk{z\ rather than individually, should form this highly productive 
connection. 

Extremal spectra in Mn\ maximum likelihood estimation. Suppose that 
{ E£'(z)}9 i = 1,...,« + 1, with \at\ = 1, is a set of n + 1 evaluations which 
are mutually orthogonal as elements in II„. Using {E^{z)/\\E^\\} as an 
orthonormal basis, we can write for any 5M, Tn e II„, 

S „ ( z ) = I a , . £ ; < ( z ) / | K « 1 ( (31) 
i 

with 

a,.= [5„,£„V||£„a '||] = 5 „ ( a , ) / | | ^ | | , 

by definition of E"'. Expanding Tn similarly, we find from (31) 

[S„,T„] = £ S„(«,) TJÏ)/\\EÏ\\2, (32) 
i 

which is a representation having the desired form (8), in which the measure 
dju,(0) consists of masses ||£"'H~2 at z = ai91 < / < n + 1. 

The evaluations E% and Eg are orthogonal provided 0 = [E^ Eg] = E^(0). 
Thus the mutual orthogonality from which (32) springs requires that, for each 
of the ai9 E"' vanish at the remaining a., j # /. We therefore consider the 
zeros of E%. To this end, we derive a compact expression for E^(z) which is of 
interest in its own right. 

By definition of E\ and by (4) we have, for each Sn__l e !!„_!, 

o - [(z - o V i , E£] = [zsn,l9 Ei\ - [sn_19 m\ 
= [zSn_l9{\-lz)El\. 

Consequently, (1 - lz)E^ e Un+l lies in the orthogonal complement of the 
(n — l)-dimensional subspace of IIM+1 generated by { ^ S ^ } . Again by 
definition and (4), this two-dimensional complementary subspace contains 
E®(z) and zPn(z)—elements which, being polynomials of different degrees, 
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are linearly independent and therefore span. Thus 

(1 - lz)E*{z) = aE^(z) + bzP„(z). (33) 

By (10b), the leading coefficient of -ÇzEJ;(z) coincides with that of 
-f P„(f )zPH(z)/tH9 so that b = -ÏPn(£)/tn> and evaluation of (24) at z = 1/f 
then determines a. Applying (11) to simplify the resulting expression, we 
obtain 

e , ( , ) .g(:)qiH>.(-)W» | (34) 

the Christoffel-Darboux formula. By the same argument, if a linear combination 
of E®(z) and zPn(z) vanishes at z = 1/â, then on writing 

(1 - âz)Tn(z) = <>(*) + bzPn(z) 

we see that r„ e II „ is orthogonal to {(z - a)»S„_i}, so that 

Tn = cEZ(z). (35) 

We now specialize to |f | = 1. By (10b), the leading coefficient of E* is 
Pn{$)/tn, which does not vanish by Proposition 1, so that E%(z) has n zeros; 
(34) and (12b) show that these are given by the solutions of 

ZP„{Z) _ £„°q) = &M) m ( . 
EQ

n{z) SPM) W ) K ' 
distinct from z = f. By (12b), |y| = 1. Now if a is a solution of (36), then so is 
1/â, for by (lib) the value of the left-hand side of (36) at z = 1/a is 1/y = y. 
Consequently, applying (35) to the linear combination yE®(z) - zPn(z) which 
vanishes at z = 1/â, we find 

c(l - ÖZ)E;(Z) = Y£„°(Z) - zP„(r), 

and as the right-hand side also vanishes at z = a, while £„a(a) > 0, we see that 
\a\ = 1; the same argument shows also that all the zeros of yE°(z) - zPn(z) 
are distinct. We conclude that the map zPn(z)/E®(z) winds \z\ = 1 onto the 
unit circumference n times—a fact that also follows easily from the maximum 
principle for analytic functions. Evidently, the set of solutions of (36) is 
unchanged if f is replaced by any one of them. In sum, E%(z) has n distinct 
zeros {a,}, 1 < i < n, of unit modulus, and adding to E^ the evaluations 
{ E^} produces a mutually orthogonal set and justifies (32). 

To see how the at change as a function of f, we begin with f = 1 and denote 
the zeros of E\ in counterclockwise order by {j8/}. Then as f moves monotoni-
cally on the unit circumference to fil9 the motion of the at = a (̂f ) produces a 
monotone displacement of each /?, to /?l+1, and fin to 1. In turn, this generates 
a one-parameter family of measures d\k^ 0 < argf < arg/^, each consisting of 
n + 1 mass points; every point a on \z\ = 1 appears once in this family, 
carrying the mass ||£„air2. By (32), these measures all belong to Jt'n. They, too, 
have an extremal characterization. 
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PROPOSITION 5. ||£"|l~2 ^ tne ^ar%est mass which a measure of Jt n can carry 
at the point z = a, \a\ = 1, and any measure which does so coincides with dp^ 
with a a zero of E*. 

PROOF. If a = e** is a point of mass m for a measure dfi(6) e Jtn, then 
from (8) 

l l ^ " 2 = h £>:(«") f*(«) > m\E:(e^)\\ 
so that m < | |£M l2 / |£«(a) |2 = II^H"2. Equality occurs here only if E%(eie) 
vanishes on the support of d/i(0), excepting 6 = <j>. Thus d\x{6) consists of 
masses at a and at the zeros {a,.}, 1 < / < «, of E£(z). Since is"' vanishes at 
all of these points except z = a„ formula (8) for ||£w

a,||2 shows the mass of 
d/ji(0) at z = a, to be ||£"'||~2, as required. 

In view of Proposition 5, the measures d[i^ have been called maximum 
likelihood spectra [33]; we note that in spectral estimation this term has a 
special sense, different from its usual meaning [30]. By (3a), the coefficient 
vector e£ of E*, which defines dfiç9 is given by the solution of 

<U-(u,...,r). 
From (10b), 

and comparison with (13) shows immediately that—as observed by Burg 
[8]—the reciprocal of the maximum-likelihood estimate is the sum of the 
reciprocals of the maximum entropy estimates for all lower orders. 

Matrix factorization. We now show how the polynomials Pk(z) and Ek(z) 
can be used to invert the matrix Cw. 

Any orthonormal basis in II w generates at once a factorization of Q*1 and 
of C„. For suppose that {Qk}9 0 < k < n9 constitutes such a basis, so that 
R = Z[R, Qk]Qk for any R e Un, whence 

[*,£]= £[*,e*]T*fiïï- i[R,Qk]lQk,s]. (37) 
A:-0 A: = 0 

Let us henceforth extend the polynomial representation of a vector also to the 
scalar product (-,•)*> thus if A(z) and B(z) are polynomials having respective 
coefficient vectors a and b9 and M is a matrix, we set (A(z), B(z)) = (a, b)9 

and denote by M A the polynomial with coefficient vector Ma. Further, we 
will say that a row, or column, of M is given by A(z) if it consists of the 
sequence a0, al9...,an of coefficients of A. With this notation (37) becomes, 
by (3a), 

{C-l(CnR)9CnS) = t (CnR,Qk)(QkXnS). (38) 

Since Cn is invertible, any wth degree polynomials X and Yean be represented 
as CnR and C„S, respectively, so that (38) is equivalent to 

{C-%Y)= i(X,Qk)(Qk,Y), 
A:»0 
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expressing the fact that 

C;1 = M*M, (39) 

with M the matrix whose (k + l)st row consists of Qk, 0 < / : < « . On forming 
inverses, this yields 

CW = M-1(M*)"1. 

Since, by orthonormality of the Qk, 

8ij=[Qi,Qj] = (CnQi,QJ), 

M"1 is the matrix whose (k 4- l)st column is given by CnQk, 0 < fc < «, so 
that (M*)"1 has rows CnQk. 

By applying this to Qk = Pk(z)/{tk, we obtain the Cholesky decomposition 

S i L 1 L 1 » 

with Lx lower-triangular, having Pk(z)/ ^ as (k 4- l)st row, and 

c„ = LIHLÏ)-1 = ITO, 
with Ux upper-triangular, having CnPk/ ŷ ~ as (k 4- l)st row, 0 < k < n [24]. 
Since for j > k 

[zmlp zkE«n_k\ = [z^Elj, Elk) = 0, (40) 

the last equality holding because zJ~kE®_J; of degree n - k, is evaluated at the 
origin by E®_k, it follows that {zkEn_k/ ]jtn_k} is Hkewise an orthonormal set 
—indeed, by (11a), the mirror image of {Pk/ {t^}. This in turn yields a 
factorization 

c„-i_= u2*u2) 

with U2 upper-triangular, having zkEn_k/ yjtn_k as its (A: + l)st row, and 

C„ - L$L2, 
with L2 lower-triangular, having Cnz

kEn_k/ ]/tn__k, a polynomial of degree k, 
as its (A: 4- l)st row, 0 < k < n. 

In using such decompositions, it is a considerable computational and con-
ceptual advantage for the factors to be Toeplitz as well as triangular, because 
the matrix multiplications can then be interpreted as convolutions. Now if U is 
an upper-triangular Toeplitz matrix having the vector v as its first row, and 
Vn(z) is the polynomial with coefficient vector v, then Va has components 
given by 

{A„(z),zkV(z)) = {A„{z),zkWn_k{z% 

0 < k < «, where Wn_k(z) s Y/JZQVJZ-1 consists of Vn truncated to degree 
n — k. Thereupon, 

U 4 „ ( 0 = t tk(An(z),zkW„_k(z))=lAn(z), t lkz"WH.k{z)\ 
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where c = ln+lVn(l/$) causes the numerator to vanish at z = l/£, as it must 
for the quotient to be a polynomial. Thus the appearance of a function of this 
form in a scalar product signals the presence of an upper-triangular Toeplitz 
matrix with top row consisting of Vn(z). In particular, the Christoffel-Darboux 
formula suggests itself as a source of such factors. We give two examples. 

From (34) we have 

RH{S)-[RH,E<] 

-t:1 £ °(z) - <M"+1 _ , , (zPn(z) - t„z"^) - d2z»+i 
R„, £„°a) nK ' f/U?) 

where dl and d2 divide the component of z"+1 in the numerator of (34), so 
that each of the above numerators separately vanishes at z = 1/f. As we have 
seen, the two quotients correspond to upper-triangular Toeplitz matrices U and 
V generated by E® and P* respectively, where P*(z) = zPn(z) - tnz"+1 is the 
truncation of zPn(z) to degree n. Thus by (41) 

RAS) = tu11 t;kE!(!;)[Rn,zkE!(z)}-t;pn(t;)[Rn,zkP:(z)}, 
A: = 0 

whence 

[Rn, Sn] = ^ E [R„,zkE!(z)} [ « ( £ ) , 5 „ ] - [*„, z*/«*(z)] UkP„*(0, S], 

so that, as in (39), 

C;1 = ^ ( I P U - v*v). 

This formula is due to Gohberg-Semencul [24; 15, p. 86]. 
Finally, we turn to the set of orthonormal evaluations figuring in (32). As we 

have seen, the set {ak} is parameterized by a point y = eid on the unit 
circumference. By (39), we have 

C;1 = K ) * M ' , (42) 

where the A:th row of M* is given by E^k/\\E^k\l 1 < fc < « + 1. The strong 
kinship among these rows enables us further to factor Me

n. For by (36), {ak} 
consists of all the solutions of fPM(O/£„0(O = ei$, so that, from (34), 

' * ( ! ~ akz) 

Consequently, for any polynomial An{z\ the components of M6
nAn consist of 

E!(cck)(AÀz)E!(z)-e->°zPn(z) 
\\E:*\\ \ nv n tn{\-akz) 

By (41), these coincide with \\E^\\-lE^(ak)\i^A{t) evaluated at f = ak, 
where U' is_the upper-triangular Toeplitz matrix with top row given by 
/;*{ £„° - e"P*}. We therefore have 

M'-DfR'U', 
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with Re
n the matrix whose kth row is (1, ak9..., <xk), and D? diagonal, with 

entries I I ^ H " 1 ^ ^ ) , 1 < k < n + 1. On substituting into (42), and letting 
D* = (D?)*D?,wefind 

C;1 = ( U ' ^ ' U ' , (43) 

where T* = (R<?
W)*D<9R(?. Since each \ak\ = 1, T,? is Toephtz. Thus C;1, al-

though not itself Toeplitz, can be associated with a family of Toephtz matrices 
T* by the simple coordinate transformation of (43). 

The orthogonal polynomials of T% can now be readily determined. For we 
have already noted that Qk(z) = Cnz

kE„_k(z\ 0 < k < «, are mutually or-
thogonal in the scalar product defined by C"1, since 

( Q ' C f i * ) - {zJE°_J(z),CmzkE!_k(z)) = [zJE2_j,zkE2_k] 

and the last quantity vanishes by (39) when j # k. On applying (43) we 
therefore find, for j * k9 

O = ( C ; 1 Ô , , Ô , ) = ( ( U * ) * T X Ô „ Ô , ) 

= (T'U'Öy.U.fe*). 

Now by (11a), Qk(z) has degree k and is monic. Since U* is upper-triangular 
with 1 on the main diagonal, the same is true for V„Qk\ these are therefore the 
monic orthogonal polynomials associated with T*. By (26), the corresponding 
reflection coefficients 8k are given as 

«f = U*ofc+i(0), 

so that, from the definition of U*, for 0 < k < n - 1, 

Sl={Qk+r,t?{E»n-e-«Pn*}) 

= {Cz^El^t^E^-e-'^iz)}) 

= rni[zk^E2_k_l,E!-e-«Pn*]. 

Now on writing 

P* - ZP„(Z) - t„Z» + 1 = ZP„(Z) - 2* + lJ(z-* " 7^) + f^l 
\ \ ft K / ft K J 

the decomposition arranged so that the first bracketed term has degree 
n — k — 1, and repeatedly applying (4), the evaluation property of E%9 and the 
definition of PJ9 we find 

, . = ^^=M = -e«yn_k_y. 
ln-k 

Thus the reflection coefficients associated with T,f, the Toeplitz factor of C~\ 
are those of Cw, taken in reverse order, followed by a suitable rotation and 
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complex conjugation. The representation (43), as well as this curious fact, were 
described and discussed with extensive applications in [23, 22]. 

In sum, orthogonal polynomials on \z\ = 1 can be equivalently defined from 
a positive measure dfx by using the Gram-Schmidt process in L2(rfju), from the 
Fourier coefficients of such a measure by solving (5), or from the partial 
correlation coefficients by applying the recursion (26). These elements are 
therefore interrelated, and the preceding sections have described some of the 
connections among them, useful for both theory and application. All of these 
ideas have continuous analogues, which we sketch in the Appendix. 

Conclusion. The notion of entropy is introduced as a measure of random-
ness, and in that way, intuitively, larger entropy corresponds to less informa-
tion. This feeling was formulated with greater precision by the entropy 
concentration theorem [20], which shows that among all distributions satisfying 
a given set of linear constraints, that could be observed in a repeated 
experiment, the entropy is very heavily concentrated in a neighborhood of its 
maximum. This stems from the combinatorial fact that the entropy of a 
distribution measures the number of ways in which it can be realized. Thus the 
entropy-maximizing distribution occurs by far the most frequently among the 
available candidates, and is thereby viewed as the least informative choice. 

However, another sense in which a process may be informative is that of its 
own coherence, measured by its predictability from the past. This in turn is 
controlled by the autocorrelation coefficients, and if the first n of these are 
prescribed, it is the remaining ones which determine how much information 
about the current outcome is available from previous observations. In these 
terms, the least informative process consistent with the data is that for which 
prediction ahead is poorest. 

That it is surprising for these two descriptions to characterize the same 
spectrum was observed originally by Burg. Our elementary constructions show 
that already in finite dimension the combinatorial notion of entropy, and 
orthogonal decomposition, are closely related. What does this connection 
imply, and how is the structure of each problem reflected in the other? In 
particular, is some equivalent of the phenomenon of entropy concentration to 
be found in the geometry of prediction? This question, and similar others, seem 
interesting and remain open. 

Acknowledgment. I am very grateful to J. J. Benedetto and D. Slepian for 
stimulating conversations. 

Appendix: the continuous limit. In this section we explain how our present 
considerations apply to second-order Sturm-Liouville differential 
equations—an important class, governing a variety of mechanical and electri-
cal inverse problems. That such equations are related to the moment problem 
was pointed out by M. G. Krein [27], but the precise connection is far from 
obvious. Here we trace it explicitly, stressing a geometric interpretation. Our 
object is not to give proofs, which are often more efficiently obtainable by 
other methods, but to guide intuition. We focus on the following remarkable 
result of [28]. 
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THEOREM (M. G. KREIN). Suppose that D(t), 0 < t < 2R, is a continuous 
function such that, for each 0 < r < R, the equation 

q(t;r)+ f D(\t-s\)q(s;r)ds = l, 0 < / < r, (Al) 

has a unique continuous solution q(t; r). Then this function generates a differen-
tial equation 

î(p^î)+x2p^y^ = 0' ° < > • < * . (A2) 
withp(r) = q2(r;r), having solutions 

<t>(r,X2) = ( £ j [%( j ; r ) cosX*&) / /> ( r ) , (A3) 

^ ( r , \ 2 ) = ( J : / o ^ ( 5 ; r ) < o ( , , X ) ^ ) / J p ( r ) , (A4) 

where 

Xu(t,X) = sinXt + 2 (* D(t - s)sinXsds; 0 < t < R, 
J
o 

which satisfy the initial conditions <f>(0, X2) = 1, <t>'(0, X2) = 0; \p(Q, X2) = 0, 
^ ( 0 , X 2 ) = 1 . 

We will show that this theorem can be interpreted as a continuous version of 
some of the preceding relationships. Since the kernel D(\t - s\) is akin to a 
Toeplitz matrix, we might expect it to generate a first-order equation analogous 
to (26). We aim to explain, firstly, how the second-order equation (A2) enters 
the problem, and, secondly, what the solutions (A3) and (A4) represent in 
terms of our earlier constructions. We note from the outset that the hypotheses 
of the theorem require neither a positive-definite, nor even a Hermitian kernel, 
and are therefore weaker than ours; we propose our point of view less to 
recover all of these results than to understand them better. 

If in the trigonometric polynomial An(z) = ££«o akz
k we let z = eiX/M and 

correspondingly rescale the polynomial by the factor 1/M, we obtain 

M M ,Ln
 ük€ 

a Riemann sum approximation to an integral of the form 

f a(t)eiXtdt, (A5) 

in which r = n/M9 and a(t) has the value ak at t = k/M. Thus we can think 
of Fourier transforms of the form (A5) as continuous analogues (obtained as 
M -* oo ) of trigonometric polynomials, in which r corresponds to the degree, 
and a(t) to the coefficient vector. The Toeplitz matrix C„, which defined the 
scalar product for polynomials, similarly passes into a positive-definite dif-
ference kernel C(s - t)9 defined on a finite interval. To parallel the earlier 
discussion, we should next construct continuous versions of orthogonal poly-
nomials, but for this purpose it is awkward to use a limiting form of (5), since 
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its right-hand side represents a function vanishing except for (n — l)/M < s 
< n/M where the value is 1, and this does not have a well-defined limit as 
M -> oo (nevertheless, see [29] for a construction along these lines). We 
therefore take a readily available alternative approach. For from (10b), 

P„(l) Pn(z)/tn = El
n{z) - El_x(z), {A6) 

ynomial at z = 1 is th< 
ctor i\n of E\(z) is giv< 

( U , = ( l , l , . . . , l ) , 

and, since the value of a polynomial at z = 1 is the sum of its coefficients, (3a) 
shows that the coefficient vector i\n of E*(z) is given by the solution of 

which evidently has as limit 

f C(s - t)e{s\r)ds = 1, 0 < t < r. (A7) 
'o 

As this equation does not generally have a solution for smooth C, we 
incorporate into the kernel a component of 8(0), representing (A7) by 

e(t\ r) + f D(s - 'M**; r) ds = 1, 0 < / < r. (A8) 

Another effect of this modification is that in the discrete approximation, which 
now has a component of the identity, trM -> 1 in the continuous limit. In sum, 
we conclude that when the covariance function 

8(s-t) + D(s-t), 0 < s , / < r (A9) 

replaces the covariance matrix Crt, functions (A5) replace polynomials Ak(z\ 
with r corresponding to k; the scalar product, paralleling (3a), is given by 

dt, [A(\),B(\)]= f a{t)\b{t) + f D(s-t)b(s)ds 

and the solution of (A8) defines the evaluation 

£r(X)= fe(t;r)eitXdt9 

analogous to E\(z)\ here we note that X = 0 represents z = 1. Continuing, 
e(r; r) corresponds to the leading coefficient of E\(z) which, according to (3a) 
and (5), is [E\, Pk] = Pk{\), and, from (A6), the equivalent of Pk(l)Pk(z)/tk 

is dEr(K)/dr, so that 

<nr(\) = e{nr) J r 

replaces Pk(z)/tk. For these relationships, as for our subsequent remarks, a 
good illustration is a constant kernel D, for which all the quantities, discrete 
and continuous, are easy to find explicitly. 

Now we turn to (26), which we rewrite as 

Pk+M Pk(z) , .Pk(z) E°k(z) 

h+i h K > tk
 ykE°k(0)' 
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Recalling the relationship (lib) between Ek and Pk9 we see that, since 
z - 1 = eiX/M — 1 -» iX/M, in the continuous limit we obtain 

dr -*X*,(X) + Y ( r y ' x i r r ( M - (A10) 

This equation is simplified by the substitution 

7Tr(X) = e'rX/2iv(X), (All) 

which replaces 7rr(X) by the Fourier transform of a function supported on the 
symmetric interval |/| < r/2. Indeed, such a modification was already prefig-
ured earlier in our constructions, when the symmetry between Pk{z) and 
Ek(z) suggested that the matrices {Cn} be used to define the scalar product 
for two-sided trigonometric expressions of the form l}k^\n/2] akz

k
9 rather than 

for trigonometric polynomials. Before doing this, however, we note that (All) 
converts (A10) into 

^ - f i v ( A ) = y(r)^X) ; 

and, although this equation is of only first order, its real and imaginary 
components combine to produce two different second-order equations, for 
Re{Fr(X)} and Im{Fr(X)}, respectively [29]. 

We now return to the discrete problem, recasting it in terms of two-sided 
expressions. We will follow the discussion of [31] with only minor modifica-
tions. For simplicity, suppose that Cm is real. If m is even, (2) will also define a 
scalar product in the space of functions of the form ££._„ akz

k
9 with m = In. 

Since Cm is symmetric, functions generated by even and odd coefficient 
sequences are orthogonal with respect to the scalar product, and we con-
centrate on the former, denoting by ^ the (n + l)-dimensional space of 
functions of the form L"M ̂ z f e , a_k = ak\ as before, we will call 
(an9...9al9 a09 al9...9an) the coefficient vector of an element of ^n9 and 
denote it by an9 despite its having In + 1 components. For odd m9 the scalar 
product is defined on a different space of functions, but as the distinction 
between odd and even disappears in the continuous limit, we restrict attention 
to ^ . Now if A &&"n_l9 then (z + z~l)A also has even coefficients, hence 
belongs to ^ , and from (4) we obtain 

[(Z + Z-1)A9B] = [A9(Z + Z-1)B]9 

whenever either scalar product is defined, in particular if A or B e ^ _ 1 # 

Consequently, the operation propelling an element from one of our subspaces 
to the next, which had previously been the unitary multiplication of a trigono-
metric polynomial by z, is now self-adjoint. This accounts for the fact that, 
despite starting with a Toeplitz matrix, our present formulation leads to results 
which more closely resemble the power moment problem, generated by Hankel 
matrices; we can see this directly by noting that members of ^ are polynomi-
als of degree n in cos 0. In particular, there will be a three-term recursion for 
the analogues of orthogonal polynomials, and it is plausible that this should 
yield a second-order differential equation in the continuous limit. 
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Following the previous development, we introduce an orthogonal basis 
{Tk(z)} which spans the successive subspaces { ^ } , defined by coefficient 
vectors { rk } which satisfy 

C2,r,= ( l ,0 , . . . ,0 , l ) . (A12) 
Evidently, rk is real, hence Tk is real-valued; in terms of the earher construc-
tions, Tk(z) = z-k[P2k + E$k(z)]. Letting 

denote the leading coefficient of Tk(z), we see by (3a) that 

l |r0ll2- 'ó; | | 7 ; | | 2 - [ r i k > r i k ] -2 / i , * > i . (Ai3) 
Similarly, we introduce the evaluations G%(z)9 defined by 

[AH,G*] - AH(S), A„<=tr„. (A14) 
As before, 

<?.'(*)- I Tk(z)Tk(S)ATkr, (A15) 

so that, by (A13), the leading coefficient gn of G* is 

gn = *; T„(I) / | | i ; | | = r„(i)/2, n > 1, (Ai6) 
and the coefficient vector yn of G* satisfies 

C2nYn = ( l , l , . . . , l ) . (A17) 
Again, following the proof of (34), we obtain, for n > 1, 

{(z+z-1) -a+S-*))GHZ) = ^ i ^ ) 7 ^ / ^ ) 7 ^ ^ 

(A18) 
so that, letting z - \ , 

+ f "2 ) G- ( 1 )- 2 C l ( l ^ ( ï ) - ^ î ) / - (A19) 

This is clearly a discrete version of (A2) and (A3). Indeed, let A be the 
difference operator, defined for a sequence {Aj} by 

ÙAJBAJ-AJ^. 

We then find from (A16), (A13), and (A15) that, setting 

' * s 8k/(*k)1/2, k>l, (A20) 
we have 

M i l . 2H$1 (A21) 
vl 2 r„(i) ' ( A 2 1 ) 

so that, on applying A to (A19), we obtain, for n > 1, 

(f + r 1 - 2 ) " » | § y = A ( * y r ; + 1 ) 1 / a
V . + 1 A ^ ± ^ . (A22) 
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Now as we have seen, in the Hmiting process f is replaced by eiX/M so that 
(? + f"1 - 2) -> -X2/M2, while MA -> <//dir and, by (A17), 

Gl(S)/M^ f_ q(s;r)eiXsds, 

with g defined by (Al). Moreover, tn -> 1 f or n = Mr, so that *>n -> #(r; r), 
and 

G|(l)/M = G*(?)/M -* f «(*; r)eisXds = 2 fr q(s; r)coss\ds, 
J-r J0 

so that (A21) represents the solution (A3). 
To find a second solution of (A2), we trace the source of (A22) to the fact 

(A18) that the projection of {(z 4- z"1) - (f + S~l)}GJi(z) onto Fn_x is 
independent of n. Specifically, let &n denote the orthogonal projection onto 
3Tn\ then we can write (A18) as 

^ - i t t ' + ' - ^ - t t + r ^ K ' - O . (A23) 
With the added normalization 

[l,G„f] = l, (A24) 

this characterizes G|, for if some Gn e ^ satisfies (A23) and (A24), then on 
writing 

A„(Z) = AM) + {(z - z-1) - (a + r 1 ) } ^ * ) , 
with 

v (A- Mz)-A„(Q 

*-l{z)- (z + z-^-a + r1)' 
we have, for |f | = 1, 

[A„,Gn] = An(m,Gn) +[Fn.lt {(z + z"1) - ( ? + rl)}G„] 

-AMI 
so that Gn coincides with the evaluation G^. By the same argument, specifying 
&n-i{(z + z_1) " (? + ?"1)}^n(z) f o r a n element Hn^^"n is equivalent to 
prescribing the effect of #„ in the scalar product on ^ . In particular, suppose 
that, for |f | = 1, Hi satisfies 

P*-i{(' + z-1) - ( ? + T 1 ) } ^ = 1. (A25) 

[1 , / t f l -O; (A26) 

then on decomposing 4̂n as above, we find 

U Hn = \ Mz)-AM) J 
1 "' nJ [(z + z-^-a + r1)' 

In order to express #£ in closed form, define f or k < n 

(z + z - ^ - u - r 1 ) ' '• ( 28) 

, 4 „ e ^ . (A27) 

tfktt)
s fo,/tf]-
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Writing H* = LLoPkFk, we then find 

so that, paralleling (A15), 

"£(*)- I Tk(z)US)/\\Tk\\, (A29) 
A: = 0 

while by (A25), 

{(z + z"1) - ( f " r 1 ) } ^ * ) - 1 + aTH+l(z) + 6rw(z). (A30) 

To determine a and & we evaluate at z = f, obtaining 

ar„+1(?) + w;(0 + 1 = 0, 

and form the scalar product of H^+l with (A30) and (A18) to find 

i _ t/n+1q)7;a) - t a p i n g ) 
2t'„ 

respectively. Thus 

{(z + z-i) -a + r 1 )}^) = i + ^>^>-^>^>, 
whence, proceeding as earlier with (A18), we see that 

^Ml>-2Mi (A31) 
•>! T.(l) 

provides a second solution of (A22). 
Another way of deriving these solutions is to interpret (A22) as the three-term 

recursion satisfied by the normalized {^(z)/!!!7^!}. Specifically, if we write 
(z + z-l)Tk(Z)/\\Tk\\ = LfôpjTjWAFjW, then 

/*,= [(z+ z-1)r„ r,]/||rj|||r,|| = [^.(z + z-^rj/llrjllrj, 
and as (z + z~l)Tj e ^ + 1 , jS, vanishes f or j + 1 < k by definition of 7^. 
Thus 

(z + z-i)ZM = iZkii£) + P f c Mfl + akZÀ±M, (A32) 
llnll * ' HTW-ill llrjl * ||rk+1|| 

with 

ff-i = 0 

pk=[{z + z-l)Tk,Tk)/\\Tkf 

ok = [(z + z-l)Tk,Tk+1]/\\Tk\\ \\Tk+1\\, k>0. 

These coefficients define a recursion 

(£ + f " 1 ) ^ - «A-i^fc-i + P0k + a*^*+i (A 3 3) 
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which, if applied starting with k = 1, generates for each f two independent 
solutions, determined by choice of initial values y0 and yv We can verify 
directly that (A33) is equivalent to (A22). For since, by (A15), the leading term 
of (z + z"1 - 2)G\(z) is (z + z-l)Tk(z)Tk(l)/\\Tk\\

2, and the rest He in STk, to 
which Tk+1 is orthogonal, on forming the scalar product of (A18) with Tk+1 

we find, recalling (A13), 

°k = ('iAUi)172, k>\. 

Then, setting z = 1 in (A32), we can solve for pk to obtain, for k>2, 

Pk = 2~ 7*- i ( l ) /r*( l ) - t'kTk+1(l)/t'k+iTk(l), 

and introducing these expressions into (A33) yields 

(f + r1 - 2Mykitlf{f
/2 = A(^/ i + 1 r V j t + 1 A^^±^. 

Thus the recursion (A33) can be recast into (A22), with solutions given in 
terms of yk by yk(Ç)(2t'k)

1/2/Tk(l). To identify the {yk}9 let D be the 
tridiagonal symmetric matrix, with main diagonal consisting of {pj} and the 
two adjoining diagonals of {a,}, j ^ 0. By (A32), if 

S„(z)= E & ^ , (A34) 

then (z + z~x)Sn(z\ when expanded in {J /̂HJ^H}, has as coefficients the 
components of D/?. Now let yk(£)9 k > 2, be the solution of (A33) generated 
from initial values yQ and yv and in (A34) set fik = yk(£), 0 < k < «. Then 
D/? has at most n + 2 nonzero components and, by (A33), in all but possibly 
the first and the last two components it coincides with (f + f-1)/?. The action 
of ^ being to truncate an expansion of the form (A34) to k < j , we therefore 
have 

ik — 0 I I - f * Il 

= "EU + r ^o^n r + ( ^ + ^ -(f + ^ î i é r 
k = 0 \\lk\\ Il A) Il 

o r 

-̂1{(̂  + ^i)-a+ri)}i>',a)^=>'o(po-a+ri))+^1-
*-0 M* Il 

(A35) 

We thus see that the three-term recursion is but a concrete implementation of 
an equation like (A23) or (A25). Specifically, on choosing y0 = 1 and yx = 
(S + r 1 - Po)Ao in (A35), E5^(Orfc(^)/linil satisfies (A23) and (A24), 
whence it coincides with G^(z); the desired solution, yk(Ç)(2tk)

1/2/Tk(l), of 
(A22) is then AGi(l)/2»w

2, recovering (A21). By (A15), yk(0 = Tk(S)A\Tk\\. 
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Similarly, if y0 - 0 and yl-l/o1 in (A35), I%yk(!;)Tk{z)/\\Tk\\ satisfies 
(A25) and (A26) so that it coincides with Hji(z), and the corresponding 
solution of (All) is given by A#|(1)/2*>M

2, recovering (A31). Here, by (A29), 
yk(S) = Uk(S)A\Tk\\. Thus both {Tk(S)} and {£4(0} can be efficiently gener-
ated by the recursion (A33), from appropriate initial values. 

We have already seen that the solution obtained from (A21) corresponds to 
(A3); it remains to find a limiting expression for that of (A31). To this end, we 
represent H^(l) as [Hl(z\Gl(z)\ = [G\y A*], and evaluate this scalar product 
from its definition (3a) by determining C2nT)w, with v\n the coefficient vector of 
H*(z). In turn, to do this, we invoke (A27) to obtain 

[z* + z-*,tf|(z)] = *<n. (A36) 

As the coefficient vector of zk + z'k has entries 1 in the ±A:th position and 0 
elsewhere, the left-hand side of (A36) yields twice the kth component of C2„i)„, 
by (3a). Since, explicitly, 

(z* + 2-*) - q * + rk) _ ( (*»*- i ) (**- r*) 
(z + z-1) - (? + r1) (20* -1(^ - i ) (* - r) 

= z*-1 +(f + r v ~ 2 + ( f 2 +1 + r2)zk~3 

+ •••+(? + r1)z-(fc_?) + «-(*-l), 

for the right-hand side of (A36) we obtain 

+ • • • +co(f*-1 + sk~3 + . • • +r*+ 3 + r*+1) 

+ - - -+^(*-2)( f + r 1 ) + c.(ik.1). (A37) 

In the discrete approximation to the integral operator of (Al), c0 represents 
the component of the identity so, for k = sM, its coefficient converges to 
jlse

iXtdt/1, since only half of the powers of f are counted, while the 
remainder of (A37) has as its limit, correspondingly, 

if D(s - x)ljj* eiXtdt\ dx9 0 < s < r. 

It follows that the limiting value of C2ni]w at s > 0 is given by 

1 sinA.y . rs ^, x sin Ax , 1 
+ ƒ D(s - x)—r—dx = — co(5,A), 0 < s < r. 

Jn A Z 
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Since the coefficient vector of G* tends to q(s; r), we see by (3a) that the 
continuous limit of H^(l) = [G*, H%] becomes 

;

r 1 cr 

q(s;r)-o)(s,\)ds = ƒ q(s; r)o)(s, X) ds, 
-r l J0 

so that (A31) corresponds to (A4), as was to be shown. 
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